Defining parameters
Level: | \( N \) | = | \( 4334 = 2 \cdot 11 \cdot 197 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 18 \) | ||
Sturm bound: | \(3492720\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(4334))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1168160 | 381592 | 786568 |
Cusp forms | 1160320 | 381592 | 778728 |
Eisenstein series | 7840 | 0 | 7840 |
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(4334))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
4334.3.b | \(\chi_{4334}(4333, \cdot)\) | n/a | 396 | 1 |
4334.3.d | \(\chi_{4334}(395, \cdot)\) | n/a | 392 | 1 |
4334.3.e | \(\chi_{4334}(1365, \cdot)\) | n/a | 660 | 2 |
4334.3.i | \(\chi_{4334}(789, \cdot)\) | n/a | 1568 | 4 |
4334.3.k | \(\chi_{4334}(393, \cdot)\) | n/a | 1584 | 4 |
4334.3.l | \(\chi_{4334}(769, \cdot)\) | n/a | 2376 | 6 |
4334.3.n | \(\chi_{4334}(1275, \cdot)\) | n/a | 2376 | 6 |
4334.3.p | \(\chi_{4334}(577, \cdot)\) | n/a | 3168 | 8 |
4334.3.r | \(\chi_{4334}(177, \cdot)\) | n/a | 3960 | 12 |
4334.3.u | \(\chi_{4334}(19, \cdot)\) | n/a | 9504 | 24 |
4334.3.w | \(\chi_{4334}(233, \cdot)\) | n/a | 9504 | 24 |
4334.3.y | \(\chi_{4334}(175, \cdot)\) | n/a | 16632 | 42 |
4334.3.z | \(\chi_{4334}(43, \cdot)\) | n/a | 16632 | 42 |
4334.3.ba | \(\chi_{4334}(69, \cdot)\) | n/a | 19008 | 48 |
4334.3.bd | \(\chi_{4334}(45, \cdot)\) | n/a | 27720 | 84 |
4334.3.bf | \(\chi_{4334}(7, \cdot)\) | n/a | 66528 | 168 |
4334.3.bg | \(\chi_{4334}(29, \cdot)\) | n/a | 66528 | 168 |
4334.3.bi | \(\chi_{4334}(3, \cdot)\) | n/a | 133056 | 336 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(4334))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(4334)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(197))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(394))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2167))\)\(^{\oplus 2}\)