Properties

Label 435.2.a.e.1.2
Level $435$
Weight $2$
Character 435.1
Self dual yes
Analytic conductor $3.473$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.47349248793\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} +1.00000 q^{3} -1.61803 q^{4} -1.00000 q^{5} +0.618034 q^{6} -3.00000 q^{7} -2.23607 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+0.618034 q^{2} +1.00000 q^{3} -1.61803 q^{4} -1.00000 q^{5} +0.618034 q^{6} -3.00000 q^{7} -2.23607 q^{8} +1.00000 q^{9} -0.618034 q^{10} -5.47214 q^{11} -1.61803 q^{12} -6.23607 q^{13} -1.85410 q^{14} -1.00000 q^{15} +1.85410 q^{16} +3.47214 q^{17} +0.618034 q^{18} +7.70820 q^{19} +1.61803 q^{20} -3.00000 q^{21} -3.38197 q^{22} -2.23607 q^{24} +1.00000 q^{25} -3.85410 q^{26} +1.00000 q^{27} +4.85410 q^{28} +1.00000 q^{29} -0.618034 q^{30} -8.00000 q^{31} +5.61803 q^{32} -5.47214 q^{33} +2.14590 q^{34} +3.00000 q^{35} -1.61803 q^{36} -8.00000 q^{37} +4.76393 q^{38} -6.23607 q^{39} +2.23607 q^{40} -4.47214 q^{41} -1.85410 q^{42} +3.23607 q^{43} +8.85410 q^{44} -1.00000 q^{45} +6.70820 q^{47} +1.85410 q^{48} +2.00000 q^{49} +0.618034 q^{50} +3.47214 q^{51} +10.0902 q^{52} -6.76393 q^{53} +0.618034 q^{54} +5.47214 q^{55} +6.70820 q^{56} +7.70820 q^{57} +0.618034 q^{58} +5.23607 q^{59} +1.61803 q^{60} -5.70820 q^{61} -4.94427 q^{62} -3.00000 q^{63} -0.236068 q^{64} +6.23607 q^{65} -3.38197 q^{66} -11.4721 q^{67} -5.61803 q^{68} +1.85410 q^{70} +7.23607 q^{71} -2.23607 q^{72} -8.00000 q^{73} -4.94427 q^{74} +1.00000 q^{75} -12.4721 q^{76} +16.4164 q^{77} -3.85410 q^{78} -6.18034 q^{79} -1.85410 q^{80} +1.00000 q^{81} -2.76393 q^{82} -3.70820 q^{83} +4.85410 q^{84} -3.47214 q^{85} +2.00000 q^{86} +1.00000 q^{87} +12.2361 q^{88} +11.1803 q^{89} -0.618034 q^{90} +18.7082 q^{91} -8.00000 q^{93} +4.14590 q^{94} -7.70820 q^{95} +5.61803 q^{96} +2.76393 q^{97} +1.23607 q^{98} -5.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} - q^{4} - 2 q^{5} - q^{6} - 6 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 2 q^{3} - q^{4} - 2 q^{5} - q^{6} - 6 q^{7} + 2 q^{9} + q^{10} - 2 q^{11} - q^{12} - 8 q^{13} + 3 q^{14} - 2 q^{15} - 3 q^{16} - 2 q^{17} - q^{18} + 2 q^{19} + q^{20} - 6 q^{21} - 9 q^{22} + 2 q^{25} - q^{26} + 2 q^{27} + 3 q^{28} + 2 q^{29} + q^{30} - 16 q^{31} + 9 q^{32} - 2 q^{33} + 11 q^{34} + 6 q^{35} - q^{36} - 16 q^{37} + 14 q^{38} - 8 q^{39} + 3 q^{42} + 2 q^{43} + 11 q^{44} - 2 q^{45} - 3 q^{48} + 4 q^{49} - q^{50} - 2 q^{51} + 9 q^{52} - 18 q^{53} - q^{54} + 2 q^{55} + 2 q^{57} - q^{58} + 6 q^{59} + q^{60} + 2 q^{61} + 8 q^{62} - 6 q^{63} + 4 q^{64} + 8 q^{65} - 9 q^{66} - 14 q^{67} - 9 q^{68} - 3 q^{70} + 10 q^{71} - 16 q^{73} + 8 q^{74} + 2 q^{75} - 16 q^{76} + 6 q^{77} - q^{78} + 10 q^{79} + 3 q^{80} + 2 q^{81} - 10 q^{82} + 6 q^{83} + 3 q^{84} + 2 q^{85} + 4 q^{86} + 2 q^{87} + 20 q^{88} + q^{90} + 24 q^{91} - 16 q^{93} + 15 q^{94} - 2 q^{95} + 9 q^{96} + 10 q^{97} - 2 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.61803 −0.809017
\(5\) −1.00000 −0.447214
\(6\) 0.618034 0.252311
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) −2.23607 −0.790569
\(9\) 1.00000 0.333333
\(10\) −0.618034 −0.195440
\(11\) −5.47214 −1.64991 −0.824956 0.565198i \(-0.808800\pi\)
−0.824956 + 0.565198i \(0.808800\pi\)
\(12\) −1.61803 −0.467086
\(13\) −6.23607 −1.72957 −0.864787 0.502139i \(-0.832547\pi\)
−0.864787 + 0.502139i \(0.832547\pi\)
\(14\) −1.85410 −0.495530
\(15\) −1.00000 −0.258199
\(16\) 1.85410 0.463525
\(17\) 3.47214 0.842117 0.421058 0.907034i \(-0.361659\pi\)
0.421058 + 0.907034i \(0.361659\pi\)
\(18\) 0.618034 0.145672
\(19\) 7.70820 1.76838 0.884192 0.467124i \(-0.154710\pi\)
0.884192 + 0.467124i \(0.154710\pi\)
\(20\) 1.61803 0.361803
\(21\) −3.00000 −0.654654
\(22\) −3.38197 −0.721038
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −2.23607 −0.456435
\(25\) 1.00000 0.200000
\(26\) −3.85410 −0.755852
\(27\) 1.00000 0.192450
\(28\) 4.85410 0.917339
\(29\) 1.00000 0.185695
\(30\) −0.618034 −0.112837
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 5.61803 0.993137
\(33\) −5.47214 −0.952577
\(34\) 2.14590 0.368018
\(35\) 3.00000 0.507093
\(36\) −1.61803 −0.269672
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 4.76393 0.772812
\(39\) −6.23607 −0.998570
\(40\) 2.23607 0.353553
\(41\) −4.47214 −0.698430 −0.349215 0.937043i \(-0.613552\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) −1.85410 −0.286094
\(43\) 3.23607 0.493496 0.246748 0.969080i \(-0.420638\pi\)
0.246748 + 0.969080i \(0.420638\pi\)
\(44\) 8.85410 1.33481
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 6.70820 0.978492 0.489246 0.872146i \(-0.337272\pi\)
0.489246 + 0.872146i \(0.337272\pi\)
\(48\) 1.85410 0.267617
\(49\) 2.00000 0.285714
\(50\) 0.618034 0.0874032
\(51\) 3.47214 0.486196
\(52\) 10.0902 1.39925
\(53\) −6.76393 −0.929098 −0.464549 0.885548i \(-0.653783\pi\)
−0.464549 + 0.885548i \(0.653783\pi\)
\(54\) 0.618034 0.0841038
\(55\) 5.47214 0.737863
\(56\) 6.70820 0.896421
\(57\) 7.70820 1.02098
\(58\) 0.618034 0.0811518
