Properties

Label 4334.2.a.a.1.4
Level $4334$
Weight $2$
Character 4334.1
Self dual yes
Analytic conductor $34.607$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4334,2,Mod(1,4334)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4334.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4334 = 2 \cdot 11 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4334.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.6071642360\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 23 x^{13} + 19 x^{12} + 194 x^{11} - 124 x^{10} - 761 x^{9} + 353 x^{8} + 1417 x^{7} - 465 x^{6} - 1128 x^{5} + 288 x^{4} + 316 x^{3} - 79 x^{2} - 20 x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.67591\) of defining polynomial
Character \(\chi\) \(=\) 4334.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.67591 q^{3} +1.00000 q^{4} -3.90939 q^{5} +1.67591 q^{6} -0.186287 q^{7} -1.00000 q^{8} -0.191317 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.67591 q^{3} +1.00000 q^{4} -3.90939 q^{5} +1.67591 q^{6} -0.186287 q^{7} -1.00000 q^{8} -0.191317 q^{9} +3.90939 q^{10} +1.00000 q^{11} -1.67591 q^{12} -6.91563 q^{13} +0.186287 q^{14} +6.55180 q^{15} +1.00000 q^{16} -0.375922 q^{17} +0.191317 q^{18} +0.115664 q^{19} -3.90939 q^{20} +0.312200 q^{21} -1.00000 q^{22} +2.11998 q^{23} +1.67591 q^{24} +10.2834 q^{25} +6.91563 q^{26} +5.34837 q^{27} -0.186287 q^{28} +1.10627 q^{29} -6.55180 q^{30} -8.13360 q^{31} -1.00000 q^{32} -1.67591 q^{33} +0.375922 q^{34} +0.728268 q^{35} -0.191317 q^{36} +10.2588 q^{37} -0.115664 q^{38} +11.5900 q^{39} +3.90939 q^{40} +3.93374 q^{41} -0.312200 q^{42} +5.46223 q^{43} +1.00000 q^{44} +0.747935 q^{45} -2.11998 q^{46} -3.16576 q^{47} -1.67591 q^{48} -6.96530 q^{49} -10.2834 q^{50} +0.630013 q^{51} -6.91563 q^{52} +9.17102 q^{53} -5.34837 q^{54} -3.90939 q^{55} +0.186287 q^{56} -0.193842 q^{57} -1.10627 q^{58} -5.00551 q^{59} +6.55180 q^{60} +2.17956 q^{61} +8.13360 q^{62} +0.0356399 q^{63} +1.00000 q^{64} +27.0359 q^{65} +1.67591 q^{66} -1.99832 q^{67} -0.375922 q^{68} -3.55289 q^{69} -0.728268 q^{70} +3.16971 q^{71} +0.191317 q^{72} -3.04510 q^{73} -10.2588 q^{74} -17.2340 q^{75} +0.115664 q^{76} -0.186287 q^{77} -11.5900 q^{78} -2.40602 q^{79} -3.90939 q^{80} -8.38945 q^{81} -3.93374 q^{82} +8.81641 q^{83} +0.312200 q^{84} +1.46963 q^{85} -5.46223 q^{86} -1.85401 q^{87} -1.00000 q^{88} +1.79289 q^{89} -0.747935 q^{90} +1.28829 q^{91} +2.11998 q^{92} +13.6312 q^{93} +3.16576 q^{94} -0.452175 q^{95} +1.67591 q^{96} -15.3150 q^{97} +6.96530 q^{98} -0.191317 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{2} - q^{3} + 15 q^{4} - 7 q^{5} + q^{6} + q^{7} - 15 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 15 q^{2} - q^{3} + 15 q^{4} - 7 q^{5} + q^{6} + q^{7} - 15 q^{8} + 2 q^{9} + 7 q^{10} + 15 q^{11} - q^{12} - q^{13} - q^{14} - 6 q^{15} + 15 q^{16} - 6 q^{17} - 2 q^{18} - 14 q^{19} - 7 q^{20} - 3 q^{21} - 15 q^{22} + 2 q^{23} + q^{24} - 10 q^{25} + q^{26} - 7 q^{27} + q^{28} + 8 q^{29} + 6 q^{30} - 33 q^{31} - 15 q^{32} - q^{33} + 6 q^{34} - 8 q^{35} + 2 q^{36} - 9 q^{37} + 14 q^{38} - 9 q^{39} + 7 q^{40} - 10 q^{41} + 3 q^{42} - 6 q^{43} + 15 q^{44} - 20 q^{45} - 2 q^{46} - q^{47} - q^{48} - 30 q^{49} + 10 q^{50} + 12 q^{51} - q^{52} + 6 q^{53} + 7 q^{54} - 7 q^{55} - q^{56} - 24 q^{57} - 8 q^{58} - 15 q^{59} - 6 q^{60} - 25 q^{61} + 33 q^{62} + 12 q^{63} + 15 q^{64} + 31 q^{65} + q^{66} - 13 q^{67} - 6 q^{68} - 43 q^{69} + 8 q^{70} - 4 q^{71} - 2 q^{72} - 4 q^{73} + 9 q^{74} - 5 q^{75} - 14 q^{76} + q^{77} + 9 q^{78} - 20 q^{79} - 7 q^{80} + 11 q^{81} + 10 q^{82} + q^{83} - 3 q^{84} - q^{85} + 6 q^{86} + 22 q^{87} - 15 q^{88} - 41 q^{89} + 20 q^{90} - 31 q^{91} + 2 q^{92} + 14 q^{93} + q^{94} + 41 q^{95} + q^{96} - 57 q^{97} + 30 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.67591 −0.967589 −0.483794 0.875182i \(-0.660742\pi\)
−0.483794 + 0.875182i \(0.660742\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.90939 −1.74833 −0.874167 0.485625i \(-0.838592\pi\)
−0.874167 + 0.485625i \(0.838592\pi\)
\(6\) 1.67591 0.684188
\(7\) −0.186287 −0.0704098 −0.0352049 0.999380i \(-0.511208\pi\)
−0.0352049 + 0.999380i \(0.511208\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.191317 −0.0637725
\(10\) 3.90939 1.23626
\(11\) 1.00000 0.301511
\(12\) −1.67591 −0.483794
\(13\) −6.91563 −1.91805 −0.959025 0.283322i \(-0.908563\pi\)
−0.959025 + 0.283322i \(0.908563\pi\)
\(14\) 0.186287 0.0497872
\(15\) 6.55180 1.69167
\(16\) 1.00000 0.250000
\(17\) −0.375922 −0.0911745 −0.0455873 0.998960i \(-0.514516\pi\)
−0.0455873 + 0.998960i \(0.514516\pi\)
\(18\) 0.191317 0.0450939
\(19\) 0.115664 0.0265351 0.0132675 0.999912i \(-0.495777\pi\)
0.0132675 + 0.999912i \(0.495777\pi\)
\(20\) −3.90939 −0.874167
\(21\) 0.312200 0.0681277
\(22\) −1.00000 −0.213201
\(23\) 2.11998 0.442045 0.221023 0.975269i \(-0.429061\pi\)
0.221023 + 0.975269i \(0.429061\pi\)
\(24\) 1.67591 0.342094
\(25\) 10.2834 2.05667
\(26\) 6.91563 1.35627
\(27\) 5.34837 1.02929
\(28\) −0.186287 −0.0352049
\(29\) 1.10627 0.205429 0.102714 0.994711i \(-0.467247\pi\)
0.102714 + 0.994711i \(0.467247\pi\)
\(30\) −6.55180 −1.19619
\(31\) −8.13360 −1.46084 −0.730419 0.682999i \(-0.760675\pi\)
−0.730419 + 0.682999i \(0.760675\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.67591 −0.291739
\(34\) 0.375922 0.0644701
