Properties

Label 4334.2.a.a.1.8
Level $4334$
Weight $2$
Character 4334.1
Self dual yes
Analytic conductor $34.607$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4334,2,Mod(1,4334)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4334.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4334 = 2 \cdot 11 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4334.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.6071642360\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 23 x^{13} + 19 x^{12} + 194 x^{11} - 124 x^{10} - 761 x^{9} + 353 x^{8} + 1417 x^{7} - 465 x^{6} - 1128 x^{5} + 288 x^{4} + 316 x^{3} - 79 x^{2} - 20 x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.167063\) of defining polynomial
Character \(\chi\) \(=\) 4334.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -0.167063 q^{3} +1.00000 q^{4} -1.86132 q^{5} +0.167063 q^{6} -4.61549 q^{7} -1.00000 q^{8} -2.97209 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -0.167063 q^{3} +1.00000 q^{4} -1.86132 q^{5} +0.167063 q^{6} -4.61549 q^{7} -1.00000 q^{8} -2.97209 q^{9} +1.86132 q^{10} +1.00000 q^{11} -0.167063 q^{12} +0.766750 q^{13} +4.61549 q^{14} +0.310957 q^{15} +1.00000 q^{16} +3.09252 q^{17} +2.97209 q^{18} +2.62682 q^{19} -1.86132 q^{20} +0.771075 q^{21} -1.00000 q^{22} +7.16942 q^{23} +0.167063 q^{24} -1.53548 q^{25} -0.766750 q^{26} +0.997713 q^{27} -4.61549 q^{28} -2.94527 q^{29} -0.310957 q^{30} -0.0691519 q^{31} -1.00000 q^{32} -0.167063 q^{33} -3.09252 q^{34} +8.59091 q^{35} -2.97209 q^{36} +6.85349 q^{37} -2.62682 q^{38} -0.128095 q^{39} +1.86132 q^{40} +0.348403 q^{41} -0.771075 q^{42} -2.62794 q^{43} +1.00000 q^{44} +5.53202 q^{45} -7.16942 q^{46} +0.00342972 q^{47} -0.167063 q^{48} +14.3027 q^{49} +1.53548 q^{50} -0.516644 q^{51} +0.766750 q^{52} -8.61819 q^{53} -0.997713 q^{54} -1.86132 q^{55} +4.61549 q^{56} -0.438843 q^{57} +2.94527 q^{58} +4.25981 q^{59} +0.310957 q^{60} +14.7030 q^{61} +0.0691519 q^{62} +13.7176 q^{63} +1.00000 q^{64} -1.42717 q^{65} +0.167063 q^{66} -5.35030 q^{67} +3.09252 q^{68} -1.19774 q^{69} -8.59091 q^{70} -4.54261 q^{71} +2.97209 q^{72} +12.4711 q^{73} -6.85349 q^{74} +0.256521 q^{75} +2.62682 q^{76} -4.61549 q^{77} +0.128095 q^{78} -2.65657 q^{79} -1.86132 q^{80} +8.74959 q^{81} -0.348403 q^{82} +0.0519205 q^{83} +0.771075 q^{84} -5.75617 q^{85} +2.62794 q^{86} +0.492044 q^{87} -1.00000 q^{88} -16.0406 q^{89} -5.53202 q^{90} -3.53892 q^{91} +7.16942 q^{92} +0.0115527 q^{93} -0.00342972 q^{94} -4.88935 q^{95} +0.167063 q^{96} -1.12190 q^{97} -14.3027 q^{98} -2.97209 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{2} - q^{3} + 15 q^{4} - 7 q^{5} + q^{6} + q^{7} - 15 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 15 q^{2} - q^{3} + 15 q^{4} - 7 q^{5} + q^{6} + q^{7} - 15 q^{8} + 2 q^{9} + 7 q^{10} + 15 q^{11} - q^{12} - q^{13} - q^{14} - 6 q^{15} + 15 q^{16} - 6 q^{17} - 2 q^{18} - 14 q^{19} - 7 q^{20} - 3 q^{21} - 15 q^{22} + 2 q^{23} + q^{24} - 10 q^{25} + q^{26} - 7 q^{27} + q^{28} + 8 q^{29} + 6 q^{30} - 33 q^{31} - 15 q^{32} - q^{33} + 6 q^{34} - 8 q^{35} + 2 q^{36} - 9 q^{37} + 14 q^{38} - 9 q^{39} + 7 q^{40} - 10 q^{41} + 3 q^{42} - 6 q^{43} + 15 q^{44} - 20 q^{45} - 2 q^{46} - q^{47} - q^{48} - 30 q^{49} + 10 q^{50} + 12 q^{51} - q^{52} + 6 q^{53} + 7 q^{54} - 7 q^{55} - q^{56} - 24 q^{57} - 8 q^{58} - 15 q^{59} - 6 q^{60} - 25 q^{61} + 33 q^{62} + 12 q^{63} + 15 q^{64} + 31 q^{65} + q^{66} - 13 q^{67} - 6 q^{68} - 43 q^{69} + 8 q^{70} - 4 q^{71} - 2 q^{72} - 4 q^{73} + 9 q^{74} - 5 q^{75} - 14 q^{76} + q^{77} + 9 q^{78} - 20 q^{79} - 7 q^{80} + 11 q^{81} + 10 q^{82} + q^{83} - 3 q^{84} - q^{85} + 6 q^{86} + 22 q^{87} - 15 q^{88} - 41 q^{89} + 20 q^{90} - 31 q^{91} + 2 q^{92} + 14 q^{93} + q^{94} + 41 q^{95} + q^{96} - 57 q^{97} + 30 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.167063 −0.0964536 −0.0482268 0.998836i \(-0.515357\pi\)
−0.0482268 + 0.998836i \(0.515357\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.86132 −0.832408 −0.416204 0.909271i \(-0.636640\pi\)
−0.416204 + 0.909271i \(0.636640\pi\)
\(6\) 0.167063 0.0682030
\(7\) −4.61549 −1.74449 −0.872245 0.489069i \(-0.837337\pi\)
−0.872245 + 0.489069i \(0.837337\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.97209 −0.990697
\(10\) 1.86132 0.588602
\(11\) 1.00000 0.301511
\(12\) −0.167063 −0.0482268
\(13\) 0.766750 0.212658 0.106329 0.994331i \(-0.466090\pi\)
0.106329 + 0.994331i \(0.466090\pi\)
\(14\) 4.61549 1.23354
\(15\) 0.310957 0.0802888
\(16\) 1.00000 0.250000
\(17\) 3.09252 0.750046 0.375023 0.927016i \(-0.377635\pi\)
0.375023 + 0.927016i \(0.377635\pi\)
\(18\) 2.97209 0.700528
\(19\) 2.62682 0.602633 0.301317 0.953524i \(-0.402574\pi\)
0.301317 + 0.953524i \(0.402574\pi\)
\(20\) −1.86132 −0.416204
\(21\) 0.771075 0.168262
\(22\) −1.00000 −0.213201
\(23\) 7.16942 1.49493 0.747463 0.664303i \(-0.231272\pi\)
0.747463 + 0.664303i \(0.231272\pi\)
\(24\) 0.167063 0.0341015
\(25\) −1.53548 −0.307096
\(26\) −0.766750 −0.150372
\(27\) 0.997713 0.192010
\(28\) −4.61549 −0.872245
\(29\) −2.94527 −0.546923 −0.273461 0.961883i \(-0.588169\pi\)
−0.273461 + 0.961883i \(0.588169\pi\)
\(30\) −0.310957 −0.0567728
\(31\) −0.0691519 −0.0124200 −0.00621002 0.999981i \(-0.501977\pi\)
−0.00621002 + 0.999981i \(0.501977\pi\)
\(32\) −1.00000 −0.176777
\(33\) −0.167063 −0.0290819
\(34\) −3.09252 −0.530362
\(35\) 8.59091 1.45213
\(36\) −2.97209 −0.495348