\(59\) 5.23607 0.681678 0.340839 0.940122i \(-0.389289\pi\)
0.340839 + 0.940122i \(0.389289\pi\)
\(60\) 1.61803 0.208887
\(61\) −5.70820 −0.730861 −0.365430 0.930839i \(-0.619078\pi\)
−0.365430 + 0.930839i \(0.619078\pi\)
\(62\) −4.94427 −0.627923
\(63\) −3.00000 −0.377964
\(64\) −0.236068 −0.0295085
\(65\) 6.23607 0.773489
\(66\) −3.38197 −0.416291
\(67\) −11.4721 −1.40154 −0.700772 0.713385i \(-0.747161\pi\)
−0.700772 + 0.713385i \(0.747161\pi\)
\(68\) −5.61803 −0.681287
\(69\) 0 0
\(70\) 1.85410 0.221608
\(71\) 7.23607 0.858763 0.429382 0.903123i \(-0.358732\pi\)
0.429382 + 0.903123i \(0.358732\pi\)
\(72\) −2.23607 −0.263523
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) −4.94427 −0.574760
\(75\) 1.00000 0.115470
\(76\) −12.4721 −1.43065
\(77\) 16.4164 1.87082
\(78\) −3.85410 −0.436391
\(79\) −6.18034 −0.695343 −0.347671 0.937616i \(-0.613027\pi\)
−0.347671 + 0.937616i \(0.613027\pi\)
\(80\) −1.85410 −0.207295
\(81\) 1.00000 0.111111
\(82\) −2.76393 −0.305225
\(83\) −3.70820 −0.407028 −0.203514 0.979072i \(-0.565236\pi\)
−0.203514 + 0.979072i \(0.565236\pi\)
\(84\) 4.85410 0.529626
\(85\) −3.47214 −0.376606
\(86\) 2.00000 0.215666
\(87\) 1.00000 0.107211
\(88\) 12.2361 1.30437
\(89\) 11.1803 1.18511 0.592557 0.805529i \(-0.298119\pi\)
0.592557 + 0.805529i \(0.298119\pi\)
\(90\) −0.618034 −0.0651465
\(91\) 18.7082 1.96115
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 4.14590 0.427617
\(95\) −7.70820 −0.790845
\(96\) 5.61803 0.573388
\(97\) 2.76393 0.280635 0.140317 0.990107i \(-0.455188\pi\)
0.140317 + 0.990107i \(0.455188\pi\)
\(98\) 1.23607 0.124862
\(99\) −5.47214 −0.549970
\(100\) −1.61803 −0.161803
\(101\) 4.23607 0.421505 0.210752 0.977540i \(-0.432409\pi\)
0.210752 + 0.977540i \(0.432409\pi\)
\(102\) 2.14590 0.212476
\(103\) 7.41641 0.730760 0.365380 0.930858i \(-0.380939\pi\)
0.365380 + 0.930858i \(0.380939\pi\)
\(104\) 13.9443 1.36735
\(105\) 3.00000 0.292770
\(106\) −4.18034 −0.406031
\(107\) 7.52786 0.727746 0.363873 0.931449i \(-0.381454\pi\)
0.363873 + 0.931449i \(0.381454\pi\)
\(108\) −1.61803 −0.155695
\(109\) −16.4164 −1.57241 −0.786203 0.617968i \(-0.787956\pi\)
−0.786203 + 0.617968i \(0.787956\pi\)
\(110\) 3.38197 0.322458
\(111\) −8.00000 −0.759326
\(112\) −5.56231 −0.525589
\(113\) −7.94427 −0.747334 −0.373667 0.927563i \(-0.621900\pi\)
−0.373667 + 0.927563i \(0.621900\pi\)
\(114\) 4.76393 0.446183
\(115\) 0 0
\(116\) −1.61803 −0.150231
\(117\) −6.23607 −0.576525
\(118\) 3.23607 0.297904
\(119\) −10.4164 −0.954871
\(120\) 2.23607 0.204124
\(121\) 18.9443 1.72221
\(122\) −3.52786 −0.319398
\(123\) −4.47214 −0.403239
\(124\) 12.9443 1.16243
\(125\) −1.00000 −0.0894427
\(126\) −1.85410 −0.165177
\(127\) −6.00000 −0.532414 −0.266207 0.963916i \(-0.585770\pi\)
−0.266207 + 0.963916i \(0.585770\pi\)
\(128\) −11.3820 −1.00603
\(129\) 3.23607 0.284920
\(130\) 3.85410 0.338027
\(131\) 3.47214 0.303362 0.151681 0.988430i \(-0.451531\pi\)
0.151681 + 0.988430i \(0.451531\pi\)
\(132\) 8.85410 0.770651
\(133\) −23.1246 −2.00516
\(134\) −7.09017 −0.612497
\(135\) −1.00000 −0.0860663
\(136\) −7.76393 −0.665752
\(137\) −10.9443 −0.935032 −0.467516 0.883985i \(-0.654851\pi\)
−0.467516 + 0.883985i \(0.654851\pi\)
\(138\) 0 0
\(139\) −0.708204 −0.0600691 −0.0300345 0.999549i \(-0.509562\pi\)
−0.0300345 + 0.999549i \(0.509562\pi\)
\(140\) −4.85410 −0.410246
\(141\) 6.70820 0.564933
\(142\) 4.47214 0.375293
\(143\) 34.1246 2.85364
\(144\) 1.85410 0.154508
\(145\) −1.00000 −0.0830455
\(146\) −4.94427 −0.409191
\(147\) 2.00000 0.164957
\(148\) 12.9443 1.06401
\(149\) 20.1803 1.65324 0.826619 0.562762i \(-0.190261\pi\)
0.826619 + 0.562762i \(0.190261\pi\)
\(150\) 0.618034 0.0504623
\(151\) 2.47214 0.201180 0.100590 0.994928i \(-0.467927\pi\)
0.100590 + 0.994928i \(0.467927\pi\)
\(152\) −17.2361 −1.39803
\(153\) 3.47214 0.280706
\(154\) 10.1459 0.817580
\(155\) 8.00000 0.642575
\(156\) 10.0902 0.807860
\(157\) −11.7082 −0.934416 −0.467208 0.884147i \(-0.654740\pi\)
−0.467208 + 0.884147i \(0.654740\pi\)
\(158\) −3.81966 −0.303876
\(159\) −6.76393 −0.536415
\(160\) −5.61803 −0.444145
\(161\) 0 0
\(162\) 0.618034 0.0485573
\(163\) −15.1246 −1.18465 −0.592326 0.805699i \(-0.701790\pi\)
−0.592326 + 0.805699i \(0.701790\pi\)
\(164\) 7.23607 0.565042
\(165\) 5.47214 0.426005
\(166\) −2.29180 −0.177878
\(167\) −17.8885 −1.38426 −0.692129 0.721774i \(-0.743327\pi\)
−0.692129 + 0.721774i \(0.743327\pi\)
\(168\) 6.70820 0.517549
\(169\) 25.8885 1.99143
\(170\) −2.14590 −0.164583
\(171\) 7.70820 0.589461
\(172\) −5.23607 −0.399246
\(173\) −19.4164 −1.47620 −0.738101 0.674690i \(-0.764277\pi\)
−0.738101 + 0.674690i \(0.764277\pi\)
\(174\) 0.618034 0.0468530
\(175\) −3.00000 −0.226779
\(176\) −10.1459 −0.764776
\(177\) 5.23607 0.393567
\(178\) 6.90983 0.517914
\(179\) 4.18034 0.312453 0.156227 0.987721i \(-0.450067\pi\)
0.156227 + 0.987721i \(0.450067\pi\)
\(180\) 1.61803 0.120601
\(181\) 8.41641 0.625587 0.312793 0.949821i \(-0.398735\pi\)
0.312793 + 0.949821i \(0.398735\pi\)
\(182\) 11.5623 0.857055
\(183\) −5.70820 −0.421963
\(184\) 0 0