\(35\) 0.728268 0.123100
\(36\) −0.191317 −0.0318862
\(37\) 10.2588 1.68654 0.843268 0.537494i \(-0.180629\pi\)
0.843268 + 0.537494i \(0.180629\pi\)
\(38\) −0.115664 −0.0187631
\(39\) 11.5900 1.85588
\(40\) 3.90939 0.618130
\(41\) 3.93374 0.614347 0.307174 0.951654i \(-0.400617\pi\)
0.307174 + 0.951654i \(0.400617\pi\)
\(42\) −0.312200 −0.0481735
\(43\) 5.46223 0.832982 0.416491 0.909140i \(-0.363260\pi\)
0.416491 + 0.909140i \(0.363260\pi\)
\(44\) 1.00000 0.150756
\(45\) 0.747935 0.111496
\(46\) −2.11998 −0.312573
\(47\) −3.16576 −0.461773 −0.230887 0.972981i \(-0.574163\pi\)
−0.230887 + 0.972981i \(0.574163\pi\)
\(48\) −1.67591 −0.241897
\(49\) −6.96530 −0.995042
\(50\) −10.2834 −1.45429
\(51\) 0.630013 0.0882194
\(52\) −6.91563 −0.959025
\(53\) 9.17102 1.25974 0.629868 0.776702i \(-0.283109\pi\)
0.629868 + 0.776702i \(0.283109\pi\)
\(54\) −5.34837 −0.727821
\(55\) −3.90939 −0.527143
\(56\) 0.186287 0.0248936
\(57\) −0.193842 −0.0256750
\(58\) −1.10627 −0.145260
\(59\) −5.00551 −0.651662 −0.325831 0.945428i \(-0.605644\pi\)
−0.325831 + 0.945428i \(0.605644\pi\)
\(60\) 6.55180 0.845834
\(61\) 2.17956 0.279064 0.139532 0.990218i \(-0.455440\pi\)
0.139532 + 0.990218i \(0.455440\pi\)
\(62\) 8.13360 1.03297
\(63\) 0.0356399 0.00449020
\(64\) 1.00000 0.125000
\(65\) 27.0359 3.35339
\(66\) 1.67591 0.206291
\(67\) −1.99832 −0.244134 −0.122067 0.992522i \(-0.538952\pi\)
−0.122067 + 0.992522i \(0.538952\pi\)
\(68\) −0.375922 −0.0455873
\(69\) −3.55289 −0.427718
\(70\) −0.728268 −0.0870447
\(71\) 3.16971 0.376176 0.188088 0.982152i \(-0.439771\pi\)
0.188088 + 0.982152i \(0.439771\pi\)
\(72\) 0.191317 0.0225470
\(73\) −3.04510 −0.356402 −0.178201 0.983994i \(-0.557028\pi\)
−0.178201 + 0.983994i \(0.557028\pi\)
\(74\) −10.2588 −1.19256
\(75\) −17.2340 −1.99001
\(76\) 0.115664 0.0132675
\(77\) −0.186287 −0.0212293
\(78\) −11.5900 −1.31231
\(79\) −2.40602 −0.270698 −0.135349 0.990798i \(-0.543216\pi\)
−0.135349 + 0.990798i \(0.543216\pi\)
\(80\) −3.90939 −0.437084
\(81\) −8.38945 −0.932161
\(82\) −3.93374 −0.434409
\(83\) 8.81641 0.967727 0.483863 0.875143i \(-0.339233\pi\)
0.483863 + 0.875143i \(0.339233\pi\)
\(84\) 0.312200 0.0340638
\(85\) 1.46963 0.159404
\(86\) −5.46223 −0.589007
\(87\) −1.85401 −0.198770
\(88\) −1.00000 −0.106600
\(89\) 1.79289 0.190046 0.0950230 0.995475i \(-0.469708\pi\)
0.0950230 + 0.995475i \(0.469708\pi\)
\(90\) −0.747935 −0.0788393
\(91\) 1.28829 0.135049
\(92\) 2.11998 0.221023
\(93\) 13.6312 1.41349
\(94\) 3.16576 0.326523
\(95\) −0.452175 −0.0463922
\(96\) 1.67591 0.171047
\(97\) −15.3150 −1.55500 −0.777502 0.628880i \(-0.783514\pi\)
−0.777502 + 0.628880i \(0.783514\pi\)
\(98\) 6.96530 0.703601
\(99\) −0.191317 −0.0192281
\(100\) 10.2834 1.02834
\(101\) 14.7993 1.47258 0.736291 0.676665i \(-0.236576\pi\)
0.736291 + 0.676665i \(0.236576\pi\)
\(102\) −0.630013 −0.0623806
\(103\) 15.1653 1.49428 0.747140 0.664667i \(-0.231426\pi\)
0.747140 + 0.664667i \(0.231426\pi\)
\(104\) 6.91563 0.678133
\(105\) −1.22051 −0.119110
\(106\) −9.17102 −0.890769
\(107\) −3.94080 −0.380972 −0.190486 0.981690i \(-0.561006\pi\)
−0.190486 + 0.981690i \(0.561006\pi\)
\(108\) 5.34837 0.514647
\(109\) 15.1512 1.45122 0.725612 0.688104i \(-0.241557\pi\)
0.725612 + 0.688104i \(0.241557\pi\)
\(110\) 3.90939 0.372746
\(111\) −17.1928 −1.63187
\(112\) −0.186287 −0.0176024
\(113\) 2.79724 0.263142 0.131571 0.991307i \(-0.457998\pi\)
0.131571 + 0.991307i \(0.457998\pi\)
\(114\) 0.193842 0.0181550
\(115\) −8.28782 −0.772843
\(116\) 1.10627 0.102714
\(117\) 1.32308 0.122319
\(118\) 5.00551 0.460794
\(119\) 0.0700293 0.00641958
\(120\) −6.55180 −0.598095
\(121\) 1.00000 0.0909091
\(122\) −2.17956 −0.197328
\(123\) −6.59260 −0.594435
\(124\) −8.13360 −0.730419
\(125\) −20.6548 −1.84742
\(126\) −0.0356399 −0.00317505
\(127\) 3.43310 0.304639 0.152319 0.988331i \(-0.451326\pi\)
0.152319 + 0.988331i \(0.451326\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −9.15422 −0.805984
\(130\) −27.0359 −2.37121
\(131\) 2.60122 0.227270 0.113635 0.993523i \(-0.463751\pi\)
0.113635 + 0.993523i \(0.463751\pi\)
\(132\) −1.67591 −0.145869
\(133\) −0.0215466 −0.00186833
\(134\) 1.99832 0.172628
\(135\) −20.9089 −1.79955
\(136\) 0.375922 0.0322351
\(137\) 13.9251 1.18970 0.594849 0.803837i \(-0.297212\pi\)
0.594849 + 0.803837i \(0.297212\pi\)
\(138\) 3.55289 0.302442
\(139\) −5.90655 −0.500987 −0.250493 0.968118i \(-0.580593\pi\)
−0.250493 + 0.968118i \(0.580593\pi\)
\(140\) 0.728268 0.0615499
\(141\) 5.30553 0.446806
\(142\) −3.16971 −0.265996
\(143\) −6.91563 −0.578314
\(144\) −0.191317 −0.0159431
\(145\) −4.32483 −0.359158
\(146\) 3.04510 0.252014
\(147\) 11.6732 0.962792
\(148\) 10.2588 0.843268
\(149\) −4.69838 −0.384907 −0.192453 0.981306i \(-0.561644\pi\)
−0.192453 + 0.981306i \(0.561644\pi\)
\(150\) 17.2340 1.40715
\(151\) −17.2650 −1.40501 −0.702504 0.711680i \(-0.747935\pi\)
−0.702504 + 0.711680i \(0.747935\pi\)
\(152\) −0.115664 −0.00938156
\(153\) 0.0719205 0.00581442
\(154\) 0.186287 0.0150114
\(155\) 31.7975 2.55403
\(156\) 11.5900 0.927941
\(157\) −12.3386 −0.984729 −0.492364 0.870389i \(-0.663867\pi\)
−0.492364 + 0.870389i \(0.663867\pi\)
\(158\) 2.40602 0.191413
\(159\) −15.3698 −1.21891
\(160\) 3.90939 0.309065
\(161\) −0.394923 −0.0311243
\(162\) 8.38945 0.659137
\(163\) −4.50886 −0.353161 −0.176581 0.984286i \(-0.556504\pi\)
