Properties

Label 4334.3
Level 4334
Weight 3
Dimension 381592
Nonzero newspaces 18
Sturm bound 3492720

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4334 = 2 \cdot 11 \cdot 197 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(3492720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(4334))\).

Total New Old
Modular forms 1168160 381592 786568
Cusp forms 1160320 381592 778728
Eisenstein series 7840 0 7840

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(4334))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4334.3.b \(\chi_{4334}(4333, \cdot)\) n/a 396 1
4334.3.d \(\chi_{4334}(395, \cdot)\) n/a 392 1
4334.3.e \(\chi_{4334}(1365, \cdot)\) n/a 660 2
4334.3.i \(\chi_{4334}(789, \cdot)\) n/a 1568 4
4334.3.k \(\chi_{4334}(393, \cdot)\) n/a 1584 4
4334.3.l \(\chi_{4334}(769, \cdot)\) n/a 2376 6
4334.3.n \(\chi_{4334}(1275, \cdot)\) n/a 2376 6
4334.3.p \(\chi_{4334}(577, \cdot)\) n/a 3168 8
4334.3.r \(\chi_{4334}(177, \cdot)\) n/a 3960 12
4334.3.u \(\chi_{4334}(19, \cdot)\) n/a 9504 24
4334.3.w \(\chi_{4334}(233, \cdot)\) n/a 9504 24
4334.3.y \(\chi_{4334}(175, \cdot)\) n/a 16632 42
4334.3.z \(\chi_{4334}(43, \cdot)\) n/a 16632 42
4334.3.ba \(\chi_{4334}(69, \cdot)\) n/a 19008 48
4334.3.bd \(\chi_{4334}(45, \cdot)\) n/a 27720 84
4334.3.bf \(\chi_{4334}(7, \cdot)\) n/a 66528 168
4334.3.bg \(\chi_{4334}(29, \cdot)\) n/a 66528 168
4334.3.bi \(\chi_{4334}(3, \cdot)\) n/a 133056 336

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(4334))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(4334)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(197))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(394))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2167))\)\(^{\oplus 2}\)