[N,k,chi] = [4334,2,Mod(1,4334)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4334, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4334.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(11\)
\(-1\)
\(197\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{15} + 9 T_{3}^{14} + 13 T_{3}^{13} - 101 T_{3}^{12} - 328 T_{3}^{11} + 188 T_{3}^{10} + 1713 T_{3}^{9} + 785 T_{3}^{8} - 3491 T_{3}^{7} - 2897 T_{3}^{6} + 2876 T_{3}^{5} + 2792 T_{3}^{4} - 876 T_{3}^{3} - 911 T_{3}^{2} + \cdots + 92 \)
T3^15 + 9*T3^14 + 13*T3^13 - 101*T3^12 - 328*T3^11 + 188*T3^10 + 1713*T3^9 + 785*T3^8 - 3491*T3^7 - 2897*T3^6 + 2876*T3^5 + 2792*T3^4 - 876*T3^3 - 911*T3^2 + 94*T3 + 92
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4334))\).
$p$
$F_p(T)$
$2$
\( (T - 1)^{15} \)
(T - 1)^15
$3$
\( T^{15} + 9 T^{14} + 13 T^{13} - 101 T^{12} + \cdots + 92 \)
T^15 + 9*T^14 + 13*T^13 - 101*T^12 - 328*T^11 + 188*T^10 + 1713*T^9 + 785*T^8 - 3491*T^7 - 2897*T^6 + 2876*T^5 + 2792*T^4 - 876*T^3 - 911*T^2 + 94*T + 92
$5$
\( T^{15} + 11 T^{14} + 20 T^{13} + \cdots - 1593 \)
T^15 + 11*T^14 + 20*T^13 - 170*T^12 - 638*T^11 + 594*T^10 + 4621*T^9 + 272*T^8 - 15435*T^7 - 4463*T^6 + 27222*T^5 + 6506*T^4 - 24621*T^3 - 1280*T^2 + 8870*T - 1593
$7$
\( T^{15} + 11 T^{14} + 7 T^{13} + \cdots + 5139 \)
T^15 + 11*T^14 + 7*T^13 - 330*T^12 - 1146*T^11 + 2053*T^10 + 16888*T^9 + 17511*T^8 - 64520*T^7 - 181760*T^6 - 102649*T^5 + 192953*T^4 + 350539*T^3 + 225116*T^2 + 61548*T + 5139
$11$
\( (T - 1)^{15} \)
(T - 1)^15
$13$
\( T^{15} + 21 T^{14} + 123 T^{13} + \cdots - 5407092 \)
T^15 + 21*T^14 + 123*T^13 - 371*T^12 - 6949*T^11 - 21693*T^10 + 44463*T^9 + 388028*T^8 + 473246*T^7 - 1606961*T^6 - 4486409*T^5 + 14430*T^4 + 10334045*T^3 + 7982731*T^2 - 4704090*T - 5407092
$17$
\( T^{15} + 4 T^{14} - 118 T^{13} + \cdots + 6801437 \)
T^15 + 4*T^14 - 118*T^13 - 613*T^12 + 4471*T^11 + 31829*T^10 - 40505*T^9 - 660050*T^8 - 854774*T^7 + 4292337*T^6 + 13313331*T^5 + 6060433*T^4 - 18774912*T^3 - 20155769*T^2 + 2618225*T + 6801437
$19$
\( T^{15} + 22 T^{14} + 95 T^{13} + \cdots + 29155276 \)
T^15 + 22*T^14 + 95*T^13 - 1267*T^12 - 13426*T^11 - 18747*T^10 + 247885*T^9 + 919199*T^8 - 1278990*T^7 - 9834782*T^6 - 1990557*T^5 + 43020482*T^4 + 28846737*T^3 - 75966469*T^2 - 49443238*T + 29155276
$23$
\( T^{15} + 16 T^{14} + \cdots - 1535732732 \)
T^15 + 16*T^14 - 89*T^13 - 2310*T^12 + 459*T^11 + 129103*T^10 + 184839*T^9 - 3512532*T^8 - 7496916*T^7 + 48335878*T^6 + 117827468*T^5 - 319966262*T^4 - 764822895*T^3 + 946765577*T^2 + 1517526370*T - 1535732732
$29$
\( T^{15} + 8 T^{14} + \cdots + 1332415089 \)
T^15 + 8*T^14 - 140*T^13 - 1001*T^12 + 8769*T^11 + 49707*T^10 - 318498*T^9 - 1211640*T^8 + 7059571*T^7 + 14013108*T^6 - 91001615*T^5 - 47776376*T^4 + 590167206*T^3 - 279019449*T^2 - 1331781669*T + 1332415089
$31$
\( T^{15} + 33 T^{14} + \cdots + 4002626421 \)
T^15 + 33*T^14 + 272*T^13 - 2038*T^12 - 38598*T^11 - 50260*T^10 + 1672037*T^9 + 6691168*T^8 - 27951032*T^7 - 184498278*T^6 + 79126714*T^5 + 1875273240*T^4 + 1694128826*T^3 - 4824443220*T^2 - 3901010481*T + 4002626421
$37$
\( T^{15} + T^{14} - 246 T^{13} + \cdots - 123232320 \)
T^15 + T^14 - 246*T^13 - 529*T^12 + 19413*T^11 + 56799*T^10 - 589674*T^9 - 2203658*T^8 + 6133311*T^7 + 28734209*T^6 - 21321102*T^5 - 146781212*T^4 + 15320951*T^3 + 275358261*T^2 - 22800456*T - 123232320
$41$
\( T^{15} + 10 T^{14} + \cdots + 916477780 \)
T^15 + 10*T^14 - 232*T^13 - 2002*T^12 + 20461*T^11 + 136948*T^10 - 902768*T^9 - 3856959*T^8 + 20998496*T^7 + 38245597*T^6 - 235039002*T^5 - 16267414*T^4 + 928038984*T^3 - 612245797*T^2 - 983712674*T + 916477780