−0.176581 + 0.984286i \(0.556504\pi\)
\(164\) 3.93374 0.307174
\(165\) 6.55180 0.510057
\(166\) −8.81641 −0.684286
\(167\) 16.5849 1.28338 0.641689 0.766965i \(-0.278234\pi\)
0.641689 + 0.766965i \(0.278234\pi\)
\(168\) −0.312200 −0.0240868
\(169\) 34.8259 2.67891
\(170\) −1.46963 −0.112715
\(171\) −0.0221285 −0.00169221
\(172\) 5.46223 0.416491
\(173\) 11.7366 0.892317 0.446159 0.894954i \(-0.352792\pi\)
0.446159 + 0.894954i \(0.352792\pi\)
\(174\) 1.85401 0.140552
\(175\) −1.91565 −0.144810
\(176\) 1.00000 0.0753778
\(177\) 8.38879 0.630540
\(178\) −1.79289 −0.134383
\(179\) −4.16924 −0.311624 −0.155812 0.987787i \(-0.549799\pi\)
−0.155812 + 0.987787i \(0.549799\pi\)
\(180\) 0.747935 0.0557478
\(181\) −2.00532 −0.149054 −0.0745272 0.997219i \(-0.523745\pi\)
−0.0745272 + 0.997219i \(0.523745\pi\)
\(182\) −1.28829 −0.0954944
\(183\) −3.65275 −0.270019
\(184\) −2.11998 −0.156287
\(185\) −40.1057 −2.94863
\(186\) −13.6312 −0.999489
\(187\) −0.375922 −0.0274902
\(188\) −3.16576 −0.230887
\(189\) −0.996330 −0.0724723
\(190\) 0.452175 0.0328042
\(191\) −13.6944 −0.990891 −0.495445 0.868639i \(-0.664995\pi\)
−0.495445 + 0.868639i \(0.664995\pi\)
\(192\) −1.67591 −0.120949
\(193\) −15.0608 −1.08410 −0.542050 0.840346i \(-0.682352\pi\)
−0.542050 + 0.840346i \(0.682352\pi\)
\(194\) 15.3150 1.09955
\(195\) −45.3098 −3.24470
\(196\) −6.96530 −0.497521
\(197\) 1.00000 0.0712470
\(198\) 0.191317 0.0135963
\(199\) −13.5967 −0.963845 −0.481922 0.876214i \(-0.660061\pi\)
−0.481922 + 0.876214i \(0.660061\pi\)
\(200\) −10.2834 −0.727144
\(201\) 3.34901 0.236221
\(202\) −14.7993 −1.04127
\(203\) −0.206083 −0.0144642
\(204\) 0.630013 0.0441097
\(205\) −15.3785 −1.07408
\(206\) −15.1653 −1.05662
\(207\) −0.405588 −0.0281903
\(208\) −6.91563 −0.479512
\(209\) 0.115664 0.00800062
\(210\) 1.22051 0.0842235
\(211\) −21.5575 −1.48408 −0.742038 0.670357i \(-0.766141\pi\)
−0.742038 + 0.670357i \(0.766141\pi\)
\(212\) 9.17102 0.629868
\(213\) −5.31216 −0.363983
\(214\) 3.94080 0.269388
\(215\) −21.3540 −1.45633
\(216\) −5.34837 −0.363910
\(217\) 1.51518 0.102857
\(218\) −15.1512 −1.02617
\(219\) 5.10332 0.344850
\(220\) −3.90939 −0.263571
\(221\) 2.59974 0.174877
\(222\) 17.1928 1.15391
\(223\) 22.4994 1.50667 0.753336 0.657636i \(-0.228444\pi\)
0.753336 + 0.657636i \(0.228444\pi\)
\(224\) 0.186287 0.0124468
\(225\) −1.96739 −0.131159
\(226\) −2.79724 −0.186070
\(227\) 24.3244 1.61447 0.807233 0.590234i \(-0.200964\pi\)
0.807233 + 0.590234i \(0.200964\pi\)
\(228\) −0.193842 −0.0128375
\(229\) 24.5542 1.62259 0.811294 0.584638i \(-0.198763\pi\)
0.811294 + 0.584638i \(0.198763\pi\)
\(230\) 8.28782 0.546483
\(231\) 0.312200 0.0205413
\(232\) −1.10627 −0.0726300
\(233\) −5.83047 −0.381967 −0.190983 0.981593i \(-0.561168\pi\)
−0.190983 + 0.981593i \(0.561168\pi\)
\(234\) −1.32308 −0.0864924
\(235\) 12.3762 0.807334
\(236\) −5.00551 −0.325831
\(237\) 4.03228 0.261925
\(238\) −0.0700293 −0.00453933
\(239\) −3.31189 −0.214228 −0.107114 0.994247i \(-0.534161\pi\)
−0.107114 + 0.994247i \(0.534161\pi\)
\(240\) 6.55180 0.422917
\(241\) −27.3280 −1.76035 −0.880176 0.474647i \(-0.842576\pi\)
−0.880176 + 0.474647i \(0.842576\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −1.98513 −0.127346
\(244\) 2.17956 0.139532
\(245\) 27.2301 1.73967
\(246\) 6.59260 0.420329
\(247\) −0.799887 −0.0508956
\(248\) 8.13360 0.516484
\(249\) −14.7755 −0.936362
\(250\) 20.6548 1.30632
\(251\) −21.1374 −1.33418 −0.667091 0.744976i \(-0.732461\pi\)
−0.667091 + 0.744976i \(0.732461\pi\)
\(252\) 0.0356399 0.00224510
\(253\) 2.11998 0.133282
\(254\) −3.43310 −0.215412
\(255\) −2.46297 −0.154237
\(256\) 1.00000 0.0625000
\(257\) −19.9480 −1.24432 −0.622160 0.782890i \(-0.713745\pi\)
−0.622160 + 0.782890i \(0.713745\pi\)
\(258\) 9.15422 0.569917
\(259\) −1.91108 −0.118749
\(260\) 27.0359 1.67670
\(261\) −0.211648 −0.0131007
\(262\) −2.60122 −0.160704
\(263\) 11.2461 0.693461 0.346731 0.937965i \(-0.387292\pi\)
0.346731 + 0.937965i \(0.387292\pi\)
\(264\) 1.67591 0.103145
\(265\) −35.8531 −2.20244
\(266\) 0.0215466 0.00132111
\(267\) −3.00473 −0.183886
\(268\) −1.99832 −0.122067
\(269\) 0.706125 0.0430532 0.0215266 0.999768i \(-0.493147\pi\)
0.0215266 + 0.999768i \(0.493147\pi\)
\(270\) 20.9089 1.27247
\(271\) −20.1652 −1.22495 −0.612475 0.790490i \(-0.709826\pi\)
−0.612475 + 0.790490i \(0.709826\pi\)
\(272\) −0.375922 −0.0227936
\(273\) −2.15906 −0.130672
\(274\) −13.9251 −0.841243
\(275\) 10.2834 0.620110
\(276\) −3.55289 −0.213859
\(277\) 9.68442 0.581880 0.290940 0.956741i \(-0.406032\pi\)
0.290940 + 0.956741i \(0.406032\pi\)
\(278\) 5.90655 0.354251
\(279\) 1.55610 0.0931612
\(280\) −0.728268 −0.0435224
\(281\) −13.8011 −0.823302 −0.411651 0.911341i \(-0.635048\pi\)
−0.411651 + 0.911341i \(0.635048\pi\)
\(282\) −5.30553 −0.315940
\(283\) −14.4517 −0.859065 −0.429533 0.903051i \(-0.641322\pi\)
−0.429533 + 0.903051i \(0.641322\pi\)
\(284\) 3.16971 0.188088
\(285\) 0.757805 0.0448885
\(286\) 6.91563 0.408930
\(287\) −0.732804 −0.0432560
\(288\) 0.191317 0.0112735
\(289\) −16.8587 −0.991687
\(290\) 4.32483 0.253963
\(291\) 25.6666 1.50460
\(292\) −3.04510 −0.178201
\(293\) −17.8150 −1.04077 −0.520383 0.853933i \(-0.674211\pi\)
−0.520383 + 0.853933i \(0.674211\pi\)
\(294\) −11.6732 −0.680797
\(295\) 19.5685 1.13932
\(296\) −10.2588 −0.596280
\(297\) 5.34837 0.310344
\(298\) 4.69838 0.272170
