Newspace parameters
Level: | \( N \) | \(=\) | \( 4334 = 2 \cdot 11 \cdot 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4334.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(34.6071642360\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −1.00000 | −3.29945 | 1.00000 | −3.72842 | 3.29945 | −3.54518 | −1.00000 | 7.88640 | 3.72842 | ||||||||||||||||||
1.2 | −1.00000 | −3.08498 | 1.00000 | 1.01853 | 3.08498 | −2.58850 | −1.00000 | 6.51711 | −1.01853 | ||||||||||||||||||
1.3 | −1.00000 | −3.05385 | 1.00000 | 3.30243 | 3.05385 | 4.28183 | −1.00000 | 6.32597 | −3.30243 | ||||||||||||||||||
1.4 | −1.00000 | −2.81176 | 1.00000 | −2.87657 | 2.81176 | −0.0915560 | −1.00000 | 4.90602 | 2.87657 | ||||||||||||||||||
1.5 | −1.00000 | −2.34418 | 1.00000 | −2.76933 | 2.34418 | 1.79797 | −1.00000 | 2.49516 | 2.76933 | ||||||||||||||||||
1.6 | −1.00000 | −2.15745 | 1.00000 | 1.30451 | 2.15745 | 3.75589 | −1.00000 | 1.65457 | −1.30451 | ||||||||||||||||||
1.7 | −1.00000 | −2.03428 | 1.00000 | 3.12875 | 2.03428 | −4.32049 | −1.00000 | 1.13829 | −3.12875 | ||||||||||||||||||
1.8 | −1.00000 | −1.47170 | 1.00000 | 3.58412 | 1.47170 | −0.948099 | −1.00000 | −0.834090 | −3.58412 | ||||||||||||||||||
1.9 | −1.00000 | −1.15892 | 1.00000 | −2.65435 | 1.15892 | 4.05701 | −1.00000 | −1.65690 | 2.65435 | ||||||||||||||||||
1.10 | −1.00000 | −1.02498 | 1.00000 | −1.91029 | 1.02498 | 0.691966 | −1.00000 | −1.94941 | 1.91029 | ||||||||||||||||||
1.11 | −1.00000 | −0.392540 | 1.00000 | 2.96246 | 0.392540 | −1.89262 | −1.00000 | −2.84591 | −2.96246 | ||||||||||||||||||
1.12 | −1.00000 | −0.257887 | 1.00000 | 0.105378 | 0.257887 | −1.45976 | −1.00000 | −2.93349 | −0.105378 | ||||||||||||||||||
1.13 | −1.00000 | 0.0886475 | 1.00000 | −3.04967 | −0.0886475 | −1.08307 | −1.00000 | −2.99214 | 3.04967 | ||||||||||||||||||
1.14 | −1.00000 | 0.140715 | 1.00000 | 0.341585 | −0.140715 | −2.48538 | −1.00000 | −2.98020 | −0.341585 | ||||||||||||||||||
1.15 | −1.00000 | 0.626459 | 1.00000 | −4.16763 | −0.626459 | 4.47360 | −1.00000 | −2.60755 | 4.16763 | ||||||||||||||||||
1.16 | −1.00000 | 0.745887 | 1.00000 | 2.52923 | −0.745887 | 4.14909 | −1.00000 | −2.44365 | −2.52923 | ||||||||||||||||||
1.17 | −1.00000 | 1.08316 | 1.00000 | −1.14511 | −1.08316 | 2.88226 | −1.00000 | −1.82677 | 1.14511 | ||||||||||||||||||
1.18 | −1.00000 | 1.21094 | 1.00000 | −0.613687 | −1.21094 | −4.17411 | −1.00000 | −1.53363 | 0.613687 | ||||||||||||||||||
1.19 | −1.00000 | 2.01603 | 1.00000 | 2.21808 | −2.01603 | 1.91345 | −1.00000 | 1.06437 | −2.21808 | ||||||||||||||||||
1.20 | −1.00000 | 2.05410 | 1.00000 | 4.08690 | −2.05410 | 0.841598 | −1.00000 | 1.21932 | −4.08690 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(11\) | \(1\) |
\(197\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4334.2.a.e | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4334.2.a.e | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} + 4 T_{3}^{23} - 42 T_{3}^{22} - 175 T_{3}^{21} + 735 T_{3}^{20} + 3231 T_{3}^{19} - 6952 T_{3}^{18} - 32836 T_{3}^{17} + 38598 T_{3}^{16} + 201163 T_{3}^{15} - 128107 T_{3}^{14} - 766057 T_{3}^{13} + 249310 T_{3}^{12} + \cdots + 292 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4334))\).