Newspace parameters
Level: | \( N \) | \(=\) | \( 4334 = 2 \cdot 11 \cdot 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4334.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(34.6071642360\) |
Analytic rank: | \(0\) |
Dimension: | \(26\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | 1.00000 | −3.24183 | 1.00000 | −2.34759 | −3.24183 | 0.935308 | 1.00000 | 7.50947 | −2.34759 | ||||||||||||||||||
1.2 | 1.00000 | −2.89563 | 1.00000 | −0.0366624 | −2.89563 | −1.61517 | 1.00000 | 5.38466 | −0.0366624 | ||||||||||||||||||
1.3 | 1.00000 | −2.44791 | 1.00000 | 3.56167 | −2.44791 | 3.03410 | 1.00000 | 2.99228 | 3.56167 | ||||||||||||||||||
1.4 | 1.00000 | −2.11321 | 1.00000 | 4.02507 | −2.11321 | 1.12513 | 1.00000 | 1.46567 | 4.02507 | ||||||||||||||||||
1.5 | 1.00000 | −1.88207 | 1.00000 | −1.63726 | −1.88207 | 4.48475 | 1.00000 | 0.542179 | −1.63726 | ||||||||||||||||||
1.6 | 1.00000 | −1.47859 | 1.00000 | −2.50873 | −1.47859 | −2.19131 | 1.00000 | −0.813757 | −2.50873 | ||||||||||||||||||
1.7 | 1.00000 | −1.44389 | 1.00000 | −0.880270 | −1.44389 | −5.04870 | 1.00000 | −0.915168 | −0.880270 | ||||||||||||||||||
1.8 | 1.00000 | −1.17873 | 1.00000 | 1.80794 | −1.17873 | −0.890925 | 1.00000 | −1.61059 | 1.80794 | ||||||||||||||||||
1.9 | 1.00000 | −0.943634 | 1.00000 | 2.82946 | −0.943634 | 5.06500 | 1.00000 | −2.10955 | 2.82946 | ||||||||||||||||||
1.10 | 1.00000 | −0.614404 | 1.00000 | 2.62767 | −0.614404 | −2.77855 | 1.00000 | −2.62251 | 2.62767 | ||||||||||||||||||
1.11 | 1.00000 | 0.193084 | 1.00000 | −2.38572 | 0.193084 | 0.690799 | 1.00000 | −2.96272 | −2.38572 | ||||||||||||||||||
1.12 | 1.00000 | 0.279564 | 1.00000 | 1.09296 | 0.279564 | 1.36005 | 1.00000 | −2.92184 | 1.09296 | ||||||||||||||||||
1.13 | 1.00000 | 0.378852 | 1.00000 | −3.54688 | 0.378852 | 2.78687 | 1.00000 | −2.85647 | −3.54688 | ||||||||||||||||||
1.14 | 1.00000 | 0.558474 | 1.00000 | −0.515160 | 0.558474 | −5.08632 | 1.00000 | −2.68811 | −0.515160 | ||||||||||||||||||
1.15 | 1.00000 | 0.683877 | 1.00000 | 2.76760 | 0.683877 | 4.51462 | 1.00000 | −2.53231 | 2.76760 | ||||||||||||||||||
1.16 | 1.00000 | 1.67736 | 1.00000 | 2.35708 | 1.67736 | 2.46776 | 1.00000 | −0.186467 | 2.35708 | ||||||||||||||||||
1.17 | 1.00000 | 2.04930 | 1.00000 | 3.63723 | 2.04930 | −0.447524 | 1.00000 | 1.19962 | 3.63723 | ||||||||||||||||||
1.18 | 1.00000 | 2.16110 | 1.00000 | 3.79456 | 2.16110 | 0.294155 | 1.00000 | 1.67035 | 3.79456 | ||||||||||||||||||
1.19 | 1.00000 | 2.18604 | 1.00000 | 0.389300 | 2.18604 | 4.93283 | 1.00000 | 1.77878 | 0.389300 | ||||||||||||||||||
1.20 | 1.00000 | 2.26689 | 1.00000 | −4.31390 | 2.26689 | 1.45520 | 1.00000 | 2.13877 | −4.31390 | ||||||||||||||||||
See all 26 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(11\) | \(-1\) |
\(197\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4334.2.a.g | ✓ | 26 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4334.2.a.g | ✓ | 26 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{26} - 12 T_{3}^{25} + 14 T_{3}^{24} + 371 T_{3}^{23} - 1401 T_{3}^{22} - 3699 T_{3}^{21} + 26442 T_{3}^{20} + 1884 T_{3}^{19} - 238998 T_{3}^{18} + 241769 T_{3}^{17} + 1196551 T_{3}^{16} - 2124861 T_{3}^{15} + \cdots + 25136 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4334))\).