\(299\) −14.6610 −0.847865
\(300\) −17.2340 −0.995007
\(301\) −1.01754 −0.0586501
\(302\) 17.2650 0.993490
\(303\) −24.8023 −1.42485
\(304\) 0.115664 0.00663376
\(305\) −8.52075 −0.487897
\(306\) −0.0719205 −0.00411142
\(307\) −14.3009 −0.816195 −0.408098 0.912938i \(-0.633808\pi\)
−0.408098 + 0.912938i \(0.633808\pi\)
\(308\) −0.186287 −0.0106147
\(309\) −25.4157 −1.44585
\(310\) −31.7975 −1.80597
\(311\) 16.6604 0.944723 0.472361 0.881405i \(-0.343402\pi\)
0.472361 + 0.881405i \(0.343402\pi\)
\(312\) −11.5900 −0.656154
\(313\) −12.6430 −0.714622 −0.357311 0.933985i \(-0.616306\pi\)
−0.357311 + 0.933985i \(0.616306\pi\)
\(314\) 12.3386 0.696309
\(315\) −0.139330 −0.00785038
\(316\) −2.40602 −0.135349
\(317\) 6.35861 0.357135 0.178568 0.983928i \(-0.442854\pi\)
0.178568 + 0.983928i \(0.442854\pi\)
\(318\) 15.3698 0.861897
\(319\) 1.10627 0.0619390
\(320\) −3.90939 −0.218542
\(321\) 6.60444 0.368624
\(322\) 0.394923 0.0220082
\(323\) −0.0434805 −0.00241932
\(324\) −8.38945 −0.466080
\(325\) −71.1159 −3.94480
\(326\) 4.50886 0.249723
\(327\) −25.3921 −1.40419
\(328\) −3.93374 −0.217204
\(329\) 0.589738 0.0325133
\(330\) −6.55180 −0.360665
\(331\) −6.23320 −0.342607 −0.171304 0.985218i \(-0.554798\pi\)
−0.171304 + 0.985218i \(0.554798\pi\)
\(332\) 8.81641 0.483863
\(333\) −1.96269 −0.107555
\(334\) −16.5849 −0.907485
\(335\) 7.81222 0.426827
\(336\) 0.312200 0.0170319
\(337\) 35.4341 1.93022 0.965110 0.261844i \(-0.0843306\pi\)
0.965110 + 0.261844i \(0.0843306\pi\)
\(338\) −34.8259 −1.89428
\(339\) −4.68793 −0.254614
\(340\) 1.46963 0.0797018
\(341\) −8.13360 −0.440459
\(342\) 0.0221285 0.00119657
\(343\) 2.60155 0.140470
\(344\) −5.46223 −0.294504
\(345\) 13.8897 0.747794
\(346\) −11.7366 −0.630964
\(347\) −11.8480 −0.636034 −0.318017 0.948085i \(-0.603017\pi\)
−0.318017 + 0.948085i \(0.603017\pi\)
\(348\) −1.85401 −0.0993851
\(349\) 16.1290 0.863364 0.431682 0.902026i \(-0.357920\pi\)
0.431682 + 0.902026i \(0.357920\pi\)
\(350\) 1.91565 0.102396
\(351\) −36.9873 −1.97424
\(352\) −1.00000 −0.0533002
\(353\) −11.6988 −0.622663 −0.311331 0.950301i \(-0.600775\pi\)
−0.311331 + 0.950301i \(0.600775\pi\)
\(354\) −8.38879 −0.445859
\(355\) −12.3917 −0.657681
\(356\) 1.79289 0.0950230
\(357\) −0.117363 −0.00621151
\(358\) 4.16924 0.220351
\(359\) −21.0933 −1.11326 −0.556632 0.830759i \(-0.687907\pi\)
−0.556632 + 0.830759i \(0.687907\pi\)
\(360\) −0.747935 −0.0394196
\(361\) −18.9866 −0.999296
\(362\) 2.00532 0.105397
\(363\) −1.67591 −0.0879626
\(364\) 1.28829 0.0675247
\(365\) 11.9045 0.623110
\(366\) 3.65275 0.190932
\(367\) 25.3523 1.32338 0.661689 0.749779i \(-0.269840\pi\)
0.661689 + 0.749779i \(0.269840\pi\)
\(368\) 2.11998 0.110511
\(369\) −0.752593 −0.0391784
\(370\) 40.1057 2.08499
\(371\) −1.70844 −0.0886978
\(372\) 13.6312 0.706745
\(373\) 11.3365 0.586981 0.293490 0.955962i \(-0.405183\pi\)
0.293490 + 0.955962i \(0.405183\pi\)
\(374\) 0.375922 0.0194385
\(375\) 34.6156 1.78754
\(376\) 3.16576 0.163261
\(377\) −7.65053 −0.394022
\(378\) 0.996330 0.0512457
\(379\) 22.4310 1.15220 0.576102 0.817378i \(-0.304573\pi\)
0.576102 + 0.817378i \(0.304573\pi\)
\(380\) −0.452175 −0.0231961
\(381\) −5.75358 −0.294765
\(382\) 13.6944 0.700666
\(383\) −8.55722 −0.437254 −0.218627 0.975809i \(-0.570158\pi\)
−0.218627 + 0.975809i \(0.570158\pi\)
\(384\) 1.67591 0.0855236
\(385\) 0.728268 0.0371160
\(386\) 15.0608 0.766574
\(387\) −1.04502 −0.0531213
\(388\) −15.3150 −0.777502
\(389\) 30.3391 1.53825 0.769127 0.639096i \(-0.220692\pi\)
0.769127 + 0.639096i \(0.220692\pi\)
\(390\) 45.3098 2.29435
\(391\) −0.796946 −0.0403033
\(392\) 6.96530 0.351801
\(393\) −4.35942 −0.219904
\(394\) −1.00000 −0.0503793
\(395\) 9.40608 0.473271
\(396\) −0.191317 −0.00961406
\(397\) −26.9110 −1.35063 −0.675313 0.737531i \(-0.735992\pi\)
−0.675313 + 0.737531i \(0.735992\pi\)
\(398\) 13.5967 0.681541
\(399\) 0.0361102 0.00180777
\(400\) 10.2834 0.514168
\(401\) −27.3761 −1.36710 −0.683549 0.729905i \(-0.739564\pi\)
−0.683549 + 0.729905i \(0.739564\pi\)
\(402\) −3.34901 −0.167033
\(403\) 56.2490 2.80196
\(404\) 14.7993 0.736291
\(405\) 32.7977 1.62973
\(406\) 0.206083 0.0102277
\(407\) 10.2588 0.508510
\(408\) −0.630013 −0.0311903
\(409\) 13.9726 0.690899 0.345450 0.938437i \(-0.387726\pi\)
0.345450 + 0.938437i \(0.387726\pi\)
\(410\) 15.3785 0.759492
\(411\) −23.3372 −1.15114
\(412\) 15.1653 0.747140
\(413\) 0.932460 0.0458833
\(414\) 0.405588 0.0199336
\(415\) −34.4668 −1.69191
\(416\) 6.91563 0.339066
\(417\) 9.89886 0.484749
\(418\) −0.115664 −0.00565729
\(419\) 2.12115 0.103625 0.0518126 0.998657i \(-0.483500\pi\)
0.0518126 + 0.998657i \(0.483500\pi\)
\(420\) −1.22051 −0.0595550
\(421\) −8.19111 −0.399210 −0.199605 0.979876i \(-0.563966\pi\)
−0.199605 + 0.979876i \(0.563966\pi\)
\(422\) 21.5575 1.04940
\(423\) 0.605664 0.0294484
\(424\) −9.17102 −0.445384
\(425\) −3.86575 −0.187516
\(426\) 5.31216 0.257375
\(427\) −0.406023 −0.0196488
\(428\) −3.94080 −0.190486
\(429\) 11.5900 0.559570
\(430\) 21.3540 1.02978
\(431\) 3.75889 0.181059 0.0905296 0.995894i \(-0.471144\pi\)
0.0905296 + 0.995894i \(0.471144\pi\)
\(432\) 5.34837 0.257324
\(433\) 0.505075 0.0242724 0.0121362 0.999926i \(-0.496137\pi\)
0.0121362 + 0.999926i \(0.496137\pi\)
\(434\) −1.51518 −0.0727311
\(435\) 7.24804 0.347517
\(436\) 15.1512 0.725612
\(437\) 0.245204 0.0117297