\(37\) 6.85349 1.12671 0.563353 0.826216i \(-0.309511\pi\)
0.563353 + 0.826216i \(0.309511\pi\)
\(38\) −2.62682 −0.426126
\(39\) −0.128095 −0.0205117
\(40\) 1.86132 0.294301
\(41\) 0.348403 0.0544115 0.0272057 0.999630i \(-0.491339\pi\)
0.0272057 + 0.999630i \(0.491339\pi\)
\(42\) −0.771075 −0.118979
\(43\) −2.62794 −0.400757 −0.200379 0.979719i \(-0.564217\pi\)
−0.200379 + 0.979719i \(0.564217\pi\)
\(44\) 1.00000 0.150756
\(45\) 5.53202 0.824664
\(46\) −7.16942 −1.05707
\(47\) 0.00342972 0.000500277 0 0.000250138 1.00000i \(-0.499920\pi\)
0.000250138 1.00000i \(0.499920\pi\)
\(48\) −0.167063 −0.0241134
\(49\) 14.3027 2.04325
\(50\) 1.53548 0.217150
\(51\) −0.516644 −0.0723446
\(52\) 0.766750 0.106329
\(53\) −8.61819 −1.18380 −0.591900 0.806011i \(-0.701622\pi\)
−0.591900 + 0.806011i \(0.701622\pi\)
\(54\) −0.997713 −0.135772
\(55\) −1.86132 −0.250981
\(56\) 4.61549 0.616770
\(57\) −0.438843 −0.0581262
\(58\) 2.94527 0.386733
\(59\) 4.25981 0.554580 0.277290 0.960786i \(-0.410564\pi\)
0.277290 + 0.960786i \(0.410564\pi\)
\(60\) 0.310957 0.0401444
\(61\) 14.7030 1.88252 0.941261 0.337679i \(-0.109642\pi\)
0.941261 + 0.337679i \(0.109642\pi\)
\(62\) 0.0691519 0.00878230
\(63\) 13.7176 1.72826
\(64\) 1.00000 0.125000
\(65\) −1.42717 −0.177018
\(66\) 0.167063 0.0205640
\(67\) −5.35030 −0.653643 −0.326822 0.945086i \(-0.605978\pi\)
−0.326822 + 0.945086i \(0.605978\pi\)
\(68\) 3.09252 0.375023
\(69\) −1.19774 −0.144191
\(70\) −8.59091 −1.02681
\(71\) −4.54261 −0.539109 −0.269554 0.962985i \(-0.586876\pi\)
−0.269554 + 0.962985i \(0.586876\pi\)
\(72\) 2.97209 0.350264
\(73\) 12.4711 1.45963 0.729815 0.683645i \(-0.239606\pi\)
0.729815 + 0.683645i \(0.239606\pi\)
\(74\) −6.85349 −0.796702
\(75\) 0.256521 0.0296205
\(76\) 2.62682 0.301317
\(77\) −4.61549 −0.525984
\(78\) 0.128095 0.0145039
\(79\) −2.65657 −0.298888 −0.149444 0.988770i \(-0.547748\pi\)
−0.149444 + 0.988770i \(0.547748\pi\)
\(80\) −1.86132 −0.208102
\(81\) 8.74959 0.972177
\(82\) −0.348403 −0.0384747
\(83\) 0.0519205 0.00569902 0.00284951 0.999996i \(-0.499093\pi\)
0.00284951 + 0.999996i \(0.499093\pi\)
\(84\) 0.771075 0.0841312
\(85\) −5.75617 −0.624344
\(86\) 2.62794 0.283378
\(87\) 0.492044 0.0527527
\(88\) −1.00000 −0.106600
\(89\) −16.0406 −1.70031 −0.850153 0.526536i \(-0.823490\pi\)
−0.850153 + 0.526536i \(0.823490\pi\)
\(90\) −5.53202 −0.583126
\(91\) −3.53892 −0.370980
\(92\) 7.16942 0.747463
\(93\) 0.0115527 0.00119796
\(94\) −0.00342972 −0.000353749 0
\(95\) −4.88935 −0.501637
\(96\) 0.167063 0.0170508
\(97\) −1.12190 −0.113912 −0.0569560 0.998377i \(-0.518139\pi\)
−0.0569560 + 0.998377i \(0.518139\pi\)
\(98\) −14.3027 −1.44479
\(99\) −2.97209 −0.298706
\(100\) −1.53548 −0.153548
\(101\) 4.94451 0.491997 0.245999 0.969270i \(-0.420884\pi\)
0.245999 + 0.969270i \(0.420884\pi\)
\(102\) 0.516644 0.0511554
\(103\) 1.86370 0.183635 0.0918177 0.995776i \(-0.470732\pi\)
0.0918177 + 0.995776i \(0.470732\pi\)
\(104\) −0.766750 −0.0751860
\(105\) −1.43522 −0.140063
\(106\) 8.61819 0.837073
\(107\) −0.00496111 −0.000479609 0 −0.000239805 1.00000i \(-0.500076\pi\)
−0.000239805 1.00000i \(0.500076\pi\)
\(108\) 0.997713 0.0960050
\(109\) −12.9210 −1.23761 −0.618805 0.785544i \(-0.712383\pi\)
−0.618805 + 0.785544i \(0.712383\pi\)
\(110\) 1.86132 0.177470
\(111\) −1.14496 −0.108675
\(112\) −4.61549 −0.436122
\(113\) −9.44185 −0.888214 −0.444107 0.895974i \(-0.646479\pi\)
−0.444107 + 0.895974i \(0.646479\pi\)
\(114\) 0.438843 0.0411014
\(115\) −13.3446 −1.24439
\(116\) −2.94527 −0.273461
\(117\) −2.27885 −0.210680
\(118\) −4.25981 −0.392148
\(119\) −14.2735 −1.30845
\(120\) −0.310957 −0.0283864
\(121\) 1.00000 0.0909091
\(122\) −14.7030 −1.33114
\(123\) −0.0582052 −0.00524819
\(124\) −0.0691519 −0.00621002
\(125\) 12.1646 1.08804
\(126\) −13.7176 −1.22206
\(127\) 6.88360 0.610821 0.305410 0.952221i \(-0.401206\pi\)
0.305410 + 0.952221i \(0.401206\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0.439031 0.0386545
\(130\) 1.42717 0.125171
\(131\) −14.9540 −1.30654 −0.653270 0.757125i \(-0.726604\pi\)
−0.653270 + 0.757125i \(0.726604\pi\)
\(132\) −0.167063 −0.0145409
\(133\) −12.1240 −1.05129
\(134\) 5.35030 0.462195
\(135\) −1.85706 −0.159831
\(136\) −3.09252 −0.265181
\(137\) −4.15741 −0.355191 −0.177596 0.984104i \(-0.556832\pi\)
−0.177596 + 0.984104i \(0.556832\pi\)
\(138\) 1.19774 0.101959
\(139\) −9.49264 −0.805155 −0.402578 0.915386i \(-0.631886\pi\)
−0.402578 + 0.915386i \(0.631886\pi\)
\(140\) 8.59091 0.726064
\(141\) −0.000572979 0 −4.82535e−5 0
\(142\) 4.54261 0.381207
\(143\) 0.766750 0.0641188
\(144\) −2.97209 −0.247674
\(145\) 5.48209 0.455263
\(146\) −12.4711 −1.03211
\(147\) −2.38945 −0.197078
\(148\) 6.85349 0.563353
\(149\) 9.12216 0.747316 0.373658 0.927567i \(-0.378103\pi\)
0.373658 + 0.927567i \(0.378103\pi\)
\(150\) −0.256521 −0.0209449
\(151\) −17.1985 −1.39959 −0.699796 0.714343i \(-0.746726\pi\)
−0.699796 + 0.714343i \(0.746726\pi\)
\(152\) −2.62682 −0.213063
\(153\) −9.19124 −0.743068
\(154\) 4.61549 0.371927
\(155\) 0.128714 0.0103386
\(156\) −0.128095 −0.0102558
\(157\) 3.61251 0.288310 0.144155 0.989555i \(-0.453954\pi\)
0.144155 + 0.989555i \(0.453954\pi\)
\(158\) 2.65657 0.211345
\(159\) 1.43978 0.114182
\(160\) 1.86132 0.147150
\(161\) −33.0903 −2.60788
\(162\) −8.74959 −0.687433
\(163\) −8.16062 −0.639189 −0.319594 0.947554i \(-0.603547\pi\)
−0.319594 + 0.947554i \(0.603547\pi\)
