Newspace parameters
Level: | \( N \) | \(=\) | \( 4334 = 2 \cdot 11 \cdot 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4334.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(34.6071642360\) |
Analytic rank: | \(0\) |
Dimension: | \(27\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −1.00000 | −3.32608 | 1.00000 | 3.07836 | 3.32608 | −4.99294 | −1.00000 | 8.06282 | −3.07836 | ||||||||||||||||||
1.2 | −1.00000 | −3.27909 | 1.00000 | −0.172349 | 3.27909 | 4.49591 | −1.00000 | 7.75244 | 0.172349 | ||||||||||||||||||
1.3 | −1.00000 | −3.12559 | 1.00000 | 4.00012 | 3.12559 | −0.0131838 | −1.00000 | 6.76933 | −4.00012 | ||||||||||||||||||
1.4 | −1.00000 | −2.76463 | 1.00000 | −0.249776 | 2.76463 | −2.52527 | −1.00000 | 4.64317 | 0.249776 | ||||||||||||||||||
1.5 | −1.00000 | −2.46207 | 1.00000 | −2.57755 | 2.46207 | −3.72083 | −1.00000 | 3.06177 | 2.57755 | ||||||||||||||||||
1.6 | −1.00000 | −2.45740 | 1.00000 | −4.36120 | 2.45740 | 2.66113 | −1.00000 | 3.03881 | 4.36120 | ||||||||||||||||||
1.7 | −1.00000 | −2.09175 | 1.00000 | −0.380034 | 2.09175 | −1.49841 | −1.00000 | 1.37543 | 0.380034 | ||||||||||||||||||
1.8 | −1.00000 | −1.37214 | 1.00000 | 0.332573 | 1.37214 | 4.01205 | −1.00000 | −1.11723 | −0.332573 | ||||||||||||||||||
1.9 | −1.00000 | −1.36128 | 1.00000 | 1.41439 | 1.36128 | 1.06104 | −1.00000 | −1.14691 | −1.41439 | ||||||||||||||||||
1.10 | −1.00000 | −1.15238 | 1.00000 | −0.0196651 | 1.15238 | 3.79263 | −1.00000 | −1.67203 | 0.0196651 | ||||||||||||||||||
1.11 | −1.00000 | −0.982227 | 1.00000 | −0.607693 | 0.982227 | −0.935926 | −1.00000 | −2.03523 | 0.607693 | ||||||||||||||||||
1.12 | −1.00000 | −0.593027 | 1.00000 | 0.744487 | 0.593027 | −4.68885 | −1.00000 | −2.64832 | −0.744487 | ||||||||||||||||||
1.13 | −1.00000 | −0.127044 | 1.00000 | −4.01526 | 0.127044 | 0.758073 | −1.00000 | −2.98386 | 4.01526 | ||||||||||||||||||
1.14 | −1.00000 | −0.0408121 | 1.00000 | 3.97341 | 0.0408121 | 4.79303 | −1.00000 | −2.99833 | −3.97341 | ||||||||||||||||||
1.15 | −1.00000 | 0.181771 | 1.00000 | 4.29102 | −0.181771 | −3.68727 | −1.00000 | −2.96696 | −4.29102 | ||||||||||||||||||
1.16 | −1.00000 | 0.309146 | 1.00000 | 2.79911 | −0.309146 | 0.293952 | −1.00000 | −2.90443 | −2.79911 | ||||||||||||||||||
1.17 | −1.00000 | 1.05524 | 1.00000 | −3.32834 | −1.05524 | −3.79792 | −1.00000 | −1.88648 | 3.32834 | ||||||||||||||||||
1.18 | −1.00000 | 1.14059 | 1.00000 | −0.375030 | −1.14059 | 0.176944 | −1.00000 | −1.69906 | 0.375030 | ||||||||||||||||||
1.19 | −1.00000 | 1.56203 | 1.00000 | −0.643018 | −1.56203 | 3.99306 | −1.00000 | −0.560072 | 0.643018 | ||||||||||||||||||
1.20 | −1.00000 | 1.80604 | 1.00000 | −3.59945 | −1.80604 | 3.05375 | −1.00000 | 0.261765 | 3.59945 | ||||||||||||||||||
See all 27 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(11\) | \(-1\) |
\(197\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4334.2.a.h | ✓ | 27 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4334.2.a.h | ✓ | 27 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{27} - 62 T_{3}^{25} + T_{3}^{24} + 1679 T_{3}^{23} - 49 T_{3}^{22} - 26122 T_{3}^{21} + 988 T_{3}^{20} + 258456 T_{3}^{19} - 10441 T_{3}^{18} - 1701115 T_{3}^{17} + 59569 T_{3}^{16} + 7573932 T_{3}^{15} - 150131 T_{3}^{14} + \cdots - 1472 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4334))\).