\(438\) −5.10332 −0.243846
\(439\) −8.53428 −0.407319 −0.203660 0.979042i \(-0.565284\pi\)
−0.203660 + 0.979042i \(0.565284\pi\)
\(440\) 3.90939 0.186373
\(441\) 1.33258 0.0634563
\(442\) −2.59974 −0.123657
\(443\) 40.0089 1.90088 0.950439 0.310911i \(-0.100634\pi\)
0.950439 + 0.310911i \(0.100634\pi\)
\(444\) −17.1928 −0.815936
\(445\) −7.00912 −0.332264
\(446\) −22.4994 −1.06538
\(447\) 7.87408 0.372431
\(448\) −0.186287 −0.00880122
\(449\) 18.2096 0.859365 0.429682 0.902980i \(-0.358626\pi\)
0.429682 + 0.902980i \(0.358626\pi\)
\(450\) 1.96739 0.0927435
\(451\) 3.93374 0.185233
\(452\) 2.79724 0.131571
\(453\) 28.9347 1.35947
\(454\) −24.3244 −1.14160
\(455\) −5.03643 −0.236112
\(456\) 0.193842 0.00907749
\(457\) −41.9076 −1.96035 −0.980176 0.198127i \(-0.936514\pi\)
−0.980176 + 0.198127i \(0.936514\pi\)
\(458\) −24.5542 −1.14734
\(459\) −2.01057 −0.0938454
\(460\) −8.28782 −0.386422
\(461\) −10.3457 −0.481849 −0.240924 0.970544i \(-0.577451\pi\)
−0.240924 + 0.970544i \(0.577451\pi\)
\(462\) −0.312200 −0.0145249
\(463\) 30.0975 1.39875 0.699376 0.714754i \(-0.253461\pi\)
0.699376 + 0.714754i \(0.253461\pi\)
\(464\) 1.10627 0.0513571
\(465\) −53.2898 −2.47125
\(466\) 5.83047 0.270091
\(467\) 3.42983 0.158714 0.0793569 0.996846i \(-0.474713\pi\)
0.0793569 + 0.996846i \(0.474713\pi\)
\(468\) 1.32308 0.0611594
\(469\) 0.372260 0.0171894
\(470\) −12.3762 −0.570871
\(471\) 20.6784 0.952812
\(472\) 5.00551 0.230397
\(473\) 5.46223 0.251154
\(474\) −4.03228 −0.185209
\(475\) 1.18941 0.0545739
\(476\) 0.0700293 0.00320979
\(477\) −1.75458 −0.0803365
\(478\) 3.31189 0.151482
\(479\) −11.6583 −0.532683 −0.266342 0.963879i \(-0.585815\pi\)
−0.266342 + 0.963879i \(0.585815\pi\)
\(480\) −6.55180 −0.299048
\(481\) −70.9460 −3.23486
\(482\) 27.3280 1.24476
\(483\) 0.661857 0.0301155
\(484\) 1.00000 0.0454545
\(485\) 59.8724 2.71867
\(486\) 1.98513 0.0900473
\(487\) 8.38284 0.379863 0.189931 0.981797i \(-0.439173\pi\)
0.189931 + 0.981797i \(0.439173\pi\)
\(488\) −2.17956 −0.0986640
\(489\) 7.55645 0.341715
\(490\) −27.2301 −1.23013
\(491\) 38.7701 1.74967 0.874835 0.484422i \(-0.160970\pi\)
0.874835 + 0.484422i \(0.160970\pi\)
\(492\) −6.59260 −0.297218
\(493\) −0.415870 −0.0187299
\(494\) 0.799887 0.0359886
\(495\) 0.747935 0.0336172
\(496\) −8.13360 −0.365210
\(497\) −0.590475 −0.0264864
\(498\) 14.7755 0.662108
\(499\) −36.9625 −1.65467 −0.827334 0.561711i \(-0.810143\pi\)
−0.827334 + 0.561711i \(0.810143\pi\)
\(500\) −20.6548 −0.923709
\(501\) −27.7948 −1.24178
\(502\) 21.1374 0.943409
\(503\) 36.0606 1.60786 0.803930 0.594723i \(-0.202738\pi\)
0.803930 + 0.594723i \(0.202738\pi\)
\(504\) −0.0356399 −0.00158753
\(505\) −57.8561 −2.57456
\(506\) −2.11998 −0.0942444
\(507\) −58.3651 −2.59209
\(508\) 3.43310 0.152319
\(509\) −21.5326 −0.954414 −0.477207 0.878791i \(-0.658351\pi\)
−0.477207 + 0.878791i \(0.658351\pi\)
\(510\) 2.46297 0.109062
\(511\) 0.567262 0.0250942
\(512\) −1.00000 −0.0441942
\(513\) 0.618612 0.0273124
\(514\) 19.9480 0.879867
\(515\) −59.2871 −2.61250
\(516\) −9.15422 −0.402992
\(517\) −3.16576 −0.139230
\(518\) 1.91108 0.0839679
\(519\) −19.6695 −0.863396
\(520\) −27.0359 −1.18560
\(521\) −0.602802 −0.0264092 −0.0132046 0.999913i \(-0.504203\pi\)
−0.0132046 + 0.999913i \(0.504203\pi\)
\(522\) 0.211648 0.00926358
\(523\) −32.8661 −1.43713 −0.718567 0.695458i \(-0.755202\pi\)
−0.718567 + 0.695458i \(0.755202\pi\)
\(524\) 2.60122 0.113635
\(525\) 3.21047 0.140116
\(526\) −11.2461 −0.490351
\(527\) 3.05760 0.133191
\(528\) −1.67591 −0.0729347
\(529\) −18.5057 −0.804596
\(530\) 35.8531 1.55736
\(531\) 0.957641 0.0415581
\(532\) −0.0215466 −0.000934164 0
\(533\) −27.2043 −1.17835
\(534\) 3.00473 0.130027
\(535\) 15.4062 0.666066
\(536\) 1.99832 0.0863142
\(537\) 6.98728 0.301523
\(538\) −0.706125 −0.0304432
\(539\) −6.96530 −0.300017
\(540\) −20.9089 −0.899775
\(541\) 24.8767 1.06953 0.534766 0.845000i \(-0.320400\pi\)
0.534766 + 0.845000i \(0.320400\pi\)
\(542\) 20.1652 0.866171
\(543\) 3.36074 0.144223
\(544\) 0.375922 0.0161175
\(545\) −59.2321 −2.53723
\(546\) 2.15906 0.0923992
\(547\) −37.2875 −1.59430 −0.797149 0.603783i \(-0.793659\pi\)
−0.797149 + 0.603783i \(0.793659\pi\)
\(548\) 13.9251 0.594849
\(549\) −0.416987 −0.0177966
\(550\) −10.2834 −0.438484
\(551\) 0.127955 0.00545106
\(552\) 3.55289 0.151221
\(553\) 0.448209 0.0190598
\(554\) −9.68442 −0.411452
\(555\) 67.2136 2.85306
\(556\) −5.90655 −0.250493
\(557\) −16.2171 −0.687141 −0.343570 0.939127i \(-0.611636\pi\)
−0.343570 + 0.939127i \(0.611636\pi\)
\(558\) −1.55610 −0.0658749
\(559\) −37.7747 −1.59770
\(560\) 0.728268 0.0307750
\(561\) 0.630013 0.0265992
\(562\) 13.8011 0.582163
\(563\) 28.0403 1.18176 0.590878 0.806761i \(-0.298781\pi\)
0.590878 + 0.806761i \(0.298781\pi\)
\(564\) 5.30553 0.223403
\(565\) −10.9355 −0.460061
\(566\) 14.4517 0.607451
\(567\) 1.56284 0.0656332
\(568\) −3.16971 −0.132998
\(569\) 36.0770 1.51243 0.756213 0.654325i \(-0.227047\pi\)
0.756213 + 0.654325i \(0.227047\pi\)
\(570\) −0.757805 −0.0317410
\(571\) −10.5330 −0.440793 −0.220397 0.975410i \(-0.570735\pi\)
−0.220397 + 0.975410i \(0.570735\pi\)
\(572\) −6.91563 −0.289157
\(573\) 22.9506 0.958775
\(574\) 0.732804 0.0305866
\(575\) 21.8005 0.909143
\(576\) −0.191317 −0.00797156
\(577\) −35.3170 −1.47027 −0.735133 0.677922i \(-0.762880\pi\)
−0.735133 + 0.677922i \(0.762880\pi\)