\(185\) 8.00000 0.588172
\(186\) −4.94427 −0.362532
\(187\) −19.0000 −1.38942
\(188\) −10.8541 −0.791617
\(189\) −3.00000 −0.218218
\(190\) −4.76393 −0.345612
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −0.236068 −0.0170367
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 1.70820 0.122642
\(195\) 6.23607 0.446574
\(196\) −3.23607 −0.231148
\(197\) 14.9443 1.06474 0.532368 0.846513i \(-0.321302\pi\)
0.532368 + 0.846513i \(0.321302\pi\)
\(198\) −3.38197 −0.240346
\(199\) 20.7082 1.46797 0.733983 0.679168i \(-0.237659\pi\)
0.733983 + 0.679168i \(0.237659\pi\)
\(200\) −2.23607 −0.158114
\(201\) −11.4721 −0.809182
\(202\) 2.61803 0.184204
\(203\) −3.00000 −0.210559
\(204\) −5.61803 −0.393341
\(205\) 4.47214 0.312348
\(206\) 4.58359 0.319354
\(207\) 0 0
\(208\) −11.5623 −0.801702
\(209\) −42.1803 −2.91768
\(210\) 1.85410 0.127945
\(211\) −27.8885 −1.91993 −0.959963 0.280126i \(-0.909624\pi\)
−0.959963 + 0.280126i \(0.909624\pi\)
\(212\) 10.9443 0.751656
\(213\) 7.23607 0.495807
\(214\) 4.65248 0.318037
\(215\) −3.23607 −0.220698
\(216\) −2.23607 −0.152145
\(217\) 24.0000 1.62923
\(218\) −10.1459 −0.687167
\(219\) −8.00000 −0.540590
\(220\) −8.85410 −0.596943
\(221\) −21.6525 −1.45650
\(222\) −4.94427 −0.331838
\(223\) −13.0000 −0.870544 −0.435272 0.900299i \(-0.643348\pi\)
−0.435272 + 0.900299i \(0.643348\pi\)
\(224\) −16.8541 −1.12611
\(225\) 1.00000 0.0666667
\(226\) −4.90983 −0.326597
\(227\) −5.81966 −0.386264 −0.193132 0.981173i \(-0.561865\pi\)
−0.193132 + 0.981173i \(0.561865\pi\)
\(228\) −12.4721 −0.825987
\(229\) 9.41641 0.622254 0.311127 0.950368i \(-0.399294\pi\)
0.311127 + 0.950368i \(0.399294\pi\)
\(230\) 0 0
\(231\) 16.4164 1.08012
\(232\) −2.23607 −0.146805
\(233\) 1.41641 0.0927920 0.0463960 0.998923i \(-0.485226\pi\)
0.0463960 + 0.998923i \(0.485226\pi\)
\(234\) −3.85410 −0.251951
\(235\) −6.70820 −0.437595
\(236\) −8.47214 −0.551489
\(237\) −6.18034 −0.401456
\(238\) −6.43769 −0.417294
\(239\) 11.8885 0.769006 0.384503 0.923124i \(-0.374373\pi\)
0.384503 + 0.923124i \(0.374373\pi\)
\(240\) −1.85410 −0.119682
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) 11.7082 0.752632
\(243\) 1.00000 0.0641500
\(244\) 9.23607 0.591279
\(245\) −2.00000 −0.127775
\(246\) −2.76393 −0.176222
\(247\) −48.0689 −3.05855
\(248\) 17.8885 1.13592
\(249\) −3.70820 −0.234998
\(250\) −0.618034 −0.0390879
\(251\) −24.8885 −1.57095 −0.785475 0.618893i \(-0.787582\pi\)
−0.785475 + 0.618893i \(0.787582\pi\)
\(252\) 4.85410 0.305780
\(253\) 0 0
\(254\) −3.70820 −0.232673
\(255\) −3.47214 −0.217434
\(256\) −6.56231 −0.410144
\(257\) −9.70820 −0.605581 −0.302791 0.953057i \(-0.597918\pi\)
−0.302791 + 0.953057i \(0.597918\pi\)
\(258\) 2.00000 0.124515
\(259\) 24.0000 1.49129
\(260\) −10.0902 −0.625766
\(261\) 1.00000 0.0618984
\(262\) 2.14590 0.132574
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 12.2361 0.753078
\(265\) 6.76393 0.415505
\(266\) −14.2918 −0.876286
\(267\) 11.1803 0.684226
\(268\) 18.5623 1.13387
\(269\) −30.2361 −1.84353 −0.921763 0.387754i \(-0.873251\pi\)
−0.921763 + 0.387754i \(0.873251\pi\)
\(270\) −0.618034 −0.0376124
\(271\) 14.3607 0.872349 0.436175 0.899862i \(-0.356333\pi\)
0.436175 + 0.899862i \(0.356333\pi\)
\(272\) 6.43769 0.390343
\(273\) 18.7082 1.13227
\(274\) −6.76393 −0.408624
\(275\) −5.47214 −0.329982
\(276\) 0 0
\(277\) 8.70820 0.523225 0.261613 0.965173i \(-0.415746\pi\)
0.261613 + 0.965173i \(0.415746\pi\)
\(278\) −0.437694 −0.0262511
\(279\) −8.00000 −0.478947
\(280\) −6.70820 −0.400892
\(281\) −23.1246 −1.37950 −0.689749 0.724048i \(-0.742279\pi\)
−0.689749 + 0.724048i \(0.742279\pi\)
\(282\) 4.14590 0.246885
\(283\) 18.4721 1.09805 0.549027 0.835804i \(-0.314998\pi\)
0.549027 + 0.835804i \(0.314998\pi\)
\(284\) −11.7082 −0.694754
\(285\) −7.70820 −0.456595
\(286\) 21.0902 1.24709
\(287\) 13.4164 0.791946
\(288\) 5.61803 0.331046
\(289\) −4.94427 −0.290840
\(290\) −0.618034 −0.0362922
\(291\) 2.76393 0.162025
\(292\) 12.9443 0.757506
\(293\) −17.9443 −1.04832 −0.524158 0.851621i \(-0.675620\pi\)
−0.524158 + 0.851621i \(0.675620\pi\)
\(294\) 1.23607 0.0720889
\(295\) −5.23607 −0.304856
\(296\) 17.8885 1.03975
\(297\) −5.47214 −0.317526
\(298\) 12.4721 0.722491
\(299\) 0 0
\(300\) −1.61803 −0.0934172
\(301\) −9.70820 −0.559572
\(302\) 1.52786 0.0879187
\(303\) 4.23607 0.243356
\(304\) 14.2918 0.819691
\(305\) 5.70820 0.326851
\(306\) 2.14590 0.122673
\(307\) 24.9443 1.42364 0.711822 0.702360i \(-0.247870\pi\)
0.711822 + 0.702360i \(0.247870\pi\)
\(308\) −26.5623 −1.51353
\(309\) 7.41641 0.421905
\(310\) 4.94427 0.280816
\(311\) 23.4721 1.33098 0.665491 0.746406i \(-0.268222\pi\)
0.665491 + 0.746406i \(0.268222\pi\)
\(312\) 13.9443 0.789439
\(313\) 1.18034 0.0667168 0.0333584 0.999443i \(-0.489380\pi\)
0.0333584 + 0.999443i \(0.489380\pi\)
\(314\) −7.23607 −0.408355
\(315\) 3.00000 0.169031
\(316\) 10.0000 0.562544
\(317\) −28.4164 −1.59602 −0.798012 0.602641i \(-0.794115\pi\)
−0.798012 + 0.602641i \(0.794115\pi\)
\(318\) −4.18034 −0.234422
\(319\) −5.47214 −0.306381
\(320\) 0.236068 0.0131966