$43$
\( T^{15} + 8 T^{14} - 248 T^{13} + \cdots + 124197232 \)
T^15 + 8*T^14 - 248*T^13 - 1829*T^12 + 19813*T^11 + 133833*T^10 - 741580*T^9 - 4288338*T^8 + 14694300*T^7 + 60557700*T^6 - 160849061*T^5 - 266687941*T^4 + 876310152*T^3 - 510651971*T^2 - 135279956*T + 124197232
$47$
\( T^{15} + 31 T^{14} + \cdots + 196235160860 \)
T^15 + 31*T^14 - 9017*T^12 - 75062*T^11 + 656740*T^10 + 10024210*T^9 - 884769*T^8 - 454832416*T^7 - 1041028453*T^6 + 8711458084*T^5 + 26245578614*T^4 - 81254786817*T^3 - 203974371967*T^2 + 366228951322*T + 196235160860
$53$
\( T^{15} + 18 T^{14} + \cdots - 215937896796 \)
T^15 + 18*T^14 - 304*T^13 - 5731*T^12 + 44598*T^11 + 748840*T^10 - 4253713*T^9 - 49549921*T^8 + 265934763*T^7 + 1620467171*T^6 - 9437558194*T^5 - 20179593213*T^4 + 145247205489*T^3 + 14205791293*T^2 - 496878059562*T - 215937896796
$59$
\( T^{15} + 37 T^{14} + \cdots - 4362371913 \)
T^15 + 37*T^14 + 248*T^13 - 6567*T^12 - 109679*T^11 - 182372*T^10 + 7255097*T^9 + 56486534*T^8 + 45236462*T^7 - 1371356861*T^6 - 8406966838*T^5 - 24433581137*T^4 - 40757885298*T^3 - 39499011019*T^2 - 20508339676*T - 4362371913
$61$
\( T^{15} + 31 T^{14} + \cdots + 1433948561 \)
T^15 + 31*T^14 + 201*T^13 - 2946*T^12 - 43223*T^11 - 54003*T^10 + 1719911*T^9 + 7312078*T^8 - 21366226*T^7 - 160893660*T^6 + 27213285*T^5 + 1385603129*T^4 + 978297760*T^3 - 4437079528*T^2 - 4221397844*T + 1433948561
$67$
\( T^{15} - T^{14} - 308 T^{13} + \cdots + 6717348 \)
T^15 - T^14 - 308*T^13 - 279*T^12 + 22975*T^11 + 16503*T^10 - 591726*T^9 + 321321*T^8 + 5853062*T^7 - 9076521*T^6 - 15783785*T^5 + 37832485*T^4 + 4597661*T^3 - 46312657*T^2 + 16811004*T + 6717348
$71$
\( T^{15} + 28 T^{14} + \cdots + 142096755597 \)
T^15 + 28*T^14 - 177*T^13 - 10430*T^12 - 20736*T^11 + 1445084*T^10 + 6459272*T^9 - 93560499*T^8 - 481798852*T^7 + 3019340003*T^6 + 12867251964*T^5 - 53688027681*T^4 - 84303774914*T^3 + 475184440194*T^2 - 519470114081*T + 142096755597
$73$
\( T^{15} + 20 T^{14} + \cdots + 1326652570743 \)
T^15 + 20*T^14 - 303*T^13 - 8394*T^12 + 7904*T^11 + 1170668*T^10 + 4260560*T^9 - 66056509*T^8 - 435732730*T^7 + 1203346239*T^6 + 14842949392*T^5 + 10666742187*T^4 - 164971719004*T^3 - 301414392970*T^2 + 574599111941*T + 1326652570743
$79$
\( T^{15} + 6 T^{14} + \cdots + 15958972420 \)
T^15 + 6*T^14 - 568*T^13 - 1770*T^12 + 123939*T^11 + 34986*T^10 - 12368437*T^9 + 27332601*T^8 + 504317349*T^7 - 2139864258*T^6 - 3711981576*T^5 + 24172845725*T^4 + 5970438522*T^3 - 80961217579*T^2 - 6436188342*T + 15958972420
$83$
\( T^{15} + 15 T^{14} + \cdots + 11887227124 \)
T^15 + 15*T^14 - 475*T^13 - 6444*T^12 + 85724*T^11 + 940912*T^10 - 7540770*T^9 - 54509499*T^8 + 341761184*T^7 + 1185412625*T^6 - 7349300878*T^5 - 4334664121*T^4 + 58324299646*T^3 - 77499091021*T^2 + 16434679206*T + 11887227124
$89$
\( T^{15} + 17 T^{14} + \cdots + 17608005935984 \)
T^15 + 17*T^14 - 724*T^13 - 12748*T^12 + 186779*T^11 + 3563924*T^10 - 19563185*T^9 - 462953063*T^8 + 428494349*T^7 + 28154213638*T^6 + 55572190228*T^5 - 660486824038*T^4 - 2833490042728*T^3 + 174949440085*T^2 + 15406398912660*T + 17608005935984
$97$
\( T^{15} + 9 T^{14} + \cdots - 2778253788055 \)
T^15 + 9*T^14 - 748*T^13 - 7568*T^12 + 199782*T^11 + 2381576*T^10 - 21530927*T^9 - 342328024*T^8 + 450123335*T^7 + 21453937437*T^6 + 63186387631*T^5 - 376794924149*T^4 - 2809466594765*T^3 - 6929758892221*T^2 - 7417551645811*T - 2778253788055
show more
show less