\(578\) 16.8587 0.701229
\(579\) 25.2406 1.04896
\(580\) −4.32483 −0.179579
\(581\) −1.64238 −0.0681374
\(582\) −25.6666 −1.06392
\(583\) 9.17102 0.379825
\(584\) 3.04510 0.126007
\(585\) −5.17244 −0.213854
\(586\) 17.8150 0.735932
\(587\) 25.9530 1.07120 0.535598 0.844473i \(-0.320086\pi\)
0.535598 + 0.844473i \(0.320086\pi\)
\(588\) 11.6732 0.481396
\(589\) −0.940762 −0.0387634
\(590\) −19.5685 −0.805623
\(591\) −1.67591 −0.0689378
\(592\) 10.2588 0.421634
\(593\) 14.6024 0.599648 0.299824 0.953994i \(-0.403072\pi\)
0.299824 + 0.953994i \(0.403072\pi\)
\(594\) −5.34837 −0.219446
\(595\) −0.273772 −0.0112236
\(596\) −4.69838 −0.192453
\(597\) 22.7869 0.932605
\(598\) 14.6610 0.599531
\(599\) 25.2757 1.03274 0.516369 0.856366i \(-0.327283\pi\)
0.516369 + 0.856366i \(0.327283\pi\)
\(600\) 17.2340 0.703576
\(601\) −31.7861 −1.29658 −0.648291 0.761393i \(-0.724516\pi\)
−0.648291 + 0.761393i \(0.724516\pi\)
\(602\) 1.01754 0.0414719
\(603\) 0.382313 0.0155690
\(604\) −17.2650 −0.702504
\(605\) −3.90939 −0.158939
\(606\) 24.8023 1.00752
\(607\) 0.0382850 0.00155394 0.000776971 1.00000i \(-0.499753\pi\)
0.000776971 1.00000i \(0.499753\pi\)
\(608\) −0.115664 −0.00469078
\(609\) 0.345377 0.0139954
\(610\) 8.52075 0.344995
\(611\) 21.8932 0.885704
\(612\) 0.0719205 0.00290721
\(613\) 34.1026 1.37739 0.688695 0.725051i \(-0.258184\pi\)
0.688695 + 0.725051i \(0.258184\pi\)
\(614\) 14.3009 0.577137
\(615\) 25.7731 1.03927
\(616\) 0.186287 0.00750571
\(617\) −19.4385 −0.782564 −0.391282 0.920271i \(-0.627968\pi\)
−0.391282 + 0.920271i \(0.627968\pi\)
\(618\) 25.4157 1.02237
\(619\) −0.298313 −0.0119902 −0.00599510 0.999982i \(-0.501908\pi\)
−0.00599510 + 0.999982i \(0.501908\pi\)
\(620\) 31.7975 1.27702
\(621\) 11.3384 0.454995
\(622\) −16.6604 −0.668020
\(623\) −0.333992 −0.0133811
\(624\) 11.5900 0.463971
\(625\) 29.3308 1.17323
\(626\) 12.6430 0.505314
\(627\) −0.193842 −0.00774131
\(628\) −12.3386 −0.492364
\(629\) −3.85651 −0.153769
\(630\) 0.139330 0.00555105
\(631\) −7.82835 −0.311642 −0.155821 0.987785i \(-0.549802\pi\)
−0.155821 + 0.987785i \(0.549802\pi\)
\(632\) 2.40602 0.0957063
\(633\) 36.1284 1.43598
\(634\) −6.35861 −0.252533
\(635\) −13.4214 −0.532610
\(636\) −15.3698 −0.609453
\(637\) 48.1694 1.90854
\(638\) −1.10627 −0.0437975
\(639\) −0.606421 −0.0239896
\(640\) 3.90939 0.154532
\(641\) −20.1068 −0.794169 −0.397085 0.917782i \(-0.629978\pi\)
−0.397085 + 0.917782i \(0.629978\pi\)
\(642\) −6.60444 −0.260657
\(643\) 11.1334 0.439057 0.219528 0.975606i \(-0.429548\pi\)
0.219528 + 0.975606i \(0.429548\pi\)
\(644\) −0.394923 −0.0155622
\(645\) 35.7874 1.40913
\(646\) 0.0434805 0.00171072
\(647\) 26.5897 1.04535 0.522674 0.852532i \(-0.324934\pi\)
0.522674 + 0.852532i \(0.324934\pi\)
\(648\) 8.38945 0.329569
\(649\) −5.00551 −0.196483
\(650\) 71.1159 2.78940
\(651\) −2.53931 −0.0995235
\(652\) −4.50886 −0.176581
\(653\) −24.6029 −0.962787 −0.481393 0.876505i \(-0.659869\pi\)
−0.481393 + 0.876505i \(0.659869\pi\)
\(654\) 25.3921 0.992911
\(655\) −10.1692 −0.397344
\(656\) 3.93374 0.153587
\(657\) 0.582581 0.0227286
\(658\) −0.589738 −0.0229904
\(659\) −0.0742645 −0.00289293 −0.00144647 0.999999i \(-0.500460\pi\)
−0.00144647 + 0.999999i \(0.500460\pi\)
\(660\) 6.55180 0.255029
\(661\) 27.7640 1.07989 0.539947 0.841699i \(-0.318444\pi\)
0.539947 + 0.841699i \(0.318444\pi\)
\(662\) 6.23320 0.242260
\(663\) −4.35693 −0.169209
\(664\) −8.81641 −0.342143
\(665\) 0.0842342 0.00326646
\(666\) 1.96269 0.0760525
\(667\) 2.34526 0.0908087
\(668\) 16.5849 0.641689
\(669\) −37.7070 −1.45784
\(670\) −7.81222 −0.301812
\(671\) 2.17956 0.0841409
\(672\) −0.312200 −0.0120434
\(673\) 1.85246 0.0714071 0.0357035 0.999362i \(-0.488633\pi\)
0.0357035 + 0.999362i \(0.488633\pi\)
\(674\) −35.4341 −1.36487
\(675\) 54.9992 2.11692
\(676\) 34.8259 1.33946
\(677\) 9.85875 0.378902 0.189451 0.981890i \(-0.439329\pi\)
0.189451 + 0.981890i \(0.439329\pi\)
\(678\) 4.68793 0.180039
\(679\) 2.85298 0.109487
\(680\) −1.46963 −0.0563577
\(681\) −40.7655 −1.56214
\(682\) 8.13360 0.311452
\(683\) −2.82679 −0.108164 −0.0540820 0.998536i \(-0.517223\pi\)
−0.0540820 + 0.998536i \(0.517223\pi\)
\(684\) −0.0221285 −0.000846103 0
\(685\) −54.4385 −2.07999
\(686\) −2.60155 −0.0993276
\(687\) −41.1507 −1.57000
\(688\) 5.46223 0.208246
\(689\) −63.4234 −2.41624
\(690\) −13.8897 −0.528770
\(691\) −15.4385 −0.587310 −0.293655 0.955912i \(-0.594872\pi\)
−0.293655 + 0.955912i \(0.594872\pi\)
\(692\) 11.7366 0.446159
\(693\) 0.0356399 0.00135385
\(694\) 11.8480 0.449744
\(695\) 23.0910 0.875893
\(696\) 1.85401 0.0702759
\(697\) −1.47878 −0.0560128
\(698\) −16.1290 −0.610491
\(699\) 9.77135 0.369586
\(700\) −1.91565 −0.0724049
\(701\) 8.88379 0.335536 0.167768 0.985826i \(-0.446344\pi\)
0.167768 + 0.985826i \(0.446344\pi\)
\(702\) 36.9873 1.39600
\(703\) 1.18657 0.0447523
\(704\) 1.00000 0.0376889
\(705\) −20.7414 −0.781167
\(706\) 11.6988 0.440289
\(707\) −2.75691 −0.103684
\(708\) 8.38879 0.315270
\(709\) −7.81895 −0.293647 −0.146823 0.989163i \(-0.546905\pi\)
−0.146823 + 0.989163i \(0.546905\pi\)
\(710\) 12.3917 0.465050
\(711\) 0.460313 0.0172631
\(712\) −1.79289 −0.0671914
\(713\) −17.2430 −0.645757
\(714\) 0.117363 0.00439220
\(715\) 27.0359 1.01109
\(716\) −4.16924 −0.155812
\(717\) 5.55043 0.207285
\(718\) 21.0933 0.787197