\(321\) 7.52786 0.420164
\(322\) 0 0
\(323\) 26.7639 1.48919
\(324\) −1.61803 −0.0898908
\(325\) −6.23607 −0.345915
\(326\) −9.34752 −0.517711
\(327\) −16.4164 −0.907829
\(328\) 10.0000 0.552158
\(329\) −20.1246 −1.10951
\(330\) 3.38197 0.186171
\(331\) −15.8885 −0.873313 −0.436657 0.899628i \(-0.643838\pi\)
−0.436657 + 0.899628i \(0.643838\pi\)
\(332\) 6.00000 0.329293
\(333\) −8.00000 −0.438397
\(334\) −11.0557 −0.604943
\(335\) 11.4721 0.626790
\(336\) −5.56231 −0.303449
\(337\) −20.4721 −1.11519 −0.557594 0.830114i \(-0.688275\pi\)
−0.557594 + 0.830114i \(0.688275\pi\)
\(338\) 16.0000 0.870285
\(339\) −7.94427 −0.431474
\(340\) 5.61803 0.304681
\(341\) 43.7771 2.37066
\(342\) 4.76393 0.257604
\(343\) 15.0000 0.809924
\(344\) −7.23607 −0.390143
\(345\) 0 0
\(346\) −12.0000 −0.645124
\(347\) 17.5279 0.940945 0.470473 0.882415i \(-0.344083\pi\)
0.470473 + 0.882415i \(0.344083\pi\)
\(348\) −1.61803 −0.0867357
\(349\) −18.9443 −1.01406 −0.507032 0.861927i \(-0.669257\pi\)
−0.507032 + 0.861927i \(0.669257\pi\)
\(350\) −1.85410 −0.0991059
\(351\) −6.23607 −0.332857
\(352\) −30.7426 −1.63859
\(353\) 3.52786 0.187769 0.0938846 0.995583i \(-0.470072\pi\)
0.0938846 + 0.995583i \(0.470072\pi\)
\(354\) 3.23607 0.171995
\(355\) −7.23607 −0.384051
\(356\) −18.0902 −0.958777
\(357\) −10.4164 −0.551295
\(358\) 2.58359 0.136547
\(359\) −4.58359 −0.241913 −0.120956 0.992658i \(-0.538596\pi\)
−0.120956 + 0.992658i \(0.538596\pi\)
\(360\) 2.23607 0.117851
\(361\) 40.4164 2.12718
\(362\) 5.20163 0.273391
\(363\) 18.9443 0.994316
\(364\) −30.2705 −1.58661
\(365\) 8.00000 0.418739
\(366\) −3.52786 −0.184404
\(367\) 15.4164 0.804730 0.402365 0.915479i \(-0.368188\pi\)
0.402365 + 0.915479i \(0.368188\pi\)
\(368\) 0 0
\(369\) −4.47214 −0.232810
\(370\) 4.94427 0.257040
\(371\) 20.2918 1.05350
\(372\) 12.9443 0.671129
\(373\) 15.8885 0.822678 0.411339 0.911483i \(-0.365061\pi\)
0.411339 + 0.911483i \(0.365061\pi\)
\(374\) −11.7426 −0.607198
\(375\) −1.00000 −0.0516398
\(376\) −15.0000 −0.773566
\(377\) −6.23607 −0.321174
\(378\) −1.85410 −0.0953647
\(379\) 6.94427 0.356703 0.178352 0.983967i \(-0.442924\pi\)
0.178352 + 0.983967i \(0.442924\pi\)
\(380\) 12.4721 0.639807
\(381\) −6.00000 −0.307389
\(382\) 7.41641 0.379456
\(383\) −20.0689 −1.02547 −0.512736 0.858546i \(-0.671368\pi\)
−0.512736 + 0.858546i \(0.671368\pi\)
\(384\) −11.3820 −0.580834
\(385\) −16.4164 −0.836658
\(386\) −3.70820 −0.188743
\(387\) 3.23607 0.164499
\(388\) −4.47214 −0.227038
\(389\) 22.2361 1.12741 0.563707 0.825975i \(-0.309375\pi\)
0.563707 + 0.825975i \(0.309375\pi\)
\(390\) 3.85410 0.195160
\(391\) 0 0
\(392\) −4.47214 −0.225877
\(393\) 3.47214 0.175146
\(394\) 9.23607 0.465306
\(395\) 6.18034 0.310967
\(396\) 8.85410 0.444935
\(397\) −6.58359 −0.330421 −0.165211 0.986258i \(-0.552830\pi\)
−0.165211 + 0.986258i \(0.552830\pi\)
\(398\) 12.7984 0.641525
\(399\) −23.1246 −1.15768
\(400\) 1.85410 0.0927051
\(401\) −36.6525 −1.83034 −0.915169 0.403071i \(-0.867943\pi\)
−0.915169 + 0.403071i \(0.867943\pi\)
\(402\) −7.09017 −0.353626
\(403\) 49.8885 2.48513
\(404\) −6.85410 −0.341004
\(405\) −1.00000 −0.0496904
\(406\) −1.85410 −0.0920175
\(407\) 43.7771 2.16995
\(408\) −7.76393 −0.384372
\(409\) 8.65248 0.427837 0.213919 0.976851i \(-0.431377\pi\)
0.213919 + 0.976851i \(0.431377\pi\)
\(410\) 2.76393 0.136501
\(411\) −10.9443 −0.539841
\(412\) −12.0000 −0.591198
\(413\) −15.7082 −0.772950
\(414\) 0 0
\(415\) 3.70820 0.182029
\(416\) −35.0344 −1.71770
\(417\) −0.708204 −0.0346809
\(418\) −26.0689 −1.27507
\(419\) 34.3607 1.67863 0.839315 0.543646i \(-0.182957\pi\)
0.839315 + 0.543646i \(0.182957\pi\)
\(420\) −4.85410 −0.236856
\(421\) −1.81966 −0.0886848 −0.0443424 0.999016i \(-0.514119\pi\)
−0.0443424 + 0.999016i \(0.514119\pi\)
\(422\) −17.2361 −0.839039
\(423\) 6.70820 0.326164
\(424\) 15.1246 0.734516
\(425\) 3.47214 0.168423
\(426\) 4.47214 0.216676
\(427\) 17.1246 0.828718
\(428\) −12.1803 −0.588759
\(429\) 34.1246 1.64755
\(430\) −2.00000 −0.0964486
\(431\) 34.4721 1.66046 0.830232 0.557418i \(-0.188208\pi\)
0.830232 + 0.557418i \(0.188208\pi\)
\(432\) 1.85410 0.0892055
\(433\) −4.65248 −0.223584 −0.111792 0.993732i \(-0.535659\pi\)
−0.111792 + 0.993732i \(0.535659\pi\)
\(434\) 14.8328 0.711998
\(435\) −1.00000 −0.0479463
\(436\) 26.5623 1.27210
\(437\) 0 0
\(438\) −4.94427 −0.236246
\(439\) −10.1246 −0.483221 −0.241611 0.970373i \(-0.577676\pi\)
−0.241611 + 0.970373i \(0.577676\pi\)
\(440\) −12.2361 −0.583332
\(441\) 2.00000 0.0952381
\(442\) −13.3820 −0.636515
\(443\) 23.7639 1.12906 0.564529 0.825413i \(-0.309058\pi\)
0.564529 + 0.825413i \(0.309058\pi\)
\(444\) 12.9443 0.614308
\(445\) −11.1803 −0.529999
\(446\) −8.03444 −0.380442
\(447\) 20.1803 0.954497
\(448\) 0.708204 0.0334595
\(449\) 1.76393 0.0832451 0.0416225 0.999133i \(-0.486747\pi\)
0.0416225 + 0.999133i \(0.486747\pi\)
\(450\) 0.618034 0.0291344
\(451\) 24.4721 1.15235
\(452\) 12.8541 0.604606
\(453\) 2.47214 0.116151
\(454\) −3.59675 −0.168804
\(455\) −18.7082 −0.877054
\(456\) −17.2361 −0.807153