\(164\) 0.348403 0.0272057
\(165\) 0.310957 0.0242080
\(166\) −0.0519205 −0.00402981
\(167\) 6.65523 0.514998 0.257499 0.966279i \(-0.417102\pi\)
0.257499 + 0.966279i \(0.417102\pi\)
\(168\) −0.771075 −0.0594897
\(169\) −12.4121 −0.954777
\(170\) 5.75617 0.441478
\(171\) −7.80714 −0.597027
\(172\) −2.62794 −0.200379
\(173\) 3.45011 0.262307 0.131153 0.991362i \(-0.458132\pi\)
0.131153 + 0.991362i \(0.458132\pi\)
\(174\) −0.492044 −0.0373018
\(175\) 7.08699 0.535726
\(176\) 1.00000 0.0753778
\(177\) −0.711656 −0.0534913
\(178\) 16.0406 1.20230
\(179\) 10.6133 0.793278 0.396639 0.917975i \(-0.370177\pi\)
0.396639 + 0.917975i \(0.370177\pi\)
\(180\) 5.53202 0.412332
\(181\) −7.53078 −0.559759 −0.279879 0.960035i \(-0.590294\pi\)
−0.279879 + 0.960035i \(0.590294\pi\)
\(182\) 3.53892 0.262322
\(183\) −2.45632 −0.181576
\(184\) −7.16942 −0.528536
\(185\) −12.7565 −0.937880
\(186\) −0.0115527 −0.000847085 0
\(187\) 3.09252 0.226147
\(188\) 0.00342972 0.000250138 0
\(189\) −4.60493 −0.334959
\(190\) 4.88935 0.354711
\(191\) 11.2004 0.810433 0.405216 0.914221i \(-0.367196\pi\)
0.405216 + 0.914221i \(0.367196\pi\)
\(192\) −0.167063 −0.0120567
\(193\) −16.3513 −1.17699 −0.588497 0.808499i \(-0.700280\pi\)
−0.588497 + 0.808499i \(0.700280\pi\)
\(194\) 1.12190 0.0805480
\(195\) 0.238426 0.0170741
\(196\) 14.3027 1.02162
\(197\) 1.00000 0.0712470
\(198\) 2.97209 0.211217
\(199\) −23.9557 −1.69817 −0.849086 0.528255i \(-0.822846\pi\)
−0.849086 + 0.528255i \(0.822846\pi\)
\(200\) 1.53548 0.108575
\(201\) 0.893835 0.0630463
\(202\) −4.94451 −0.347894
\(203\) 13.5939 0.954101
\(204\) −0.516644 −0.0361723
\(205\) −0.648491 −0.0452926
\(206\) −1.86370 −0.129850
\(207\) −21.3082 −1.48102
\(208\) 0.766750 0.0531645
\(209\) 2.62682 0.181701
\(210\) 1.43522 0.0990395
\(211\) 5.05236 0.347819 0.173910 0.984762i \(-0.444360\pi\)
0.173910 + 0.984762i \(0.444360\pi\)
\(212\) −8.61819 −0.591900
\(213\) 0.758900 0.0519990
\(214\) 0.00496111 0.000339135 0
\(215\) 4.89144 0.333594
\(216\) −0.997713 −0.0678858
\(217\) 0.319170 0.0216666
\(218\) 12.9210 0.875123
\(219\) −2.08345 −0.140787
\(220\) −1.86132 −0.125490
\(221\) 2.37119 0.159503
\(222\) 1.14496 0.0768448
\(223\) 6.94619 0.465151 0.232576 0.972578i \(-0.425285\pi\)
0.232576 + 0.972578i \(0.425285\pi\)
\(224\) 4.61549 0.308385
\(225\) 4.56359 0.304239
\(226\) 9.44185 0.628062
\(227\) 1.74932 0.116106 0.0580532 0.998313i \(-0.481511\pi\)
0.0580532 + 0.998313i \(0.481511\pi\)
\(228\) −0.438843 −0.0290631
\(229\) −23.1180 −1.52768 −0.763839 0.645407i \(-0.776688\pi\)
−0.763839 + 0.645407i \(0.776688\pi\)
\(230\) 13.3446 0.879916
\(231\) 0.771075 0.0507330
\(232\) 2.94527 0.193366
\(233\) −12.5675 −0.823327 −0.411663 0.911336i \(-0.635052\pi\)
−0.411663 + 0.911336i \(0.635052\pi\)
\(234\) 2.27885 0.148973
\(235\) −0.00638382 −0.000416434 0
\(236\) 4.25981 0.277290
\(237\) 0.443814 0.0288288
\(238\) 14.2735 0.925212
\(239\) 8.35587 0.540497 0.270248 0.962791i \(-0.412894\pi\)
0.270248 + 0.962791i \(0.412894\pi\)
\(240\) 0.310957 0.0200722
\(241\) −3.63304 −0.234025 −0.117012 0.993130i \(-0.537332\pi\)
−0.117012 + 0.993130i \(0.537332\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −4.45487 −0.285780
\(244\) 14.7030 0.941261
\(245\) −26.6220 −1.70081
\(246\) 0.0582052 0.00371103
\(247\) 2.01411 0.128155
\(248\) 0.0691519 0.00439115
\(249\) −0.00867398 −0.000549691 0
\(250\) −12.1646 −0.769359
\(251\) 5.04598 0.318499 0.159250 0.987238i \(-0.449093\pi\)
0.159250 + 0.987238i \(0.449093\pi\)
\(252\) 13.7176 0.864130
\(253\) 7.16942 0.450737
\(254\) −6.88360 −0.431915
\(255\) 0.961641 0.0602203
\(256\) 1.00000 0.0625000
\(257\) 13.5262 0.843744 0.421872 0.906655i \(-0.361373\pi\)
0.421872 + 0.906655i \(0.361373\pi\)
\(258\) −0.439031 −0.0273329
\(259\) −31.6322 −1.96553
\(260\) −1.42717 −0.0885092
\(261\) 8.75361 0.541835
\(262\) 14.9540 0.923864
\(263\) 18.1268 1.11775 0.558873 0.829253i \(-0.311234\pi\)
0.558873 + 0.829253i \(0.311234\pi\)
\(264\) 0.167063 0.0102820
\(265\) 16.0412 0.985405
\(266\) 12.1240 0.743373
\(267\) 2.67979 0.164001
\(268\) −5.35030 −0.326822
\(269\) 27.1232 1.65373 0.826866 0.562399i \(-0.190122\pi\)
0.826866 + 0.562399i \(0.190122\pi\)
\(270\) 1.85706 0.113017
\(271\) 11.8860 0.722024 0.361012 0.932561i \(-0.382431\pi\)
0.361012 + 0.932561i \(0.382431\pi\)
\(272\) 3.09252 0.187511
\(273\) 0.591222 0.0357824
\(274\) 4.15741 0.251158
\(275\) −1.53548 −0.0925930
\(276\) −1.19774 −0.0720956
\(277\) −13.9047 −0.835450 −0.417725 0.908574i \(-0.637172\pi\)
−0.417725 + 0.908574i \(0.637172\pi\)
\(278\) 9.49264 0.569331
\(279\) 0.205526 0.0123045
\(280\) −8.59091 −0.513405
\(281\) 12.2407 0.730218 0.365109 0.930965i \(-0.381032\pi\)
0.365109 + 0.930965i \(0.381032\pi\)
\(282\) 0.000572979 0 3.41204e−5 0
\(283\) −13.3753 −0.795079 −0.397540 0.917585i \(-0.630136\pi\)
−0.397540 + 0.917585i \(0.630136\pi\)
\(284\) −4.54261 −0.269554
\(285\) 0.816828 0.0483847
\(286\) −0.766750 −0.0453389
\(287\) −1.60805 −0.0949203
\(288\) 2.97209 0.175132
\(289\) −7.43633 −0.437431
\(290\) −5.48209 −0.321920
\(291\) 0.187428 0.0109872
\(292\) 12.4711 0.729815
\(293\) 12.5642 0.734010 0.367005 0.930219i \(-0.380383\pi\)
0.367005 + 0.930219i \(0.380383\pi\)
\(294\) 2.38945 0.139355
\(295\) −7.92888 −0.461638
\(296\) −6.85349 −0.398351
\(297\) 0.997713 0.0578932
\(298\) −9.12216 −0.528432
\(299\) 5.49715 0.317908