\(719\) 50.8058 1.89474 0.947369 0.320145i \(-0.103732\pi\)
0.947369 + 0.320145i \(0.103732\pi\)
\(720\) 0.747935 0.0278739
\(721\) −2.82509 −0.105212
\(722\) 18.9866 0.706609
\(723\) 45.7994 1.70330
\(724\) −2.00532 −0.0745272
\(725\) 11.3761 0.422499
\(726\) 1.67591 0.0621989
\(727\) −27.0833 −1.00446 −0.502231 0.864733i \(-0.667487\pi\)
−0.502231 + 0.864733i \(0.667487\pi\)
\(728\) −1.28829 −0.0477472
\(729\) 28.4952 1.05538
\(730\) −11.9045 −0.440605
\(731\) −2.05337 −0.0759468
\(732\) −3.65275 −0.135010
\(733\) −36.2968 −1.34065 −0.670326 0.742066i \(-0.733846\pi\)
−0.670326 + 0.742066i \(0.733846\pi\)
\(734\) −25.3523 −0.935769
\(735\) −45.6353 −1.68328
\(736\) −2.11998 −0.0781433
\(737\) −1.99832 −0.0736090
\(738\) 0.752593 0.0277033
\(739\) 29.7712 1.09515 0.547576 0.836756i \(-0.315551\pi\)
0.547576 + 0.836756i \(0.315551\pi\)
\(740\) −40.1057 −1.47431
\(741\) 1.34054 0.0492460
\(742\) 1.70844 0.0627188
\(743\) −24.6412 −0.903998 −0.451999 0.892018i \(-0.649289\pi\)
−0.451999 + 0.892018i \(0.649289\pi\)
\(744\) −13.6312 −0.499744
\(745\) 18.3678 0.672945
\(746\) −11.3365 −0.415058
\(747\) −1.68673 −0.0617143
\(748\) −0.375922 −0.0137451
\(749\) 0.734120 0.0268241
\(750\) −34.6156 −1.26398
\(751\) −2.19522 −0.0801049 −0.0400524 0.999198i \(-0.512752\pi\)
−0.0400524 + 0.999198i \(0.512752\pi\)
\(752\) −3.16576 −0.115443
\(753\) 35.4245 1.29094
\(754\) 7.65053 0.278616
\(755\) 67.4958 2.45642
\(756\) −0.996330 −0.0362362
\(757\) −4.25354 −0.154598 −0.0772988 0.997008i \(-0.524630\pi\)
−0.0772988 + 0.997008i \(0.524630\pi\)
\(758\) −22.4310 −0.814731
\(759\) −3.55289 −0.128962
\(760\) 0.452175 0.0164021
\(761\) −10.5671 −0.383056 −0.191528 0.981487i \(-0.561344\pi\)
−0.191528 + 0.981487i \(0.561344\pi\)
\(762\) 5.75358 0.208430
\(763\) −2.82247 −0.102180
\(764\) −13.6944 −0.495445
\(765\) −0.281165 −0.0101656
\(766\) 8.55722 0.309185
\(767\) 34.6162 1.24992
\(768\) −1.67591 −0.0604743
\(769\) −8.08777 −0.291653 −0.145826 0.989310i \(-0.546584\pi\)
−0.145826 + 0.989310i \(0.546584\pi\)
\(770\) −0.728268 −0.0262450
\(771\) 33.4310 1.20399
\(772\) −15.0608 −0.542050
\(773\) −42.0068 −1.51088 −0.755440 0.655217i \(-0.772577\pi\)
−0.755440 + 0.655217i \(0.772577\pi\)
\(774\) 1.04502 0.0375624
\(775\) −83.6408 −3.00447
\(776\) 15.3150 0.549777
\(777\) 3.20280 0.114900
\(778\) −30.3391 −1.08771
\(779\) 0.454991 0.0163017
\(780\) −45.3098 −1.62235
\(781\) 3.16971 0.113421
\(782\) 0.796946 0.0284987
\(783\) 5.91672 0.211446
\(784\) −6.96530 −0.248761
\(785\) 48.2365 1.72164
\(786\) 4.35942 0.155496
\(787\) 1.90354 0.0678538 0.0339269 0.999424i \(-0.489199\pi\)
0.0339269 + 0.999424i \(0.489199\pi\)
\(788\) 1.00000 0.0356235
\(789\) −18.8474 −0.670985
\(790\) −9.40608 −0.334653
\(791\) −0.521089 −0.0185278
\(792\) 0.191317 0.00679817
\(793\) −15.0730 −0.535258
\(794\) 26.9110 0.955037
\(795\) 60.0867 2.13106
\(796\) −13.5967 −0.481922
\(797\) −0.804885 −0.0285105 −0.0142552 0.999898i \(-0.504538\pi\)
−0.0142552 + 0.999898i \(0.504538\pi\)
\(798\) −0.0361102 −0.00127829
\(799\) 1.19008 0.0421020
\(800\) −10.2834 −0.363572
\(801\) −0.343011 −0.0121197
\(802\) 27.3761 0.966684
\(803\) −3.04510 −0.107459
\(804\) 3.34901 0.118110
\(805\) 1.54391 0.0544157
\(806\) −56.2490 −1.98129
\(807\) −1.18340 −0.0416578
\(808\) −14.7993 −0.520636
\(809\) −1.65247 −0.0580979 −0.0290489 0.999578i \(-0.509248\pi\)
−0.0290489 + 0.999578i \(0.509248\pi\)
\(810\) −32.7977 −1.15239
\(811\) 35.3305 1.24062 0.620311 0.784356i \(-0.287007\pi\)
0.620311 + 0.784356i \(0.287007\pi\)
\(812\) −0.206083 −0.00723209
\(813\) 33.7952 1.18525
\(814\) −10.2588 −0.359571
\(815\) 17.6269 0.617444
\(816\) 0.630013 0.0220549
\(817\) 0.631781 0.0221032
\(818\) −13.9726 −0.488539
\(819\) −0.246472 −0.00861243
\(820\) −15.3785 −0.537042
\(821\) −32.0493 −1.11853 −0.559264 0.828990i \(-0.688916\pi\)
−0.559264 + 0.828990i \(0.688916\pi\)
\(822\) 23.3372 0.813978
\(823\) 10.0207 0.349298 0.174649 0.984631i \(-0.444121\pi\)
0.174649 + 0.984631i \(0.444121\pi\)
\(824\) −15.1653 −0.528308
\(825\) −17.2340 −0.600012
\(826\) −0.932460 −0.0324444
\(827\) −2.42462 −0.0843122 −0.0421561 0.999111i \(-0.513423\pi\)
−0.0421561 + 0.999111i \(0.513423\pi\)
\(828\) −0.405588 −0.0140952
\(829\) 32.8503 1.14094 0.570470 0.821319i \(-0.306761\pi\)
0.570470 + 0.821319i \(0.306761\pi\)
\(830\) 34.4668 1.19636
\(831\) −16.2302 −0.563021
\(832\) −6.91563 −0.239756
\(833\) 2.61841 0.0907225
\(834\) −9.89886 −0.342769
\(835\) −64.8369 −2.24377
\(836\) 0.115664 0.00400031
\(837\) −43.5015 −1.50363
\(838\) −2.12115 −0.0732741
\(839\) −2.59846 −0.0897089 −0.0448545 0.998994i \(-0.514282\pi\)
−0.0448545 + 0.998994i \(0.514282\pi\)
\(840\) 1.22051 0.0421117
\(841\) −27.7762 −0.957799
\(842\) 8.19111 0.282284
\(843\) 23.1294 0.796618
\(844\) −21.5575 −0.742038
\(845\) −136.148 −4.68364
\(846\) −0.605664 −0.0208232
\(847\) −0.186287 −0.00640089
\(848\) 9.17102 0.314934
\(849\) 24.2198 0.831222
\(850\) 3.86575 0.132594
\(851\) 21.7484 0.745525
\(852\) −5.31216 −0.181992
\(853\) 31.1353 1.06605 0.533025 0.846099i \(-0.321055\pi\)
0.533025 + 0.846099i \(0.321055\pi\)
\(854\) 0.406023 0.0138938
\(855\) 0.0865089 0.00295854
\(856\) 3.94080 0.134694
\(857\) 3.49682 0.119449 0.0597246 0.998215i \(-0.480978\pi\)
0.0597246 + 0.998215i \(0.480978\pi\)
\(858\) −11.5900 −0.395676
\(859\) 13.5088 0.460914 0.230457 0.973082i \(-0.425978\pi\)