\(457\) 6.12461 0.286497 0.143249 0.989687i \(-0.454245\pi\)
0.143249 + 0.989687i \(0.454245\pi\)
\(458\) 5.81966 0.271935
\(459\) 3.47214 0.162065
\(460\) 0 0
\(461\) 2.36068 0.109948 0.0549739 0.998488i \(-0.482492\pi\)
0.0549739 + 0.998488i \(0.482492\pi\)
\(462\) 10.1459 0.472030
\(463\) −2.52786 −0.117480 −0.0587399 0.998273i \(-0.518708\pi\)
−0.0587399 + 0.998273i \(0.518708\pi\)
\(464\) 1.85410 0.0860745
\(465\) 8.00000 0.370991
\(466\) 0.875388 0.0405516
\(467\) −12.9443 −0.598989 −0.299495 0.954098i \(-0.596818\pi\)
−0.299495 + 0.954098i \(0.596818\pi\)
\(468\) 10.0902 0.466418
\(469\) 34.4164 1.58920
\(470\) −4.14590 −0.191236
\(471\) −11.7082 −0.539486
\(472\) −11.7082 −0.538914
\(473\) −17.7082 −0.814224
\(474\) −3.81966 −0.175443
\(475\) 7.70820 0.353677
\(476\) 16.8541 0.772506
\(477\) −6.76393 −0.309699
\(478\) 7.34752 0.336068
\(479\) −6.47214 −0.295719 −0.147860 0.989008i \(-0.547238\pi\)
−0.147860 + 0.989008i \(0.547238\pi\)
\(480\) −5.61803 −0.256427
\(481\) 49.8885 2.27472
\(482\) 4.32624 0.197055
\(483\) 0 0
\(484\) −30.6525 −1.39329
\(485\) −2.76393 −0.125504
\(486\) 0.618034 0.0280346
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 12.7639 0.577796
\(489\) −15.1246 −0.683959
\(490\) −1.23607 −0.0558399
\(491\) 25.8885 1.16833 0.584167 0.811634i \(-0.301421\pi\)
0.584167 + 0.811634i \(0.301421\pi\)
\(492\) 7.23607 0.326227
\(493\) 3.47214 0.156377
\(494\) −29.7082 −1.33664
\(495\) 5.47214 0.245954
\(496\) −14.8328 −0.666013
\(497\) −21.7082 −0.973746
\(498\) −2.29180 −0.102698
\(499\) −23.7639 −1.06382 −0.531910 0.846801i \(-0.678525\pi\)
−0.531910 + 0.846801i \(0.678525\pi\)
\(500\) 1.61803 0.0723607
\(501\) −17.8885 −0.799201
\(502\) −15.3820 −0.686531
\(503\) −30.5967 −1.36424 −0.682121 0.731240i \(-0.738942\pi\)
−0.682121 + 0.731240i \(0.738942\pi\)
\(504\) 6.70820 0.298807
\(505\) −4.23607 −0.188503
\(506\) 0 0
\(507\) 25.8885 1.14975
\(508\) 9.70820 0.430732
\(509\) 6.18034 0.273939 0.136969 0.990575i \(-0.456264\pi\)
0.136969 + 0.990575i \(0.456264\pi\)
\(510\) −2.14590 −0.0950220
\(511\) 24.0000 1.06170
\(512\) 18.7082 0.826794
\(513\) 7.70820 0.340326
\(514\) −6.00000 −0.264649
\(515\) −7.41641 −0.326806
\(516\) −5.23607 −0.230505
\(517\) −36.7082 −1.61442
\(518\) 14.8328 0.651717
\(519\) −19.4164 −0.852286
\(520\) −13.9443 −0.611497
\(521\) −20.7639 −0.909684 −0.454842 0.890572i \(-0.650304\pi\)
−0.454842 + 0.890572i \(0.650304\pi\)
\(522\) 0.618034 0.0270506
\(523\) −29.8328 −1.30450 −0.652249 0.758005i \(-0.726174\pi\)
−0.652249 + 0.758005i \(0.726174\pi\)
\(524\) −5.61803 −0.245425
\(525\) −3.00000 −0.130931
\(526\) 14.8328 0.646741
\(527\) −27.7771 −1.20999
\(528\) −10.1459 −0.441544
\(529\) −23.0000 −1.00000
\(530\) 4.18034 0.181582
\(531\) 5.23607 0.227226
\(532\) 37.4164 1.62221
\(533\) 27.8885 1.20799
\(534\) 6.90983 0.299018
\(535\) −7.52786 −0.325458
\(536\) 25.6525 1.10802
\(537\) 4.18034 0.180395
\(538\) −18.6869 −0.805650
\(539\) −10.9443 −0.471403
\(540\) 1.61803 0.0696291
\(541\) 38.3607 1.64925 0.824627 0.565677i \(-0.191385\pi\)
0.824627 + 0.565677i \(0.191385\pi\)
\(542\) 8.87539 0.381231
\(543\) 8.41641 0.361183
\(544\) 19.5066 0.836338
\(545\) 16.4164 0.703202
\(546\) 11.5623 0.494821
\(547\) 27.4721 1.17462 0.587312 0.809361i \(-0.300186\pi\)
0.587312 + 0.809361i \(0.300186\pi\)
\(548\) 17.7082 0.756457
\(549\) −5.70820 −0.243620
\(550\) −3.38197 −0.144208
\(551\) 7.70820 0.328381
\(552\) 0 0
\(553\) 18.5410 0.788444
\(554\) 5.38197 0.228658
\(555\) 8.00000 0.339581
\(556\) 1.14590 0.0485969
\(557\) 2.76393 0.117112 0.0585558 0.998284i \(-0.481350\pi\)
0.0585558 + 0.998284i \(0.481350\pi\)
\(558\) −4.94427 −0.209308
\(559\) −20.1803 −0.853537
\(560\) 5.56231 0.235050
\(561\) −19.0000 −0.802181
\(562\) −14.2918 −0.602863
\(563\) 44.1246 1.85963 0.929815 0.368026i \(-0.119966\pi\)
0.929815 + 0.368026i \(0.119966\pi\)
\(564\) −10.8541 −0.457040
\(565\) 7.94427 0.334218
\(566\) 11.4164 0.479867
\(567\) −3.00000 −0.125988
\(568\) −16.1803 −0.678912
\(569\) −5.18034 −0.217171 −0.108586 0.994087i \(-0.534632\pi\)
−0.108586 + 0.994087i \(0.534632\pi\)
\(570\) −4.76393 −0.199539
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) −55.2148 −2.30865
\(573\) 12.0000 0.501307
\(574\) 8.29180 0.346093
\(575\) 0 0
\(576\) −0.236068 −0.00983617
\(577\) −29.3050 −1.21998 −0.609991 0.792409i \(-0.708827\pi\)
−0.609991 + 0.792409i \(0.708827\pi\)
\(578\) −3.05573 −0.127102
\(579\) −6.00000 −0.249351
\(580\) 1.61803 0.0671852
\(581\) 11.1246 0.461527
\(582\) 1.70820 0.0708073
\(583\) 37.0132 1.53293
\(584\) 17.8885 0.740233
\(585\) 6.23607 0.257830
\(586\) −11.0902 −0.458131
\(587\) −1.81966 −0.0751054 −0.0375527 0.999295i \(-0.511956\pi\)
−0.0375527 + 0.999295i \(0.511956\pi\)
\(588\) −3.23607 −0.133453
\(589\) −61.6656 −2.54089
\(590\) −3.23607 −0.133227
\(591\) 14.9443 0.614725
\(592\) −14.8328 −0.609625
\(593\) −24.6525 −1.01236 −0.506178 0.862429i \(-0.668942\pi\)
−0.506178 + 0.862429i \(0.668942\pi\)
\(594\) −3.38197 −0.138764
\(595\) 10.4164 0.427031
\(596\) −32.6525 −1.33750
