Properties

Label 435.2.a.f
Level $435$
Weight $2$
Character orbit 435.a
Self dual yes
Analytic conductor $3.473$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{21})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + q^{3} + (\beta + 3) q^{4} + q^{5} - \beta q^{6} + q^{7} + ( - 2 \beta - 5) q^{8} + q^{9} - \beta q^{10} + 5 q^{11} + (\beta + 3) q^{12} + (2 \beta - 1) q^{13} - \beta q^{14} + q^{15} + \cdots + 5 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} + 7 q^{4} + 2 q^{5} - q^{6} + 2 q^{7} - 12 q^{8} + 2 q^{9} - q^{10} + 10 q^{11} + 7 q^{12} - q^{14} + 2 q^{15} + 13 q^{16} - 6 q^{17} - q^{18} - 2 q^{19} + 7 q^{20} + 2 q^{21}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.79129
−1.79129
−2.79129 1.00000 5.79129 1.00000 −2.79129 1.00000 −10.5826 1.00000 −2.79129
1.2 1.79129 1.00000 1.20871 1.00000 1.79129 1.00000 −1.41742 1.00000 1.79129
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.2.a.f 2
3.b odd 2 1 1305.2.a.m 2
4.b odd 2 1 6960.2.a.bw 2
5.b even 2 1 2175.2.a.r 2
5.c odd 4 2 2175.2.c.f 4
15.d odd 2 1 6525.2.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.a.f 2 1.a even 1 1 trivial
1305.2.a.m 2 3.b odd 2 1
2175.2.a.r 2 5.b even 2 1
2175.2.c.f 4 5.c odd 4 2
6525.2.a.t 2 15.d odd 2 1
6960.2.a.bw 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(435))\):

\( T_{2}^{2} + T_{2} - 5 \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 5 \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( (T - 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 21 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 20 \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( (T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 84 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 4 \) Copy content Toggle raw display
$47$ \( T^{2} - 12T + 15 \) Copy content Toggle raw display
$53$ \( T^{2} - 10T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T - 12 \) Copy content Toggle raw display
$61$ \( T^{2} + 2T - 188 \) Copy content Toggle raw display
$67$ \( T^{2} - 10T - 59 \) Copy content Toggle raw display
$71$ \( T^{2} + 10T + 4 \) Copy content Toggle raw display
$73$ \( (T - 4)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 6T - 12 \) Copy content Toggle raw display
$83$ \( T^{2} + 14T + 28 \) Copy content Toggle raw display
$89$ \( T^{2} - 12T + 15 \) Copy content Toggle raw display
$97$ \( T^{2} - 14T + 28 \) Copy content Toggle raw display
show more
show less