\(300\) 0.256521 0.0148103
\(301\) 12.1292 0.699117
\(302\) 17.1985 0.989661
\(303\) −0.826043 −0.0474549
\(304\) 2.62682 0.150658
\(305\) −27.3670 −1.56703
\(306\) 9.19124 0.525428
\(307\) −3.67654 −0.209831 −0.104916 0.994481i \(-0.533457\pi\)
−0.104916 + 0.994481i \(0.533457\pi\)
\(308\) −4.61549 −0.262992
\(309\) −0.311354 −0.0177123
\(310\) −0.128714 −0.00731046
\(311\) 10.2199 0.579517 0.289758 0.957100i \(-0.406425\pi\)
0.289758 + 0.957100i \(0.406425\pi\)
\(312\) 0.128095 0.00725196
\(313\) −12.1734 −0.688080 −0.344040 0.938955i \(-0.611796\pi\)
−0.344040 + 0.938955i \(0.611796\pi\)
\(314\) −3.61251 −0.203866
\(315\) −25.5329 −1.43862
\(316\) −2.65657 −0.149444
\(317\) −29.9220 −1.68059 −0.840294 0.542131i \(-0.817618\pi\)
−0.840294 + 0.542131i \(0.817618\pi\)
\(318\) −1.43978 −0.0807387
\(319\) −2.94527 −0.164903
\(320\) −1.86132 −0.104051
\(321\) 0.000828817 0 4.62600e−5 0
\(322\) 33.0903 1.84405
\(323\) 8.12348 0.452002
\(324\) 8.74959 0.486088
\(325\) −1.17733 −0.0653065
\(326\) 8.16062 0.451975
\(327\) 2.15862 0.119372
\(328\) −0.348403 −0.0192374
\(329\) −0.0158298 −0.000872727 0
\(330\) −0.310957 −0.0171176
\(331\) −2.82999 −0.155550 −0.0777752 0.996971i \(-0.524782\pi\)
−0.0777752 + 0.996971i \(0.524782\pi\)
\(332\) 0.0519205 0.00284951
\(333\) −20.3692 −1.11622
\(334\) −6.65523 −0.364158
\(335\) 9.95863 0.544098
\(336\) 0.771075 0.0420656
\(337\) −5.85900 −0.319160 −0.159580 0.987185i \(-0.551014\pi\)
−0.159580 + 0.987185i \(0.551014\pi\)
\(338\) 12.4121 0.675129
\(339\) 1.57738 0.0856715
\(340\) −5.75617 −0.312172
\(341\) −0.0691519 −0.00374478
\(342\) 7.80714 0.422162
\(343\) −33.7056 −1.81993
\(344\) 2.62794 0.141689
\(345\) 2.22938 0.120026
\(346\) −3.45011 −0.185479
\(347\) 16.3450 0.877446 0.438723 0.898622i \(-0.355431\pi\)
0.438723 + 0.898622i \(0.355431\pi\)
\(348\) 0.492044 0.0263763
\(349\) −18.0019 −0.963619 −0.481810 0.876276i \(-0.660020\pi\)
−0.481810 + 0.876276i \(0.660020\pi\)
\(350\) −7.08699 −0.378816
\(351\) 0.764996 0.0408325
\(352\) −1.00000 −0.0533002
\(353\) −24.6429 −1.31161 −0.655804 0.754931i \(-0.727670\pi\)
−0.655804 + 0.754931i \(0.727670\pi\)
\(354\) 0.711656 0.0378241
\(355\) 8.45526 0.448759
\(356\) −16.0406 −0.850153
\(357\) 2.38456 0.126205
\(358\) −10.6133 −0.560932
\(359\) 3.81069 0.201121 0.100560 0.994931i \(-0.467936\pi\)
0.100560 + 0.994931i \(0.467936\pi\)
\(360\) −5.53202 −0.291563
\(361\) −12.0998 −0.636833
\(362\) 7.53078 0.395809
\(363\) −0.167063 −0.00876851
\(364\) −3.53892 −0.185490
\(365\) −23.2127 −1.21501
\(366\) 2.45632 0.128394
\(367\) 31.2838 1.63300 0.816501 0.577344i \(-0.195911\pi\)
0.816501 + 0.577344i \(0.195911\pi\)
\(368\) 7.16942 0.373732
\(369\) −1.03549 −0.0539053
\(370\) 12.7565 0.663181
\(371\) 39.7772 2.06513
\(372\) 0.0115527 0.000598979 0
\(373\) −13.1366 −0.680188 −0.340094 0.940391i \(-0.610459\pi\)
−0.340094 + 0.940391i \(0.610459\pi\)
\(374\) −3.09252 −0.159910
\(375\) −2.03226 −0.104945
\(376\) −0.00342972 −0.000176874 0
\(377\) −2.25828 −0.116308
\(378\) 4.60493 0.236852
\(379\) −35.7510 −1.83641 −0.918203 0.396110i \(-0.870360\pi\)
−0.918203 + 0.396110i \(0.870360\pi\)
\(380\) −4.88935 −0.250818
\(381\) −1.14999 −0.0589159
\(382\) −11.2004 −0.573062
\(383\) 36.8510 1.88300 0.941500 0.337012i \(-0.109416\pi\)
0.941500 + 0.337012i \(0.109416\pi\)
\(384\) 0.167063 0.00852538
\(385\) 8.59091 0.437833
\(386\) 16.3513 0.832261
\(387\) 7.81048 0.397029
\(388\) −1.12190 −0.0569560
\(389\) −19.6441 −0.995994 −0.497997 0.867179i \(-0.665931\pi\)
−0.497997 + 0.867179i \(0.665931\pi\)
\(390\) −0.238426 −0.0120732
\(391\) 22.1715 1.12126
\(392\) −14.3027 −0.722396
\(393\) 2.49826 0.126021
\(394\) −1.00000 −0.0503793
\(395\) 4.94473 0.248797
\(396\) −2.97209 −0.149353
\(397\) −23.2280 −1.16578 −0.582890 0.812551i \(-0.698078\pi\)
−0.582890 + 0.812551i \(0.698078\pi\)
\(398\) 23.9557 1.20079
\(399\) 2.02547 0.101401
\(400\) −1.53548 −0.0767740
\(401\) 18.6094 0.929308 0.464654 0.885492i \(-0.346179\pi\)
0.464654 + 0.885492i \(0.346179\pi\)
\(402\) −0.893835 −0.0445804
\(403\) −0.0530222 −0.00264122
\(404\) 4.94451 0.245999
\(405\) −16.2858 −0.809248
\(406\) −13.5939 −0.674652
\(407\) 6.85349 0.339715
\(408\) 0.516644 0.0255777
\(409\) 20.3250 1.00501 0.502503 0.864575i \(-0.332412\pi\)
0.502503 + 0.864575i \(0.332412\pi\)
\(410\) 0.648491 0.0320267
\(411\) 0.694547 0.0342595
\(412\) 1.86370 0.0918177
\(413\) −19.6611 −0.967460
\(414\) 21.3082 1.04724
\(415\) −0.0966408 −0.00474391
\(416\) −0.766750 −0.0375930
\(417\) 1.58586 0.0776601
\(418\) −2.62682 −0.128482
\(419\) −23.4401 −1.14512 −0.572562 0.819861i \(-0.694051\pi\)
−0.572562 + 0.819861i \(0.694051\pi\)
\(420\) −1.43522 −0.0700315
\(421\) −13.7791 −0.671554 −0.335777 0.941942i \(-0.608999\pi\)
−0.335777 + 0.941942i \(0.608999\pi\)
\(422\) −5.05236 −0.245945
\(423\) −0.0101934 −0.000495622 0
\(424\) 8.61819 0.418536
\(425\) −4.74850 −0.230336
\(426\) −0.758900 −0.0367688
\(427\) −67.8614 −3.28404
\(428\) −0.00496111 −0.000239805 0
\(429\) −0.128095 −0.00618450
\(430\) −4.89144 −0.235886
\(431\) 13.0165 0.626985 0.313492 0.949591i \(-0.398501\pi\)
0.313492 + 0.949591i \(0.398501\pi\)
\(432\) 0.997713 0.0480025
\(433\) 11.8471 0.569336 0.284668 0.958626i \(-0.408117\pi\)
0.284668 + 0.958626i \(0.408117\pi\)
\(434\) −0.319170 −0.0153206
\(435\) −0.915853 −0.0439118
\(436\) −12.9210 −0.618805
\(437\) 18.8327 0.900892
\(438\) 2.08345 0.0995511