\(597\) 20.7082 0.847530
\(598\) 0 0
\(599\) −8.88854 −0.363176 −0.181588 0.983375i \(-0.558124\pi\)
−0.181588 + 0.983375i \(0.558124\pi\)
\(600\) −2.23607 −0.0912871
\(601\) 8.11146 0.330873 0.165437 0.986220i \(-0.447097\pi\)
0.165437 + 0.986220i \(0.447097\pi\)
\(602\) −6.00000 −0.244542
\(603\) −11.4721 −0.467181
\(604\) −4.00000 −0.162758
\(605\) −18.9443 −0.770194
\(606\) 2.61803 0.106350
\(607\) 40.6525 1.65003 0.825017 0.565109i \(-0.191166\pi\)
0.825017 + 0.565109i \(0.191166\pi\)
\(608\) 43.3050 1.75625
\(609\) −3.00000 −0.121566
\(610\) 3.52786 0.142839
\(611\) −41.8328 −1.69237
\(612\) −5.61803 −0.227096
\(613\) 7.29180 0.294513 0.147256 0.989098i \(-0.452956\pi\)
0.147256 + 0.989098i \(0.452956\pi\)
\(614\) 15.4164 0.622156
\(615\) 4.47214 0.180334
\(616\) −36.7082 −1.47902
\(617\) 43.3050 1.74339 0.871696 0.490047i \(-0.163020\pi\)
0.871696 + 0.490047i \(0.163020\pi\)
\(618\) 4.58359 0.184379
\(619\) −3.52786 −0.141797 −0.0708984 0.997484i \(-0.522587\pi\)
−0.0708984 + 0.997484i \(0.522587\pi\)
\(620\) −12.9443 −0.519854
\(621\) 0 0
\(622\) 14.5066 0.581661
\(623\) −33.5410 −1.34379
\(624\) −11.5623 −0.462863
\(625\) 1.00000 0.0400000
\(626\) 0.729490 0.0291563
\(627\) −42.1803 −1.68452
\(628\) 18.9443 0.755959
\(629\) −27.7771 −1.10755
\(630\) 1.85410 0.0738692
\(631\) −38.4853 −1.53208 −0.766038 0.642796i \(-0.777774\pi\)
−0.766038 + 0.642796i \(0.777774\pi\)
\(632\) 13.8197 0.549717
\(633\) −27.8885 −1.10847
\(634\) −17.5623 −0.697488
\(635\) 6.00000 0.238103
\(636\) 10.9443 0.433969
\(637\) −12.4721 −0.494164
\(638\) −3.38197 −0.133893
\(639\) 7.23607 0.286254
\(640\) 11.3820 0.449912
\(641\) 46.2361 1.82621 0.913107 0.407719i \(-0.133676\pi\)
0.913107 + 0.407719i \(0.133676\pi\)
\(642\) 4.65248 0.183619
\(643\) −35.8328 −1.41311 −0.706554 0.707659i \(-0.749751\pi\)
−0.706554 + 0.707659i \(0.749751\pi\)
\(644\) 0 0
\(645\) −3.23607 −0.127420
\(646\) 16.5410 0.650798
\(647\) 11.2361 0.441735 0.220868 0.975304i \(-0.429111\pi\)
0.220868 + 0.975304i \(0.429111\pi\)
\(648\) −2.23607 −0.0878410
\(649\) −28.6525 −1.12471
\(650\) −3.85410 −0.151170
\(651\) 24.0000 0.940634
\(652\) 24.4721 0.958403
\(653\) 8.88854 0.347836 0.173918 0.984760i \(-0.444357\pi\)
0.173918 + 0.984760i \(0.444357\pi\)
\(654\) −10.1459 −0.396736
\(655\) −3.47214 −0.135668
\(656\) −8.29180 −0.323740
\(657\) −8.00000 −0.312110
\(658\) −12.4377 −0.484872
\(659\) −21.0000 −0.818044 −0.409022 0.912525i \(-0.634130\pi\)
−0.409022 + 0.912525i \(0.634130\pi\)
\(660\) −8.85410 −0.344645
\(661\) −37.8328 −1.47153 −0.735763 0.677239i \(-0.763176\pi\)
−0.735763 + 0.677239i \(0.763176\pi\)
\(662\) −9.81966 −0.381652
\(663\) −21.6525 −0.840912
\(664\) 8.29180 0.321784
\(665\) 23.1246 0.896734
\(666\) −4.94427 −0.191587
\(667\) 0 0
\(668\) 28.9443 1.11989
\(669\) −13.0000 −0.502609
\(670\) 7.09017 0.273917
\(671\) 31.2361 1.20586
\(672\) −16.8541 −0.650161
\(673\) −33.2918 −1.28330 −0.641652 0.766996i \(-0.721751\pi\)
−0.641652 + 0.766996i \(0.721751\pi\)
\(674\) −12.6525 −0.487355
\(675\) 1.00000 0.0384900
\(676\) −41.8885 −1.61110
\(677\) −20.8885 −0.802812 −0.401406 0.915900i \(-0.631478\pi\)
−0.401406 + 0.915900i \(0.631478\pi\)
\(678\) −4.90983 −0.188561
\(679\) −8.29180 −0.318210
\(680\) 7.76393 0.297733
\(681\) −5.81966 −0.223010
\(682\) 27.0557 1.03602
\(683\) 7.41641 0.283781 0.141890 0.989882i \(-0.454682\pi\)
0.141890 + 0.989882i \(0.454682\pi\)
\(684\) −12.4721 −0.476884
\(685\) 10.9443 0.418159
\(686\) 9.27051 0.353950
\(687\) 9.41641 0.359258
\(688\) 6.00000 0.228748
\(689\) 42.1803 1.60694
\(690\) 0 0
\(691\) −34.7082 −1.32036 −0.660181 0.751106i \(-0.729520\pi\)
−0.660181 + 0.751106i \(0.729520\pi\)
\(692\) 31.4164 1.19427
\(693\) 16.4164 0.623608
\(694\) 10.8328 0.411208
\(695\) 0.708204 0.0268637
\(696\) −2.23607 −0.0847579
\(697\) −15.5279 −0.588160
\(698\) −11.7082 −0.443162
\(699\) 1.41641 0.0535735
\(700\) 4.85410 0.183468
\(701\) −5.12461 −0.193554 −0.0967770 0.995306i \(-0.530853\pi\)
−0.0967770 + 0.995306i \(0.530853\pi\)
\(702\) −3.85410 −0.145464
\(703\) −61.6656 −2.32576
\(704\) 1.29180 0.0486864
\(705\) −6.70820 −0.252646
\(706\) 2.18034 0.0820582
\(707\) −12.7082 −0.477941
\(708\) −8.47214 −0.318402
\(709\) 19.8885 0.746930 0.373465 0.927644i \(-0.378170\pi\)
0.373465 + 0.927644i \(0.378170\pi\)
\(710\) −4.47214 −0.167836
\(711\) −6.18034 −0.231781
\(712\) −25.0000 −0.936915
\(713\) 0 0
\(714\) −6.43769 −0.240925
\(715\) −34.1246 −1.27619
\(716\) −6.76393 −0.252780
\(717\) 11.8885 0.443986
\(718\) −2.83282 −0.105720
\(719\) −11.2361 −0.419035 −0.209517 0.977805i \(-0.567189\pi\)
−0.209517 + 0.977805i \(0.567189\pi\)
\(720\) −1.85410 −0.0690983
\(721\) −22.2492 −0.828604
\(722\) 24.9787 0.929611
\(723\) 7.00000 0.260333
\(724\) −13.6180 −0.506110
\(725\) 1.00000 0.0371391
\(726\) 11.7082 0.434532
\(727\) 2.11146 0.0783096 0.0391548 0.999233i \(-0.487533\pi\)
0.0391548 + 0.999233i \(0.487533\pi\)
\(728\) −41.8328 −1.55043
\(729\) 1.00000 0.0370370
\(730\) 4.94427 0.182996
\(731\) 11.2361 0.415581
\(732\) 9.23607 0.341375
