Properties

Label 435.1.b.a.434.1
Level $435$
Weight $1$
Character 435.434
Analytic conductor $0.217$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
RM discriminant 145
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,1,Mod(434,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.434");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 435.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.217093280495\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.6525.1

Embedding invariants

Embedding label 434.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 435.434
Dual form 435.1.b.a.434.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000 q^{4} -1.00000i q^{5} +(1.00000 + 1.00000i) q^{6} -1.00000i q^{9} +O(q^{10})\) \(q-1.41421i q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000 q^{4} -1.00000i q^{5} +(1.00000 + 1.00000i) q^{6} -1.00000i q^{9} -1.41421 q^{10} +(0.707107 - 0.707107i) q^{12} +(0.707107 + 0.707107i) q^{15} -1.00000 q^{16} -1.41421i q^{17} -1.41421 q^{18} +1.00000i q^{20} -1.00000 q^{25} +(0.707107 + 0.707107i) q^{27} +1.00000i q^{29} +(1.00000 - 1.00000i) q^{30} +1.41421i q^{32} -2.00000 q^{34} +1.00000i q^{36} +1.41421 q^{37} +1.41421 q^{43} -1.00000 q^{45} +1.41421i q^{47} +(0.707107 - 0.707107i) q^{48} +1.00000 q^{49} +1.41421i q^{50} +(1.00000 + 1.00000i) q^{51} +(1.00000 - 1.00000i) q^{54} +1.41421 q^{58} +2.00000i q^{59} +(-0.707107 - 0.707107i) q^{60} +1.00000 q^{64} +1.41421i q^{68} -2.00000i q^{71} -1.41421 q^{73} -2.00000i q^{74} +(0.707107 - 0.707107i) q^{75} +1.00000i q^{80} -1.00000 q^{81} -1.41421 q^{85} -2.00000i q^{86} +(-0.707107 - 0.707107i) q^{87} +1.41421i q^{90} +2.00000 q^{94} +(-1.00000 - 1.00000i) q^{96} -1.41421 q^{97} -1.41421i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 4 q^{6} - 4 q^{16} - 4 q^{25} + 4 q^{30} - 8 q^{34} - 4 q^{45} + 4 q^{49} + 4 q^{51} + 4 q^{54} + 4 q^{64} - 4 q^{81} + 8 q^{94} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(3\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(4\) −1.00000 −1.00000
\(5\) 1.00000i 1.00000i
\(6\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 1.00000i 1.00000i
\(10\) −1.41421 −1.41421
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0.707107 0.707107i 0.707107 0.707107i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(16\) −1.00000 −1.00000
\(17\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(18\) −1.41421 −1.41421
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 1.00000i 1.00000i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.00000 −1.00000
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(28\) 0 0
\(29\) 1.00000i 1.00000i
\(30\) 1.00000 1.00000i 1.00000 1.00000i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.41421i 1.41421i
\(33\) 0 0
\(34\) −2.00000 −2.00000
\(35\) 0 0
\(36\) 1.00000i 1.00000i
\(37\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) −1.00000 −1.00000
\(46\) 0 0
\(47\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0.707107 0.707107i 0.707107 0.707107i
\(49\) 1.00000 1.00000
\(50\) 1.41421i 1.41421i
\(51\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 1.00000 1.00000i 1.00000 1.00000i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.41421 1.41421
\(59\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −0.707107 0.707107i −0.707107 0.707107i
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 1.41421i 1.41421i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(72\) 0 0
\(73\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 2.00000i 2.00000i
\(75\) 0.707107 0.707107i 0.707107 0.707107i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 1.00000i 1.00000i
\(81\) −1.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −1.41421 −1.41421
\(86\) 2.00000i 2.00000i
\(87\) −0.707107 0.707107i −0.707107 0.707107i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 1.41421i 1.41421i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 2.00000 2.00000
\(95\) 0 0
\(96\) −1.00000 1.00000i −1.00000 1.00000i
\(97\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) 1.41421i 1.41421i
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 1.41421 1.41421i 1.41421 1.41421i
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −0.707107 0.707107i −0.707107 0.707107i
\(109\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(110\) 0 0
\(111\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(112\) 0 0
\(113\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.00000i 1.00000i
\(117\) 0 0
\(118\) 2.82843 2.82843
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 1.00000i
\(126\) 0 0
\(127\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) 0 0
\(129\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.707107 0.707107i 0.707107 0.707107i
\(136\) 0 0
\(137\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(138\) 0 0