\(439\) −11.7832 −0.562384 −0.281192 0.959652i \(-0.590730\pi\)
−0.281192 + 0.959652i \(0.590730\pi\)
\(440\) 1.86132 0.0887350
\(441\) −42.5090 −2.02424
\(442\) −2.37119 −0.112786
\(443\) 22.9335 1.08960 0.544801 0.838565i \(-0.316605\pi\)
0.544801 + 0.838565i \(0.316605\pi\)
\(444\) −1.14496 −0.0543375
\(445\) 29.8568 1.41535
\(446\) −6.94619 −0.328911
\(447\) −1.52397 −0.0720814
\(448\) −4.61549 −0.218061
\(449\) −6.27328 −0.296054 −0.148027 0.988983i \(-0.547292\pi\)
−0.148027 + 0.988983i \(0.547292\pi\)
\(450\) −4.56359 −0.215130
\(451\) 0.348403 0.0164057
\(452\) −9.44185 −0.444107
\(453\) 2.87322 0.134996
\(454\) −1.74932 −0.0820997
\(455\) 6.58708 0.308807
\(456\) 0.438843 0.0205507
\(457\) 2.92970 0.137046 0.0685228 0.997650i \(-0.478171\pi\)
0.0685228 + 0.997650i \(0.478171\pi\)
\(458\) 23.1180 1.08023
\(459\) 3.08545 0.144016
\(460\) −13.3446 −0.622195
\(461\) 1.87748 0.0874428 0.0437214 0.999044i \(-0.486079\pi\)
0.0437214 + 0.999044i \(0.486079\pi\)
\(462\) −0.771075 −0.0358737
\(463\) 4.41179 0.205033 0.102517 0.994731i \(-0.467311\pi\)
0.102517 + 0.994731i \(0.467311\pi\)
\(464\) −2.94527 −0.136731
\(465\) −0.0215033 −0.000997191 0
\(466\) 12.5675 0.582180
\(467\) −4.98030 −0.230461 −0.115230 0.993339i \(-0.536761\pi\)
−0.115230 + 0.993339i \(0.536761\pi\)
\(468\) −2.27885 −0.105340
\(469\) 24.6942 1.14027
\(470\) 0.00638382 0.000294464 0
\(471\) −0.603516 −0.0278086
\(472\) −4.25981 −0.196074
\(473\) −2.62794 −0.120833
\(474\) −0.443814 −0.0203850
\(475\) −4.03343 −0.185066
\(476\) −14.2735 −0.654224
\(477\) 25.6140 1.17279
\(478\) −8.35587 −0.382189
\(479\) −13.0140 −0.594625 −0.297313 0.954780i \(-0.596090\pi\)
−0.297313 + 0.954780i \(0.596090\pi\)
\(480\) −0.310957 −0.0141932
\(481\) 5.25491 0.239603
\(482\) 3.63304 0.165480
\(483\) 5.52816 0.251540
\(484\) 1.00000 0.0454545
\(485\) 2.08822 0.0948214
\(486\) 4.45487 0.202077
\(487\) 20.3762 0.923333 0.461666 0.887054i \(-0.347252\pi\)
0.461666 + 0.887054i \(0.347252\pi\)
\(488\) −14.7030 −0.665572
\(489\) 1.36333 0.0616521
\(490\) 26.6220 1.20266
\(491\) −16.2963 −0.735443 −0.367721 0.929936i \(-0.619862\pi\)
−0.367721 + 0.929936i \(0.619862\pi\)
\(492\) −0.0582052 −0.00262409
\(493\) −9.10830 −0.410217
\(494\) −2.01411 −0.0906192
\(495\) 5.53202 0.248646
\(496\) −0.0691519 −0.00310501
\(497\) 20.9664 0.940470
\(498\) 0.00867398 0.000388690 0
\(499\) 9.49845 0.425209 0.212604 0.977138i \(-0.431805\pi\)
0.212604 + 0.977138i \(0.431805\pi\)
\(500\) 12.1646 0.544019
\(501\) −1.11184 −0.0496734
\(502\) −5.04598 −0.225213
\(503\) 3.89797 0.173802 0.0869010 0.996217i \(-0.472304\pi\)
0.0869010 + 0.996217i \(0.472304\pi\)
\(504\) −13.7176 −0.611032
\(505\) −9.20332 −0.409542
\(506\) −7.16942 −0.318719
\(507\) 2.07360 0.0920917
\(508\) 6.88360 0.305410
\(509\) −5.49663 −0.243634 −0.121817 0.992553i \(-0.538872\pi\)
−0.121817 + 0.992553i \(0.538872\pi\)
\(510\) −0.961641 −0.0425822
\(511\) −57.5601 −2.54631
\(512\) −1.00000 −0.0441942
\(513\) 2.62081 0.115712
\(514\) −13.5262 −0.596617
\(515\) −3.46894 −0.152860
\(516\) 0.439031 0.0193272
\(517\) 0.00342972 0.000150839 0
\(518\) 31.6322 1.38984
\(519\) −0.576384 −0.0253004
\(520\) 1.42717 0.0625855
\(521\) −23.3541 −1.02316 −0.511581 0.859235i \(-0.670940\pi\)
−0.511581 + 0.859235i \(0.670940\pi\)
\(522\) −8.75361 −0.383135
\(523\) −8.62311 −0.377062 −0.188531 0.982067i \(-0.560373\pi\)
−0.188531 + 0.982067i \(0.560373\pi\)
\(524\) −14.9540 −0.653270
\(525\) −1.18397 −0.0516727
\(526\) −18.1268 −0.790366
\(527\) −0.213853 −0.00931560
\(528\) −0.167063 −0.00727047
\(529\) 28.4005 1.23481
\(530\) −16.0412 −0.696787
\(531\) −12.6605 −0.549421
\(532\) −12.1240 −0.525644
\(533\) 0.267138 0.0115710
\(534\) −2.67979 −0.115966
\(535\) 0.00923423 0.000399231 0
\(536\) 5.35030 0.231098
\(537\) −1.77309 −0.0765145
\(538\) −27.1232 −1.16936
\(539\) 14.3027 0.616062
\(540\) −1.85706 −0.0799154
\(541\) −34.6401 −1.48929 −0.744646 0.667459i \(-0.767382\pi\)
−0.744646 + 0.667459i \(0.767382\pi\)
\(542\) −11.8860 −0.510548
\(543\) 1.25811 0.0539908
\(544\) −3.09252 −0.132591
\(545\) 24.0502 1.03020
\(546\) −0.591222 −0.0253020
\(547\) −25.1481 −1.07525 −0.537627 0.843183i \(-0.680679\pi\)
−0.537627 + 0.843183i \(0.680679\pi\)
\(548\) −4.15741 −0.177596
\(549\) −43.6986 −1.86501
\(550\) 1.53548 0.0654731
\(551\) −7.73668 −0.329594
\(552\) 1.19774 0.0509793
\(553\) 12.2614 0.521406
\(554\) 13.9047 0.590752
\(555\) 2.13114 0.0904619
\(556\) −9.49264 −0.402578
\(557\) −7.69238 −0.325936 −0.162968 0.986631i \(-0.552107\pi\)
−0.162968 + 0.986631i \(0.552107\pi\)
\(558\) −0.205526 −0.00870059
\(559\) −2.01497 −0.0852243
\(560\) 8.59091 0.363032
\(561\) −0.516644 −0.0218127
\(562\) −12.2407 −0.516342
\(563\) 30.9146 1.30289 0.651447 0.758694i \(-0.274162\pi\)
0.651447 + 0.758694i \(0.274162\pi\)
\(564\) −0.000572979 0 −2.41267e−5 0
\(565\) 17.5743 0.739357
\(566\) 13.3753 0.562206
\(567\) −40.3836 −1.69595
\(568\) 4.54261 0.190604
\(569\) −21.2904 −0.892541 −0.446271 0.894898i \(-0.647248\pi\)
−0.446271 + 0.894898i \(0.647248\pi\)
\(570\) −0.816828 −0.0342132
\(571\) 47.0197 1.96771 0.983857 0.178959i \(-0.0572729\pi\)
0.983857 + 0.178959i \(0.0572729\pi\)
\(572\) 0.766750 0.0320594
\(573\) −1.87117 −0.0781692
\(574\) 1.60805 0.0671188
\(575\) −11.0085 −0.459086
\(576\) −2.97209 −0.123837
\(577\) −10.4734 −0.436013 −0.218007 0.975947i \(-0.569955\pi\)