\(733\) −14.2918 −0.527880 −0.263940 0.964539i \(-0.585022\pi\)
−0.263940 + 0.964539i \(0.585022\pi\)
\(734\) 9.52786 0.351680
\(735\) −2.00000 −0.0737711
\(736\) 0 0
\(737\) 62.7771 2.31242
\(738\) −2.76393 −0.101742
\(739\) 41.4853 1.52606 0.763031 0.646362i \(-0.223711\pi\)
0.763031 + 0.646362i \(0.223711\pi\)
\(740\) −12.9443 −0.475841
\(741\) −48.0689 −1.76585
\(742\) 12.5410 0.460395
\(743\) −10.8197 −0.396935 −0.198467 0.980107i \(-0.563596\pi\)
−0.198467 + 0.980107i \(0.563596\pi\)
\(744\) 17.8885 0.655826
\(745\) −20.1803 −0.739350
\(746\) 9.81966 0.359523
\(747\) −3.70820 −0.135676
\(748\) 30.7426 1.12406
\(749\) −22.5836 −0.825186
\(750\) −0.618034 −0.0225674
\(751\) 43.4164 1.58429 0.792144 0.610335i \(-0.208965\pi\)
0.792144 + 0.610335i \(0.208965\pi\)
\(752\) 12.4377 0.453556
\(753\) −24.8885 −0.906989
\(754\) −3.85410 −0.140358
\(755\) −2.47214 −0.0899702
\(756\) 4.85410 0.176542
\(757\) −34.8328 −1.26602 −0.633010 0.774144i \(-0.718181\pi\)
−0.633010 + 0.774144i \(0.718181\pi\)
\(758\) 4.29180 0.155885
\(759\) 0 0
\(760\) 17.2361 0.625218
\(761\) 33.0132 1.19673 0.598363 0.801225i \(-0.295818\pi\)
0.598363 + 0.801225i \(0.295818\pi\)
\(762\) −3.70820 −0.134334
\(763\) 49.2492 1.78294
\(764\) −19.4164 −0.702461
\(765\) −3.47214 −0.125535
\(766\) −12.4033 −0.448148
\(767\) −32.6525 −1.17901
\(768\) −6.56231 −0.236797
\(769\) 34.6525 1.24960 0.624800 0.780785i \(-0.285180\pi\)
0.624800 + 0.780785i \(0.285180\pi\)
\(770\) −10.1459 −0.365633
\(771\) −9.70820 −0.349632
\(772\) 9.70820 0.349406
\(773\) −52.2492 −1.87927 −0.939637 0.342173i \(-0.888837\pi\)
−0.939637 + 0.342173i \(0.888837\pi\)
\(774\) 2.00000 0.0718885
\(775\) −8.00000 −0.287368
\(776\) −6.18034 −0.221861
\(777\) 24.0000 0.860995
\(778\) 13.7426 0.492698
\(779\) −34.4721 −1.23509
\(780\) −10.0902 −0.361286
\(781\) −39.5967 −1.41688
\(782\) 0 0
\(783\) 1.00000 0.0357371
\(784\) 3.70820 0.132436
\(785\) 11.7082 0.417884
\(786\) 2.14590 0.0765416
\(787\) 1.88854 0.0673193 0.0336597 0.999433i \(-0.489284\pi\)
0.0336597 + 0.999433i \(0.489284\pi\)
\(788\) −24.1803 −0.861389
\(789\) 24.0000 0.854423
\(790\) 3.81966 0.135897
\(791\) 23.8328 0.847397
\(792\) 12.2361 0.434790
\(793\) 35.5967 1.26408
\(794\) −4.06888 −0.144399
\(795\) 6.76393 0.239892
\(796\) −33.5066 −1.18761
\(797\) 6.94427 0.245979 0.122989 0.992408i \(-0.460752\pi\)
0.122989 + 0.992408i \(0.460752\pi\)
\(798\) −14.2918 −0.505924
\(799\) 23.2918 0.824005
\(800\) 5.61803 0.198627
\(801\) 11.1803 0.395038
\(802\) −22.6525 −0.799887
\(803\) 43.7771 1.54486
\(804\) 18.5623 0.654642
\(805\) 0 0
\(806\) 30.8328 1.08604
\(807\) −30.2361 −1.06436
\(808\) −9.47214 −0.333229
\(809\) 44.2361 1.55526 0.777629 0.628724i \(-0.216422\pi\)
0.777629 + 0.628724i \(0.216422\pi\)
\(810\) −0.618034 −0.0217155
\(811\) −22.7082 −0.797393 −0.398696 0.917083i \(-0.630537\pi\)
−0.398696 + 0.917083i \(0.630537\pi\)
\(812\) 4.85410 0.170346
\(813\) 14.3607 0.503651
\(814\) 27.0557 0.948303
\(815\) 15.1246 0.529792
\(816\) 6.43769 0.225364
\(817\) 24.9443 0.872690
\(818\) 5.34752 0.186972
\(819\) 18.7082 0.653718
\(820\) −7.23607 −0.252694
\(821\) −10.5836 −0.369370 −0.184685 0.982798i \(-0.559126\pi\)
−0.184685 + 0.982798i \(0.559126\pi\)
\(822\) −6.76393 −0.235919
\(823\) −28.7639 −1.00265 −0.501324 0.865260i \(-0.667153\pi\)
−0.501324 + 0.865260i \(0.667153\pi\)
\(824\) −16.5836 −0.577717
\(825\) −5.47214 −0.190515
\(826\) −9.70820 −0.337792
\(827\) −7.41641 −0.257894 −0.128947 0.991652i \(-0.541160\pi\)
−0.128947 + 0.991652i \(0.541160\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 2.29180 0.0795494
\(831\) 8.70820 0.302084
\(832\) 1.47214 0.0510371
\(833\) 6.94427 0.240605
\(834\) −0.437694 −0.0151561
\(835\) 17.8885 0.619059
\(836\) 68.2492 2.36045
\(837\) −8.00000 −0.276520
\(838\) 21.2361 0.733588
\(839\) 14.8885 0.514010 0.257005 0.966410i \(-0.417264\pi\)
0.257005 + 0.966410i \(0.417264\pi\)
\(840\) −6.70820 −0.231455
\(841\) 1.00000 0.0344828
\(842\) −1.12461 −0.0387567
\(843\) −23.1246 −0.796454
\(844\) 45.1246 1.55325
\(845\) −25.8885 −0.890593
\(846\) 4.14590 0.142539
\(847\) −56.8328 −1.95280
\(848\) −12.5410 −0.430660
\(849\) 18.4721 0.633962
\(850\) 2.14590 0.0736037
\(851\) 0 0
\(852\) −11.7082 −0.401116
\(853\) −28.7639 −0.984858 −0.492429 0.870353i \(-0.663891\pi\)
−0.492429 + 0.870353i \(0.663891\pi\)
\(854\) 10.5836 0.362163
\(855\) −7.70820 −0.263615
\(856\) −16.8328 −0.575334
\(857\) −23.8885 −0.816017 −0.408009 0.912978i \(-0.633777\pi\)
−0.408009 + 0.912978i \(0.633777\pi\)
\(858\) 21.0902 0.720007
\(859\) −15.7082 −0.535957 −0.267979 0.963425i \(-0.586356\pi\)
−0.267979 + 0.963425i \(0.586356\pi\)
\(860\) 5.23607 0.178548
\(861\) 13.4164 0.457230
\(862\) 21.3050 0.725650
\(863\) 15.5967 0.530919 0.265460 0.964122i \(-0.414476\pi\)
0.265460 + 0.964122i \(0.414476\pi\)
\(864\) 5.61803 0.191129
\(865\) 19.4164 0.660178
\(866\) −2.87539 −0.0977097
\(867\) −4.94427 −0.167916
\(868\) −38.8328 −1.31807
\(869\) 33.8197 1.14725
\(870\) −0.618034 −0.0209533
\(871\) 71.5410 2.42407