0.230457 + 0.973082i \(0.425978\pi\)
\(860\) −21.3540 −0.728166
\(861\) 1.22811 0.0418540
\(862\) −3.75889 −0.128028
\(863\) 31.2746 1.06460 0.532301 0.846555i \(-0.321328\pi\)
0.532301 + 0.846555i \(0.321328\pi\)
\(864\) −5.34837 −0.181955
\(865\) −45.8830 −1.56007
\(866\) −0.505075 −0.0171631
\(867\) 28.2537 0.959545
\(868\) 1.51518 0.0514286
\(869\) −2.40602 −0.0816186
\(870\) −7.24804 −0.245732
\(871\) 13.8196 0.468260
\(872\) −15.1512 −0.513085
\(873\) 2.93003 0.0991664
\(874\) −0.245204 −0.00829415
\(875\) 3.84771 0.130076
\(876\) 5.10332 0.172425
\(877\) 30.2030 1.01988 0.509942 0.860209i \(-0.329667\pi\)
0.509942 + 0.860209i \(0.329667\pi\)
\(878\) 8.53428 0.288018
\(879\) 29.8564 1.00703
\(880\) −3.90939 −0.131786
\(881\) 17.9701 0.605429 0.302714 0.953081i \(-0.402107\pi\)
0.302714 + 0.953081i \(0.402107\pi\)
\(882\) −1.33258 −0.0448704
\(883\) 0.988212 0.0332560 0.0166280 0.999862i \(-0.494707\pi\)
0.0166280 + 0.999862i \(0.494707\pi\)
\(884\) 2.59974 0.0874387
\(885\) −32.7951 −1.10240
\(886\) −40.0089 −1.34412
\(887\) −19.9624 −0.670272 −0.335136 0.942170i \(-0.608782\pi\)
−0.335136 + 0.942170i \(0.608782\pi\)
\(888\) 17.1928 0.576954
\(889\) −0.639542 −0.0214495
\(890\) 7.00912 0.234946
\(891\) −8.38945 −0.281057
\(892\) 22.4994 0.753336
\(893\) −0.366163 −0.0122532
\(894\) −7.87408 −0.263349
\(895\) 16.2992 0.544822
\(896\) 0.186287 0.00622340
\(897\) 24.5705 0.820384
\(898\) −18.2096 −0.607663
\(899\) −8.99793 −0.300098
\(900\) −1.96739 −0.0655795
\(901\) −3.44759 −0.114856
\(902\) −3.93374 −0.130979
\(903\) 1.70531 0.0567491
\(904\) −2.79724 −0.0930349
\(905\) 7.83959 0.260597
\(906\) −28.9347 −0.961290
\(907\) 27.7598 0.921749 0.460874 0.887465i \(-0.347536\pi\)
0.460874 + 0.887465i \(0.347536\pi\)
\(908\) 24.3244 0.807233
\(909\) −2.83136 −0.0939101
\(910\) 5.03643 0.166956
\(911\) −55.7120 −1.84582 −0.922910 0.385015i \(-0.874196\pi\)
−0.922910 + 0.385015i \(0.874196\pi\)
\(912\) −0.193842 −0.00641875
\(913\) 8.81641 0.291781
\(914\) 41.9076 1.38618
\(915\) 14.2800 0.472084
\(916\) 24.5542 0.811294
\(917\) −0.484573 −0.0160020
\(918\) 2.01057 0.0663587
\(919\) 16.0170 0.528351 0.264176 0.964475i \(-0.414900\pi\)
0.264176 + 0.964475i \(0.414900\pi\)
\(920\) 8.28782 0.273241
\(921\) 23.9670 0.789741
\(922\) 10.3457 0.340718
\(923\) −21.9205 −0.721523
\(924\) 0.312200 0.0102706
\(925\) 105.495 3.46865
\(926\) −30.0975 −0.989067
\(927\) −2.90138 −0.0952939
\(928\) −1.10627 −0.0363150
\(929\) −32.2968 −1.05963 −0.529813 0.848115i \(-0.677738\pi\)
−0.529813 + 0.848115i \(0.677738\pi\)
\(930\) 53.2898 1.74744
\(931\) −0.805632 −0.0264035
\(932\) −5.83047 −0.190983
\(933\) −27.9213 −0.914103
\(934\) −3.42983 −0.112228
\(935\) 1.46963 0.0480620
\(936\) −1.32308 −0.0432462
\(937\) 3.83194 0.125184 0.0625920 0.998039i \(-0.480063\pi\)
0.0625920 + 0.998039i \(0.480063\pi\)
\(938\) −0.372260 −0.0121547
\(939\) 21.1885 0.691460
\(940\) 12.3762 0.403667
\(941\) 6.21455 0.202588 0.101294 0.994857i \(-0.467702\pi\)
0.101294 + 0.994857i \(0.467702\pi\)
\(942\) −20.6784 −0.673740
\(943\) 8.33943 0.271569
\(944\) −5.00551 −0.162915
\(945\) 3.89505 0.126706
\(946\) −5.46223 −0.177592
\(947\) −9.29858 −0.302163 −0.151082 0.988521i \(-0.548276\pi\)
−0.151082 + 0.988521i \(0.548276\pi\)
\(948\) 4.03228 0.130962
\(949\) 21.0588 0.683597
\(950\) −1.18941 −0.0385896
\(951\) −10.6565 −0.345560
\(952\) −0.0700293 −0.00226966
\(953\) 5.78009 0.187235 0.0936177 0.995608i \(-0.470157\pi\)
0.0936177 + 0.995608i \(0.470157\pi\)
\(954\) 1.75458 0.0568065
\(955\) 53.5368 1.73241
\(956\) −3.31189 −0.107114
\(957\) −1.85401 −0.0599315
\(958\) 11.6583 0.376664
\(959\) −2.59405 −0.0837663
\(960\) 6.55180 0.211459
\(961\) 35.1555 1.13405
\(962\) 70.9460 2.28739
\(963\) 0.753944 0.0242955
\(964\) −27.3280 −0.880176
\(965\) 58.8786 1.89537
\(966\) −0.661857 −0.0212949
\(967\) −32.9708 −1.06027 −0.530134 0.847914i \(-0.677859\pi\)
−0.530134 + 0.847914i \(0.677859\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0.0728696 0.00234091
\(970\) −59.8724 −1.92239
\(971\) 1.50896 0.0484247 0.0242124 0.999707i \(-0.492292\pi\)
0.0242124 + 0.999707i \(0.492292\pi\)
\(972\) −1.98513 −0.0636730
\(973\) 1.10031 0.0352744
\(974\) −8.38284 −0.268604
\(975\) 119.184 3.81694
\(976\) 2.17956 0.0697660
\(977\) −46.0591 −1.47356 −0.736781 0.676132i \(-0.763655\pi\)
−0.736781 + 0.676132i \(0.763655\pi\)
\(978\) −7.55645 −0.241629
\(979\) 1.79289 0.0573010
\(980\) 27.2301 0.869833
\(981\) −2.89869 −0.0925482
\(982\) −38.7701 −1.23720
\(983\) 59.3224 1.89209 0.946045 0.324036i \(-0.105040\pi\)
0.946045 + 0.324036i \(0.105040\pi\)
\(984\) 6.59260 0.210165
\(985\) −3.90939 −0.124564
\(986\) 0.415870 0.0132440
\(987\) −0.988350 −0.0314595
\(988\) −0.799887 −0.0254478
\(989\) 11.5798 0.368216
\(990\) −0.747935 −0.0237709
\(991\) −40.2884 −1.27980 −0.639901 0.768457i \(-0.721025\pi\)
−0.639901 + 0.768457i \(0.721025\pi\)
\(992\) 8.13360 0.258242
\(993\) 10.4463 0.331503
\(994\) 0.590475 0.0187287
\(995\) 53.1549 1.68512
\(996\) −14.7755 −0.468181
\(997\) 11.7352 0.371658 0.185829 0.982582i \(-0.440503\pi\)
0.185829 + 0.982582i \(0.440503\pi\)
\(998\) 36.9625 1.17003
\(999\) 54.8678 1.73594
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4334.2.a.a.1.4 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4334.2.a.a.1.4 15 1.1 even 1 trivial