\(139\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −1.00000 1.00000i −1.00000 1.00000i
\(142\) −2.82843 −2.82843
\(143\) 0 0
\(144\) 1.00000i 1.00000i
\(145\) 1.00000 1.00000
\(146\) 2.00000i 2.00000i
\(147\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(148\) −1.41421 −1.41421
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −1.00000 1.00000i −1.00000 1.00000i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −1.41421 −1.41421
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.41421 1.41421
\(161\) 0 0
\(162\) 1.41421i 1.41421i
\(163\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 2.00000i 2.00000i
\(171\) 0 0
\(172\) −1.41421 −1.41421
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(175\) 0 0
\(176\) 0 0
\(177\) −1.41421 1.41421i −1.41421 1.41421i
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 1.00000 1.00000
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.41421i 1.41421i
\(186\) 0 0
\(187\) 0 0
\(188\) 1.41421i 1.41421i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(193\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 2.00000i 2.00000i
\(195\) 0 0
\(196\) −1.00000 −1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −1.00000 1.00000i −1.00000 1.00000i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(214\) 0 0
\(215\) 1.41421i 1.41421i
\(216\) 0 0
\(217\) 0 0
\(218\) 2.82843i 2.82843i
\(219\) 1.00000 1.00000i 1.00000 1.00000i
\(220\) 0 0
\(221\) 0 0
\(222\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.00000i 1.00000i
\(226\) 2.00000 2.00000
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 1.41421 1.41421
\(236\) 2.00000i 2.00000i
\(237\) 0 0
\(238\) 0 0
\(239\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(240\) −0.707107 0.707107i −0.707107 0.707107i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 1.41421i 1.41421i
\(243\) 0.707107 0.707107i 0.707107 0.707107i
\(244\) 0 0
\(245\) 1.00000i 1.00000i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 1.41421 1.41421
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 2.00000i 2.00000i
\(255\) 1.00000 1.00000i 1.00000 1.00000i
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(259\) 0 0
\(260\) 0 0
\(261\) 1.00000 1.00000
\(262\) 0 0
\(263\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) −1.00000 1.00000i −1.00000 1.00000i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 1.41421i 1.41421i
\(273\) 0 0
\(274\) −2.00000 −2.00000
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 2.82843i 2.82843i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 2.00000i 2.00000i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.41421 1.41421
\(289\) −1.00000 −1.00000
\(290\) 1.41421i 1.41421i
\(291\) 1.00000 1.00000i 1.00000 1.00000i
\(292\) 1.41421 1.41421
\(293\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(294\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(295\) 2.00000 2.00000
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 2.00000i 2.00000i
\(307\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 2.00000i 2.00000i
\(315\) 0 0
\(316\) 0 0
\(317\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000i 1.00000i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 2.00000i 2.00000i
\(327\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 1.41421i 1.41421i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) 1.41421i 1.41421i
\(339\) −1.00000 1.00000i −1.00000 1.00000i
\(340\) 1.41421 1.41421
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(355\) −2.00000 −2.00000
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 0.707107 0.707107i 0.707107 0.707107i
\(364\) 0 0
\(365\) 1.41421i 1.41421i
\(366\) 0 0
\(367\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −2.00000 −2.00000
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −0.707107 0.707107i −0.707107 0.707107i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000i 2.00000i
\(387\) 1.41421i 1.41421i
\(388\) 1.41421 1.41421
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000i 1.00000i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.41421 1.41421i 1.41421 1.41421i
\(418\) 0 0
\(419\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 1.41421 1.41421
\(424\) 0 0
\(425\) 1.41421i 1.41421i
\(426\) 2.00000 2.00000i 2.00000 2.00000i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −2.00000 −2.00000
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −0.707107 0.707107i −0.707107 0.707107i
\(433\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(436\) −2.00000 −2.00000
\(437\) 0 0
\(438\) −1.41421 1.41421i −1.41421 1.41421i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 1.00000i 1.00000i
\(442\) 0 0
\(443\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 1.00000 1.00000i 1.00000 1.00000i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 1.41421 1.41421
\(451\) 0 0