\(872\) 36.7082 1.24310
\(873\) 2.76393 0.0935449
\(874\) 0 0
\(875\) 3.00000 0.101419
\(876\) 12.9443 0.437346
\(877\) 48.8328 1.64897 0.824484 0.565886i \(-0.191466\pi\)
0.824484 + 0.565886i \(0.191466\pi\)
\(878\) −6.25735 −0.211175
\(879\) −17.9443 −0.605245
\(880\) 10.1459 0.342018
\(881\) 12.7082 0.428150 0.214075 0.976817i \(-0.431326\pi\)
0.214075 + 0.976817i \(0.431326\pi\)
\(882\) 1.23607 0.0416206
\(883\) −32.0000 −1.07689 −0.538443 0.842662i \(-0.680987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(884\) 35.0344 1.17834
\(885\) −5.23607 −0.176008
\(886\) 14.6869 0.493417
\(887\) −44.5967 −1.49741 −0.748706 0.662902i \(-0.769325\pi\)
−0.748706 + 0.662902i \(0.769325\pi\)
\(888\) 17.8885 0.600300
\(889\) 18.0000 0.603701
\(890\) −6.90983 −0.231618
\(891\) −5.47214 −0.183323
\(892\) 21.0344 0.704285
\(893\) 51.7082 1.73035
\(894\) 12.4721 0.417131
\(895\) −4.18034 −0.139733
\(896\) 34.1459 1.14073
\(897\) 0 0
\(898\) 1.09017 0.0363794
\(899\) −8.00000 −0.266815
\(900\) −1.61803 −0.0539345
\(901\) −23.4853 −0.782409
\(902\) 15.1246 0.503594
\(903\) −9.70820 −0.323069
\(904\) 17.7639 0.590820
\(905\) −8.41641 −0.279771
\(906\) 1.52786 0.0507599
\(907\) 26.7639 0.888682 0.444341 0.895858i \(-0.353438\pi\)
0.444341 + 0.895858i \(0.353438\pi\)
\(908\) 9.41641 0.312494
\(909\) 4.23607 0.140502
\(910\) −11.5623 −0.383287
\(911\) −18.0557 −0.598213 −0.299106 0.954220i \(-0.596689\pi\)
−0.299106 + 0.954220i \(0.596689\pi\)
\(912\) 14.2918 0.473249
\(913\) 20.2918 0.671560
\(914\) 3.78522 0.125204
\(915\) 5.70820 0.188707
\(916\) −15.2361 −0.503414
\(917\) −10.4164 −0.343980
\(918\) 2.14590 0.0708252
\(919\) 20.1246 0.663850 0.331925 0.943306i \(-0.392302\pi\)
0.331925 + 0.943306i \(0.392302\pi\)
\(920\) 0 0
\(921\) 24.9443 0.821942
\(922\) 1.45898 0.0480490
\(923\) −45.1246 −1.48529
\(924\) −26.5623 −0.873836
\(925\) −8.00000 −0.263038
\(926\) −1.56231 −0.0513406
\(927\) 7.41641 0.243587
\(928\) 5.61803 0.184421
\(929\) −56.8328 −1.86462 −0.932312 0.361655i \(-0.882212\pi\)
−0.932312 + 0.361655i \(0.882212\pi\)
\(930\) 4.94427 0.162129
\(931\) 15.4164 0.505252
\(932\) −2.29180 −0.0750703
\(933\) 23.4721 0.768443
\(934\) −8.00000 −0.261768
\(935\) 19.0000 0.621366
\(936\) 13.9443 0.455783
\(937\) 19.7639 0.645660 0.322830 0.946457i \(-0.395366\pi\)
0.322830 + 0.946457i \(0.395366\pi\)
\(938\) 21.2705 0.694507
\(939\) 1.18034 0.0385189
\(940\) 10.8541 0.354022
\(941\) −46.0689 −1.50180 −0.750901 0.660414i \(-0.770381\pi\)
−0.750901 + 0.660414i \(0.770381\pi\)
\(942\) −7.23607 −0.235764
\(943\) 0 0
\(944\) 9.70820 0.315975
\(945\) 3.00000 0.0975900
\(946\) −10.9443 −0.355829
\(947\) −12.7082 −0.412961 −0.206481 0.978451i \(-0.566201\pi\)
−0.206481 + 0.978451i \(0.566201\pi\)
\(948\) 10.0000 0.324785
\(949\) 49.8885 1.61945
\(950\) 4.76393 0.154562
\(951\) −28.4164 −0.921465
\(952\) 23.2918 0.754891
\(953\) 19.0132 0.615897 0.307948 0.951403i \(-0.400358\pi\)
0.307948 + 0.951403i \(0.400358\pi\)
\(954\) −4.18034 −0.135344
\(955\) −12.0000 −0.388311
\(956\) −19.2361 −0.622139
\(957\) −5.47214 −0.176889
\(958\) −4.00000 −0.129234
\(959\) 32.8328 1.06023
\(960\) 0.236068 0.00761906
\(961\) 33.0000 1.06452
\(962\) 30.8328 0.994090
\(963\) 7.52786 0.242582
\(964\) −11.3262 −0.364794
\(965\) 6.00000 0.193147
\(966\) 0 0
\(967\) −35.1246 −1.12953 −0.564766 0.825251i \(-0.691033\pi\)
−0.564766 + 0.825251i \(0.691033\pi\)
\(968\) −42.3607 −1.36152
\(969\) 26.7639 0.859781
\(970\) −1.70820 −0.0548471
\(971\) −23.0557 −0.739894 −0.369947 0.929053i \(-0.620624\pi\)
−0.369947 + 0.929053i \(0.620624\pi\)
\(972\) −1.61803 −0.0518985
\(973\) 2.12461 0.0681119
\(974\) −7.41641 −0.237637
\(975\) −6.23607 −0.199714
\(976\) −10.5836 −0.338773
\(977\) −22.4721 −0.718947 −0.359474 0.933155i \(-0.617044\pi\)
−0.359474 + 0.933155i \(0.617044\pi\)
\(978\) −9.34752 −0.298901
\(979\) −61.1803 −1.95533
\(980\) 3.23607 0.103372
\(981\) −16.4164 −0.524136
\(982\) 16.0000 0.510581
\(983\) 37.5279 1.19695 0.598476 0.801140i \(-0.295773\pi\)
0.598476 + 0.801140i \(0.295773\pi\)
\(984\) 10.0000 0.318788
\(985\) −14.9443 −0.476164
\(986\) 2.14590 0.0683393
\(987\) −20.1246 −0.640573
\(988\) 77.7771 2.47442
\(989\) 0 0
\(990\) 3.38197 0.107486
\(991\) 22.4853 0.714269 0.357134 0.934053i \(-0.383754\pi\)
0.357134 + 0.934053i \(0.383754\pi\)
\(992\) −44.9443 −1.42698
\(993\) −15.8885 −0.504208
\(994\) −13.4164 −0.425543
\(995\) −20.7082 −0.656494
\(996\) 6.00000 0.190117
\(997\) 7.41641 0.234880 0.117440 0.993080i \(-0.462531\pi\)
0.117440 + 0.993080i \(0.462531\pi\)
\(998\) −14.6869 −0.464906
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.2.a.e.1.2 2
3.2 odd 2 1305.2.a.k.1.1 2
4.3 odd 2 6960.2.a.bu.1.2 2
5.2 odd 4 2175.2.c.j.349.3 4
5.3 odd 4 2175.2.c.j.349.2 4
5.4 even 2 2175.2.a.q.1.1 2
15.14 odd 2 6525.2.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.a.e.1.2 2 1.1 even 1 trivial
1305.2.a.k.1.1 2 3.2 odd 2
2175.2.a.q.1.1 2 5.4 even 2
2175.2.c.j.349.2 4 5.3 odd 4
2175.2.c.j.349.3 4 5.2 odd 4
6525.2.a.s.1.2 2 15.14 odd 2
6960.2.a.bu.1.2 2 4.3 odd 2