−0.218007 + 0.975947i \(0.569955\pi\)
\(578\) 7.43633 0.309311
\(579\) 2.73170 0.113525
\(580\) 5.48209 0.227632
\(581\) −0.239639 −0.00994188
\(582\) −0.187428 −0.00776915
\(583\) −8.61819 −0.356929
\(584\) −12.4711 −0.516057
\(585\) 4.24167 0.175372
\(586\) −12.5642 −0.519024
\(587\) −30.0873 −1.24184 −0.620918 0.783876i \(-0.713240\pi\)
−0.620918 + 0.783876i \(0.713240\pi\)
\(588\) −2.38945 −0.0985392
\(589\) −0.181649 −0.00748473
\(590\) 7.92888 0.326427
\(591\) −0.167063 −0.00687204
\(592\) 6.85349 0.281677
\(593\) −15.8157 −0.649475 −0.324737 0.945804i \(-0.605276\pi\)
−0.324737 + 0.945804i \(0.605276\pi\)
\(594\) −0.997713 −0.0409367
\(595\) 26.5675 1.08916
\(596\) 9.12216 0.373658
\(597\) 4.00209 0.163795
\(598\) −5.49715 −0.224795
\(599\) −33.7367 −1.37844 −0.689222 0.724550i \(-0.742048\pi\)
−0.689222 + 0.724550i \(0.742048\pi\)
\(600\) −0.256521 −0.0104724
\(601\) −1.20994 −0.0493543 −0.0246772 0.999695i \(-0.507856\pi\)
−0.0246772 + 0.999695i \(0.507856\pi\)
\(602\) −12.1292 −0.494350
\(603\) 15.9016 0.647562
\(604\) −17.1985 −0.699796
\(605\) −1.86132 −0.0756735
\(606\) 0.826043 0.0335557
\(607\) 4.92241 0.199794 0.0998971 0.994998i \(-0.468149\pi\)
0.0998971 + 0.994998i \(0.468149\pi\)
\(608\) −2.62682 −0.106532
\(609\) −2.27102 −0.0920265
\(610\) 27.3670 1.10806
\(611\) 0.00262974 0.000106388 0
\(612\) −9.19124 −0.371534
\(613\) 3.23770 0.130769 0.0653846 0.997860i \(-0.479173\pi\)
0.0653846 + 0.997860i \(0.479173\pi\)
\(614\) 3.67654 0.148373
\(615\) 0.108339 0.00436863
\(616\) 4.61549 0.185963
\(617\) 31.8788 1.28339 0.641696 0.766959i \(-0.278231\pi\)
0.641696 + 0.766959i \(0.278231\pi\)
\(618\) 0.311354 0.0125245
\(619\) −37.4208 −1.50407 −0.752034 0.659124i \(-0.770927\pi\)
−0.752034 + 0.659124i \(0.770927\pi\)
\(620\) 0.128714 0.00516928
\(621\) 7.15302 0.287041
\(622\) −10.2199 −0.409780
\(623\) 74.0354 2.96617
\(624\) −0.128095 −0.00512791
\(625\) −14.9649 −0.598596
\(626\) 12.1734 0.486546
\(627\) −0.438843 −0.0175257
\(628\) 3.61251 0.144155
\(629\) 21.1945 0.845081
\(630\) 25.5329 1.01726
\(631\) −39.6769 −1.57951 −0.789757 0.613420i \(-0.789793\pi\)
−0.789757 + 0.613420i \(0.789793\pi\)
\(632\) 2.65657 0.105673
\(633\) −0.844061 −0.0335484
\(634\) 29.9220 1.18836
\(635\) −12.8126 −0.508452
\(636\) 1.43978 0.0570909
\(637\) 10.9666 0.434513
\(638\) 2.94527 0.116604
\(639\) 13.5010 0.534093
\(640\) 1.86132 0.0735752
\(641\) −26.0901 −1.03050 −0.515249 0.857041i \(-0.672300\pi\)
−0.515249 + 0.857041i \(0.672300\pi\)
\(642\) −0.000828817 0 −3.27108e−5 0
\(643\) 5.40090 0.212991 0.106495 0.994313i \(-0.466037\pi\)
0.106495 + 0.994313i \(0.466037\pi\)
\(644\) −33.0903 −1.30394
\(645\) −0.817177 −0.0321763
\(646\) −8.12348 −0.319614
\(647\) −34.6039 −1.36042 −0.680210 0.733017i \(-0.738111\pi\)
−0.680210 + 0.733017i \(0.738111\pi\)
\(648\) −8.74959 −0.343716
\(649\) 4.25981 0.167212
\(650\) 1.17733 0.0461787
\(651\) −0.0533213 −0.00208983
\(652\) −8.16062 −0.319594
\(653\) −5.28364 −0.206765 −0.103382 0.994642i \(-0.532967\pi\)
−0.103382 + 0.994642i \(0.532967\pi\)
\(654\) −2.15862 −0.0844088
\(655\) 27.8343 1.08758
\(656\) 0.348403 0.0136029
\(657\) −37.0652 −1.44605
\(658\) 0.0158298 0.000617112 0
\(659\) 24.6718 0.961077 0.480538 0.876974i \(-0.340441\pi\)
0.480538 + 0.876974i \(0.340441\pi\)
\(660\) 0.310957 0.0121040
\(661\) 4.10641 0.159721 0.0798605 0.996806i \(-0.474553\pi\)
0.0798605 + 0.996806i \(0.474553\pi\)
\(662\) 2.82999 0.109991
\(663\) −0.396137 −0.0153847
\(664\) −0.0519205 −0.00201491
\(665\) 22.5667 0.875101
\(666\) 20.3692 0.789290
\(667\) −21.1159 −0.817609
\(668\) 6.65523 0.257499
\(669\) −1.16045 −0.0448655
\(670\) −9.95863 −0.384735
\(671\) 14.7030 0.567602
\(672\) −0.771075 −0.0297449
\(673\) 46.0123 1.77365 0.886823 0.462110i \(-0.152908\pi\)
0.886823 + 0.462110i \(0.152908\pi\)
\(674\) 5.85900 0.225680
\(675\) −1.53197 −0.0589655
\(676\) −12.4121 −0.477388
\(677\) 18.4541 0.709247 0.354624 0.935009i \(-0.384609\pi\)
0.354624 + 0.935009i \(0.384609\pi\)
\(678\) −1.57738 −0.0605789
\(679\) 5.17813 0.198718
\(680\) 5.75617 0.220739
\(681\) −0.292246 −0.0111989
\(682\) 0.0691519 0.00264796
\(683\) −21.1476 −0.809190 −0.404595 0.914496i \(-0.632588\pi\)
−0.404595 + 0.914496i \(0.632588\pi\)
\(684\) −7.80714 −0.298513
\(685\) 7.73827 0.295664
\(686\) 33.7056 1.28689
\(687\) 3.86215 0.147350
\(688\) −2.62794 −0.100189
\(689\) −6.60800 −0.251745
\(690\) −2.22938 −0.0848711
\(691\) −39.5602 −1.50494 −0.752471 0.658625i \(-0.771138\pi\)
−0.752471 + 0.658625i \(0.771138\pi\)
\(692\) 3.45011 0.131153
\(693\) 13.7176 0.521090
\(694\) −16.3450 −0.620448
\(695\) 17.6689 0.670218
\(696\) −0.492044 −0.0186509
\(697\) 1.07744 0.0408111
\(698\) 18.0019 0.681382
\(699\) 2.09957 0.0794129
\(700\) 7.08699 0.267863
\(701\) 30.6129 1.15623 0.578117 0.815954i \(-0.303788\pi\)
0.578117 + 0.815954i \(0.303788\pi\)
\(702\) −0.764996 −0.0288729
\(703\) 18.0029 0.678991
\(704\) 1.00000 0.0376889
\(705\) 0.00106650 4.01666e−5 0
\(706\) 24.6429 0.927447
\(707\) −22.8213 −0.858284
\(708\) −0.711656 −0.0267457
\(709\) −18.1229 −0.680619 −0.340310 0.940313i \(-0.610532\pi\)
−0.340310 + 0.940313i \(0.610532\pi\)
\(710\) −8.45526 −0.317320
\(711\) 7.89557 0.296107
\(712\) 16.0406 0.601149
\(713\) −0.495779 −0.0185671
\(714\) −2.38456 −0.0892401
\(715\) −1.42717 −0.0533731
\(716\) 10.6133 0.396639
\(717\) −1.39595 −0.0521329
\(718\) −3.81069 −0.142214