\(452\) 1.41421i 1.41421i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 1.00000 1.00000i 1.00000 1.00000i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 1.00000i 1.00000i
\(465\) 0 0
\(466\) 0 0
\(467\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2.00000i 2.00000i
\(471\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −2.82843 −2.82843
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 1.41421i 1.41421i
\(486\) −1.00000 1.00000i −1.00000 1.00000i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 1.00000 1.00000i 1.00000 1.00000i
\(490\) −1.41421 −1.41421
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 1.41421 1.41421
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(500\) 1.00000i 1.00000i
\(501\) 0 0
\(502\) 0 0
\(503\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(508\) −1.41421 −1.41421
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) −1.41421 1.41421i −1.41421 1.41421i
\(511\) 0 0
\(512\) 1.41421i 1.41421i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 1.00000 1.00000i 1.00000 1.00000i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 1.41421i 1.41421i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 2.00000 2.00000
\(527\) 0 0
\(528\) 0 0
\(529\) −1.00000 −1.00000
\(530\) 0 0
\(531\) 2.00000 2.00000
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 2.00000 2.00000
\(545\) 2.00000i 2.00000i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 1.41421i 1.41421i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(556\) 2.00000 2.00000
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(564\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(565\) 1.41421 1.41421
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000i 1.00000i
\(577\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 1.41421i 1.41421i
\(579\) 1.00000 1.00000i 1.00000 1.00000i
\(580\) −1.00000 −1.00000
\(581\) 0 0
\(582\) −1.41421 1.41421i −1.41421 1.41421i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −2.00000 −2.00000
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0.707107 0.707107i 0.707107 0.707107i
\(589\) 0 0
\(590\) 2.82843i 2.82843i
\(591\) 0 0
\(592\) −1.41421 −1.41421
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.00000i 1.00000i
\(606\) 0 0
\(607\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 1.41421 1.41421
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 2.00000i 2.00000i
\(615\) 0 0
\(616\) 0 0
\(617\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) −1.41421 −1.41421
\(629\) 2.00000i 2.00000i
\(630\) 0 0
\(631\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.00000 2.00000
\(635\) 1.41421i 1.41421i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.00000 −2.00000
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.41421 1.41421
\(653\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 2.00000 + 2.00000i 2.00000 + 2.00000i
\(655\) 0 0
\(656\) 0 0
\(657\) 1.41421i 1.41421i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −2.00000 −2.00000
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 2.00000i 2.00000i
\(675\) −0.707107 0.707107i −0.707107 0.707107i
\(676\) −1.00000 −1.00000
\(677\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) −1.41421 −1.41421
\(686\) 0 0
\(687\) 0 0
\(688\) −1.41421 −1.41421
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.00000i 2.00000i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(706\) 0 0
\(707\) 0 0
\(708\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(709\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(710\) 2.82843i 2.82843i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(718\) 0 0
\(719\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 1.00000 1.00000
\(721\) 0 0
\(722\) 1.41421i 1.41421i
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00000i 1.00000i
\(726\) −1.00000 1.00000i −1.00000 1.00000i
\(727\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 1.00000i 1.00000i
\(730\) 2.00000 2.00000
\(731\) 2.00000i 2.00000i
\(732\) 0 0
\(733\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 2.00000i 2.00000i
\(735\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 1.41421i 1.41421i
\(741\) 0 0
\(742\) 0 0
\(743\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 1.41421i 1.41421i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(762\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(763\) 0 0
\(764\) 0 0
\(765\) 1.41421i 1.41421i
\(766\) 0 0
\(767\) 0 0
\(768\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.41421 1.41421
\(773\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) −2.00000 −2.00000
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(784\) −1.00000 −1.00000
\(785\) 1.41421i 1.41421i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) −1.00000 1.00000i −1.00000 1.00000i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(798\) 0 0
\(799\) 2.00000 2.00000
\(800\) 1.41421i 1.41421i
\(801\) 0 0
\(802\) 2.82843 2.82843
\(803\) 0 0
\(804\) 0