# Properties

 Label 4334.3 Level 4334 Weight 3 Dimension 381592 Nonzero newspaces 18 Sturm bound 3.49272e+06

## Defining parameters

 Level: $$N$$ = $$4334 = 2 \cdot 11 \cdot 197$$ Weight: $$k$$ = $$3$$ Nonzero newspaces: $$18$$ Sturm bound: $$3492720$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{3}(\Gamma_1(4334))$$.

Total New Old
Modular forms 1168160 381592 786568
Cusp forms 1160320 381592 778728
Eisenstein series 7840 0 7840

## Decomposition of $$S_{3}^{\mathrm{new}}(\Gamma_1(4334))$$

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
4334.3.b $$\chi_{4334}(4333, \cdot)$$ n/a 396 1
4334.3.d $$\chi_{4334}(395, \cdot)$$ n/a 392 1
4334.3.e $$\chi_{4334}(1365, \cdot)$$ n/a 660 2
4334.3.i $$\chi_{4334}(789, \cdot)$$ n/a 1568 4
4334.3.k $$\chi_{4334}(393, \cdot)$$ n/a 1584 4
4334.3.l $$\chi_{4334}(769, \cdot)$$ n/a 2376 6
4334.3.n $$\chi_{4334}(1275, \cdot)$$ n/a 2376 6
4334.3.p $$\chi_{4334}(577, \cdot)$$ n/a 3168 8
4334.3.r $$\chi_{4334}(177, \cdot)$$ n/a 3960 12
4334.3.u $$\chi_{4334}(19, \cdot)$$ n/a 9504 24
4334.3.w $$\chi_{4334}(233, \cdot)$$ n/a 9504 24
4334.3.y $$\chi_{4334}(175, \cdot)$$ n/a 16632 42
4334.3.z $$\chi_{4334}(43, \cdot)$$ n/a 16632 42
4334.3.ba $$\chi_{4334}(69, \cdot)$$ n/a 19008 48
4334.3.bd $$\chi_{4334}(45, \cdot)$$ n/a 27720 84
4334.3.bf $$\chi_{4334}(7, \cdot)$$ n/a 66528 168
4334.3.bg $$\chi_{4334}(29, \cdot)$$ n/a 66528 168
4334.3.bi $$\chi_{4334}(3, \cdot)$$ n/a 133056 336

"n/a" means that newforms for that character have not been added to the database yet

## Decomposition of $$S_{3}^{\mathrm{old}}(\Gamma_1(4334))$$ into lower level spaces

$$S_{3}^{\mathrm{old}}(\Gamma_1(4334)) \cong$$ $$S_{3}^{\mathrm{new}}(\Gamma_1(11))$$$$^{\oplus 4}$$$$\oplus$$$$S_{3}^{\mathrm{new}}(\Gamma_1(22))$$$$^{\oplus 2}$$$$\oplus$$$$S_{3}^{\mathrm{new}}(\Gamma_1(197))$$$$^{\oplus 4}$$$$\oplus$$$$S_{3}^{\mathrm{new}}(\Gamma_1(394))$$$$^{\oplus 2}$$$$\oplus$$$$S_{3}^{\mathrm{new}}(\Gamma_1(2167))$$$$^{\oplus 2}$$