\(719\) −41.4671 −1.54646 −0.773230 0.634126i \(-0.781360\pi\)
−0.773230 + 0.634126i \(0.781360\pi\)
\(720\) 5.53202 0.206166
\(721\) −8.60187 −0.320350
\(722\) 12.0998 0.450309
\(723\) 0.606945 0.0225725
\(724\) −7.53078 −0.279879
\(725\) 4.52240 0.167958
\(726\) 0.167063 0.00620027
\(727\) 33.4093 1.23908 0.619542 0.784964i \(-0.287318\pi\)
0.619542 + 0.784964i \(0.287318\pi\)
\(728\) 3.53892 0.131161
\(729\) −25.5045 −0.944612
\(730\) 23.2127 0.859140
\(731\) −8.12695 −0.300586
\(732\) −2.45632 −0.0907881
\(733\) 14.6362 0.540599 0.270300 0.962776i \(-0.412877\pi\)
0.270300 + 0.962776i \(0.412877\pi\)
\(734\) −31.2838 −1.15471
\(735\) 4.44753 0.164050
\(736\) −7.16942 −0.264268
\(737\) −5.35030 −0.197081
\(738\) 1.03549 0.0381168
\(739\) −15.8005 −0.581231 −0.290615 0.956840i \(-0.593860\pi\)
−0.290615 + 0.956840i \(0.593860\pi\)
\(740\) −12.7565 −0.468940
\(741\) −0.336483 −0.0123610
\(742\) −39.7772 −1.46027
\(743\) 32.7347 1.20092 0.600461 0.799654i \(-0.294984\pi\)
0.600461 + 0.799654i \(0.294984\pi\)
\(744\) −0.0115527 −0.000423542 0
\(745\) −16.9793 −0.622072
\(746\) 13.1366 0.480966
\(747\) −0.154312 −0.00564600
\(748\) 3.09252 0.113074
\(749\) 0.0228980 0.000836673 0
\(750\) 2.03226 0.0742075
\(751\) −3.90980 −0.142671 −0.0713353 0.997452i \(-0.522726\pi\)
−0.0713353 + 0.997452i \(0.522726\pi\)
\(752\) 0.00342972 0.000125069 0
\(753\) −0.842994 −0.0307204
\(754\) 2.25828 0.0822419
\(755\) 32.0119 1.16503
\(756\) −4.60493 −0.167480
\(757\) 5.53866 0.201306 0.100653 0.994922i \(-0.467907\pi\)
0.100653 + 0.994922i \(0.467907\pi\)
\(758\) 35.7510 1.29854
\(759\) −1.19774 −0.0434753
\(760\) 4.88935 0.177355
\(761\) −17.4750 −0.633467 −0.316733 0.948515i \(-0.602586\pi\)
−0.316733 + 0.948515i \(0.602586\pi\)
\(762\) 1.14999 0.0416598
\(763\) 59.6369 2.15900
\(764\) 11.2004 0.405216
\(765\) 17.1079 0.618536
\(766\) −36.8510 −1.33148
\(767\) 3.26621 0.117936
\(768\) −0.167063 −0.00602835
\(769\) 6.50575 0.234604 0.117302 0.993096i \(-0.462576\pi\)
0.117302 + 0.993096i \(0.462576\pi\)
\(770\) −8.59091 −0.309595
\(771\) −2.25973 −0.0813822
\(772\) −16.3513 −0.588497
\(773\) −11.7085 −0.421125 −0.210563 0.977580i \(-0.567530\pi\)
−0.210563 + 0.977580i \(0.567530\pi\)
\(774\) −7.81048 −0.280742
\(775\) 0.106181 0.00381415
\(776\) 1.12190 0.0402740
\(777\) 5.28455 0.189582
\(778\) 19.6441 0.704274
\(779\) 0.915192 0.0327902
\(780\) 0.238426 0.00853704
\(781\) −4.54261 −0.162547
\(782\) −22.1715 −0.792853
\(783\) −2.93853 −0.105015
\(784\) 14.3027 0.510811
\(785\) −6.72405 −0.239992
\(786\) −2.49826 −0.0891100
\(787\) −0.146261 −0.00521363 −0.00260682 0.999997i \(-0.500830\pi\)
−0.00260682 + 0.999997i \(0.500830\pi\)
\(788\) 1.00000 0.0356235
\(789\) −3.02831 −0.107811
\(790\) −4.94473 −0.175926
\(791\) 43.5787 1.54948
\(792\) 2.97209 0.105609
\(793\) 11.2735 0.400334
\(794\) 23.2280 0.824331
\(795\) −2.67989 −0.0950459
\(796\) −23.9557 −0.849086
\(797\) −16.5521 −0.586305 −0.293153 0.956066i \(-0.594704\pi\)
−0.293153 + 0.956066i \(0.594704\pi\)
\(798\) −2.02547 −0.0717010
\(799\) 0.0106065 0.000375230 0
\(800\) 1.53548 0.0542874
\(801\) 47.6742 1.68449
\(802\) −18.6094 −0.657120
\(803\) 12.4711 0.440095
\(804\) 0.893835 0.0315231
\(805\) 61.5918 2.17083
\(806\) 0.0530222 0.00186763
\(807\) −4.53128 −0.159508
\(808\) −4.94451 −0.173947
\(809\) −19.6051 −0.689278 −0.344639 0.938735i \(-0.611999\pi\)
−0.344639 + 0.938735i \(0.611999\pi\)
\(810\) 16.2858 0.572225
\(811\) 9.47790 0.332814 0.166407 0.986057i \(-0.446783\pi\)
0.166407 + 0.986057i \(0.446783\pi\)
\(812\) 13.5939 0.477051
\(813\) −1.98571 −0.0696419
\(814\) −6.85349 −0.240215
\(815\) 15.1895 0.532066
\(816\) −0.516644 −0.0180862
\(817\) −6.90312 −0.241510
\(818\) −20.3250 −0.710647
\(819\) 10.5180 0.367529
\(820\) −0.648491 −0.0226463
\(821\) 21.6703 0.756297 0.378149 0.925745i \(-0.376561\pi\)
0.378149 + 0.925745i \(0.376561\pi\)
\(822\) −0.694547 −0.0242251
\(823\) 38.9377 1.35728 0.678642 0.734469i \(-0.262569\pi\)
0.678642 + 0.734469i \(0.262569\pi\)
\(824\) −1.86370 −0.0649249
\(825\) 0.256521 0.00893093
\(826\) 19.6611 0.684098
\(827\) −17.4816 −0.607894 −0.303947 0.952689i \(-0.598305\pi\)
−0.303947 + 0.952689i \(0.598305\pi\)
\(828\) −21.3082 −0.740509
\(829\) −6.77218 −0.235208 −0.117604 0.993061i \(-0.537521\pi\)
−0.117604 + 0.993061i \(0.537521\pi\)
\(830\) 0.0966408 0.00335445
\(831\) 2.32295 0.0805822
\(832\) 0.766750 0.0265823
\(833\) 44.2314 1.53253
\(834\) −1.58586 −0.0549140
\(835\) −12.3875 −0.428688
\(836\) 2.62682 0.0908504
\(837\) −0.0689937 −0.00238477
\(838\) 23.4401 0.809725
\(839\) −7.06823 −0.244022 −0.122011 0.992529i \(-0.538934\pi\)
−0.122011 + 0.992529i \(0.538934\pi\)
\(840\) 1.43522 0.0495198
\(841\) −20.3254 −0.700875
\(842\) 13.7791 0.474860
\(843\) −2.04496 −0.0704321
\(844\) 5.05236 0.173910
\(845\) 23.1029 0.794764
\(846\) 0.0101934 0.000350458 0
\(847\) −4.61549 −0.158590
\(848\) −8.61819 −0.295950
\(849\) 2.23451 0.0766883
\(850\) 4.74850 0.162872
\(851\) 49.1355 1.68434
\(852\) 0.758900 0.0259995
\(853\) 38.1760 1.30712 0.653561 0.756874i \(-0.273274\pi\)
0.653561 + 0.756874i \(0.273274\pi\)
\(854\) 67.8614 2.32217
\(855\) 14.5316 0.496970
\(856\) 0.00496111 0.000169567 0
\(857\) 26.0906 0.891237 0.445618 0.895223i \(-0.352984\pi\)
0.445618 + 0.895223i \(0.352984\pi\)
\(858\) 0.128095 0.00437310
\(859\) −5.14443 −0.175526 −0.0877629 0.996141i \(-0.527972\pi\)
−0.0877629 + 0.996141i \(0.527972\pi\)
\(860\) 4.89144 0.166797
\(861\) 0.268645 0.00915541
\(862\) −13.0165 −0.443345
\(863\) 2.54618 0.0866729 0.0433365 0.999061i \(-0.486201\pi\)
0.0433365 + 0.999061i \(0.486201\pi\)
\(864\) −0.997713 −0.0339429
\(865\) −6.42176 −0.218346
\(866\) −11.8471 −0.402582
\(867\) 1.24233 0.0421918
\(868\) 0.319170 0.0108333
\(869\) −2.65657 −0.0901180
\(870\) 0.915853 0.0310503
\(871\) −4.10234 −0.139003
\(872\) 12.9210 0.437561
\(873\) 3.33440 0.112852
\(874\) −18.8327 −0.637027
\(875\) −56.1457 −1.89807
\(876\) −2.08345 −0.0703933
\(877\) −48.5236 −1.63853 −0.819264 0.573417i \(-0.805617\pi\)
−0.819264 + 0.573417i \(0.805617\pi\)
\(878\) 11.7832 0.397665
\(879\) −2.09901 −0.0707980
\(880\) −1.86132 −0.0627451
\(881\) −5.59529 −0.188510 −0.0942551 0.995548i \(-0.530047\pi\)
−0.0942551 + 0.995548i \(0.530047\pi\)
\(882\) 42.5090 1.43135
\(883\) 33.8580 1.13941 0.569706 0.821848i \(-0.307057\pi\)
0.569706 + 0.821848i \(0.307057\pi\)
\(884\) 2.37119 0.0797517
\(885\) 1.32462 0.0445266
\(886\) −22.9335 −0.770466
\(887\) 53.5777 1.79896 0.899481 0.436960i \(-0.143945\pi\)
0.899481 + 0.436960i \(0.143945\pi\)
\(888\) 1.14496 0.0384224
\(889\) −31.7712 −1.06557
\(890\) −29.8568 −1.00080
\(891\) 8.74959 0.293122
\(892\) 6.94619 0.232576
\(893\) 0.00900926 0.000301483 0
\(894\) 1.52397 0.0509692
\(895\) −19.7548 −0.660331
\(896\) 4.61549 0.154193
\(897\) −0.918368 −0.0306634
\(898\) 6.27328 0.209342
\(899\) 0.203671 0.00679281
\(900\) 4.56359 0.152120
\(901\) −26.6519 −0.887904
\(902\) −0.348403 −0.0116006
\(903\) −2.02634 −0.0674324
\(904\) 9.44185 0.314031
\(905\) 14.0172 0.465948
\(906\) −2.87322 −0.0954564
\(907\) 51.9707 1.72566 0.862830 0.505495i \(-0.168690\pi\)
0.862830 + 0.505495i \(0.168690\pi\)
\(908\) 1.74932 0.0580532
\(909\) −14.6955 −0.487420
\(910\) −6.58708 −0.218359
\(911\) 30.5503 1.01218 0.506089 0.862481i \(-0.331091\pi\)
0.506089 + 0.862481i \(0.331091\pi\)
\(912\) −0.438843 −0.0145315
\(913\) 0.0519205 0.00171832
\(914\) −2.92970 −0.0969058
\(915\) 4.57200 0.151146
\(916\) −23.1180 −0.763839
\(917\) 69.0202 2.27925
\(918\) −3.08545 −0.101835
\(919\) −42.3257 −1.39620 −0.698098 0.716002i \(-0.745970\pi\)
−0.698098 + 0.716002i \(0.745970\pi\)
\(920\) 13.3446 0.439958
\(921\) 0.614212 0.0202390
\(922\) −1.87748 −0.0618314
\(923\) −3.48305 −0.114646
\(924\) 0.771075 0.0253665
\(925\) −10.5234 −0.346007
\(926\) −4.41179 −0.144980
\(927\) −5.53907 −0.181927
\(928\) 2.94527 0.0966832
\(929\) −28.2748 −0.927667 −0.463833 0.885922i \(-0.653526\pi\)
−0.463833 + 0.885922i \(0.653526\pi\)
\(930\) 0.0215033 0.000705120 0
\(931\) 37.5706 1.23133
\(932\) −12.5675 −0.411663
\(933\) −1.70736 −0.0558965
\(934\) 4.98030 0.162960
\(935\) −5.75617 −0.188247
\(936\) 2.27885 0.0744865
\(937\) −24.2506 −0.792232 −0.396116 0.918200i \(-0.629642\pi\)
−0.396116 + 0.918200i \(0.629642\pi\)
\(938\) −24.6942 −0.806295
\(939\) 2.03372 0.0663678
\(940\) −0.00638382 −0.000208217 0
\(941\) −13.2950 −0.433403 −0.216702 0.976238i \(-0.569530\pi\)
−0.216702 + 0.976238i \(0.569530\pi\)
\(942\) 0.603516 0.0196636
\(943\) 2.49785 0.0813412
\(944\) 4.25981 0.138645
\(945\) 8.57126 0.278823
\(946\) 2.62794 0.0854417
\(947\) 9.21087 0.299313 0.149657 0.988738i \(-0.452183\pi\)
0.149657 + 0.988738i \(0.452183\pi\)
\(948\) 0.443814 0.0144144
\(949\) 9.56220 0.310402
\(950\) 4.03343 0.130862
\(951\) 4.99885 0.162099
\(952\) 14.2735 0.462606
\(953\) −26.7384 −0.866140 −0.433070 0.901360i \(-0.642570\pi\)
−0.433070 + 0.901360i \(0.642570\pi\)
\(954\) −25.6140 −0.829285
\(955\) −20.8476 −0.674611
\(956\) 8.35587 0.270248
\(957\) 0.492044 0.0159055
\(958\) 13.0140 0.420464
\(959\) 19.1885 0.619628
\(960\) 0.310957 0.0100361
\(961\) −30.9952 −0.999846
\(962\) −5.25491 −0.169425
\(963\) 0.0147449 0.000475147 0
\(964\) −3.63304 −0.117012
\(965\) 30.4351 0.979740
\(966\) −5.52816 −0.177866
\(967\) −36.9443 −1.18805 −0.594024 0.804447i \(-0.702462\pi\)
−0.594024 + 0.804447i \(0.702462\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −1.35713 −0.0435973
\(970\) −2.08822 −0.0670488
\(971\) −59.7843 −1.91857 −0.959284 0.282443i \(-0.908855\pi\)
−0.959284 + 0.282443i \(0.908855\pi\)
\(972\) −4.45487 −0.142890
\(973\) 43.8131 1.40459
\(974\) −20.3762 −0.652895
\(975\) 0.196688 0.00629905
\(976\) 14.7030 0.470631
\(977\) −18.8416 −0.602797 −0.301398 0.953498i \(-0.597453\pi\)
−0.301398 + 0.953498i \(0.597453\pi\)
\(978\) −1.36333 −0.0435946
\(979\) −16.0406 −0.512661
\(980\) −26.6220 −0.850407
\(981\) 38.4025 1.22610
\(982\) 16.2963 0.520036
\(983\) −17.5099 −0.558481 −0.279240 0.960221i \(-0.590083\pi\)
−0.279240 + 0.960221i \(0.590083\pi\)
\(984\) 0.0582052 0.00185551
\(985\) −1.86132 −0.0593066
\(986\) 9.10830 0.290067
\(987\) 0.00264457 8.41777e−5 0
\(988\) 2.01411 0.0640774
\(989\) −18.8408 −0.599103
\(990\) −5.53202 −0.175819
\(991\) 33.2265 1.05547 0.527737 0.849408i \(-0.323041\pi\)
0.527737 + 0.849408i \(0.323041\pi\)
\(992\) 0.0691519 0.00219557
\(993\) 0.472786 0.0150034
\(994\) −20.9664 −0.665012
\(995\) 44.5892 1.41357
\(996\) −0.00867398 −0.000274846 0
\(997\) 25.4433 0.805796 0.402898 0.915245i \(-0.368003\pi\)
0.402898 + 0.915245i \(0.368003\pi\)
\(998\) −9.49845 −0.300668
\(999\) 6.83781 0.216339
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4334.2.a.a.1.8 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4334.2.a.a.1.8 15 1.1 even 1 trivial