Properties

Label 4334.2.a.a.1.2
Level $4334$
Weight $2$
Character 4334.1
Self dual yes
Analytic conductor $34.607$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4334,2,Mod(1,4334)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4334.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4334 = 2 \cdot 11 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4334.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.6071642360\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 23 x^{13} + 19 x^{12} + 194 x^{11} - 124 x^{10} - 761 x^{9} + 353 x^{8} + 1417 x^{7} - 465 x^{6} - 1128 x^{5} + 288 x^{4} + 316 x^{3} - 79 x^{2} - 20 x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.47732\) of defining polynomial
Character \(\chi\) \(=\) 4334.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.47732 q^{3} +1.00000 q^{4} +1.17448 q^{5} +2.47732 q^{6} +0.539926 q^{7} -1.00000 q^{8} +3.13710 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -2.47732 q^{3} +1.00000 q^{4} +1.17448 q^{5} +2.47732 q^{6} +0.539926 q^{7} -1.00000 q^{8} +3.13710 q^{9} -1.17448 q^{10} +1.00000 q^{11} -2.47732 q^{12} +3.77319 q^{13} -0.539926 q^{14} -2.90957 q^{15} +1.00000 q^{16} -5.84469 q^{17} -3.13710 q^{18} -0.884118 q^{19} +1.17448 q^{20} -1.33757 q^{21} -1.00000 q^{22} +5.41015 q^{23} +2.47732 q^{24} -3.62059 q^{25} -3.77319 q^{26} -0.339631 q^{27} +0.539926 q^{28} -1.87829 q^{29} +2.90957 q^{30} +1.14143 q^{31} -1.00000 q^{32} -2.47732 q^{33} +5.84469 q^{34} +0.634133 q^{35} +3.13710 q^{36} +2.52588 q^{37} +0.884118 q^{38} -9.34739 q^{39} -1.17448 q^{40} -1.15235 q^{41} +1.33757 q^{42} -10.8504 q^{43} +1.00000 q^{44} +3.68447 q^{45} -5.41015 q^{46} +0.607182 q^{47} -2.47732 q^{48} -6.70848 q^{49} +3.62059 q^{50} +14.4791 q^{51} +3.77319 q^{52} +2.28169 q^{53} +0.339631 q^{54} +1.17448 q^{55} -0.539926 q^{56} +2.19024 q^{57} +1.87829 q^{58} -7.45106 q^{59} -2.90957 q^{60} -8.34390 q^{61} -1.14143 q^{62} +1.69380 q^{63} +1.00000 q^{64} +4.43155 q^{65} +2.47732 q^{66} -14.3987 q^{67} -5.84469 q^{68} -13.4026 q^{69} -0.634133 q^{70} -6.18878 q^{71} -3.13710 q^{72} +12.6792 q^{73} -2.52588 q^{74} +8.96935 q^{75} -0.884118 q^{76} +0.539926 q^{77} +9.34739 q^{78} +15.3800 q^{79} +1.17448 q^{80} -8.56992 q^{81} +1.15235 q^{82} +13.5215 q^{83} -1.33757 q^{84} -6.86448 q^{85} +10.8504 q^{86} +4.65311 q^{87} -1.00000 q^{88} -4.22512 q^{89} -3.68447 q^{90} +2.03724 q^{91} +5.41015 q^{92} -2.82769 q^{93} -0.607182 q^{94} -1.03838 q^{95} +2.47732 q^{96} -14.4480 q^{97} +6.70848 q^{98} +3.13710 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{2} - q^{3} + 15 q^{4} - 7 q^{5} + q^{6} + q^{7} - 15 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 15 q^{2} - q^{3} + 15 q^{4} - 7 q^{5} + q^{6} + q^{7} - 15 q^{8} + 2 q^{9} + 7 q^{10} + 15 q^{11} - q^{12} - q^{13} - q^{14} - 6 q^{15} + 15 q^{16} - 6 q^{17} - 2 q^{18} - 14 q^{19} - 7 q^{20} - 3 q^{21} - 15 q^{22} + 2 q^{23} + q^{24} - 10 q^{25} + q^{26} - 7 q^{27} + q^{28} + 8 q^{29} + 6 q^{30} - 33 q^{31} - 15 q^{32} - q^{33} + 6 q^{34} - 8 q^{35} + 2 q^{36} - 9 q^{37} + 14 q^{38} - 9 q^{39} + 7 q^{40} - 10 q^{41} + 3 q^{42} - 6 q^{43} + 15 q^{44} - 20 q^{45} - 2 q^{46} - q^{47} - q^{48} - 30 q^{49} + 10 q^{50} + 12 q^{51} - q^{52} + 6 q^{53} + 7 q^{54} - 7 q^{55} - q^{56} - 24 q^{57} - 8 q^{58} - 15 q^{59} - 6 q^{60} - 25 q^{61} + 33 q^{62} + 12 q^{63} + 15 q^{64} + 31 q^{65} + q^{66} - 13 q^{67} - 6 q^{68} - 43 q^{69} + 8 q^{70} - 4 q^{71} - 2 q^{72} - 4 q^{73} + 9 q^{74} - 5 q^{75} - 14 q^{76} + q^{77} + 9 q^{78} - 20 q^{79} - 7 q^{80} + 11 q^{81} + 10 q^{82} + q^{83} - 3 q^{84} - q^{85} + 6 q^{86} + 22 q^{87} - 15 q^{88} - 41 q^{89} + 20 q^{90} - 31 q^{91} + 2 q^{92} + 14 q^{93} + q^{94} + 41 q^{95} + q^{96} - 57 q^{97} + 30 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −2.47732 −1.43028 −0.715140 0.698982i \(-0.753637\pi\)
−0.715140 + 0.698982i \(0.753637\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.17448 0.525245 0.262622 0.964899i \(-0.415413\pi\)
0.262622 + 0.964899i \(0.415413\pi\)
\(6\) 2.47732 1.01136
\(7\) 0.539926 0.204073 0.102036 0.994781i \(-0.467464\pi\)
0.102036 + 0.994781i \(0.467464\pi\)
\(8\) −1.00000 −0.353553
\(9\) 3.13710 1.04570
\(10\) −1.17448 −0.371404
\(11\) 1.00000 0.301511
\(12\) −2.47732 −0.715140
\(13\) 3.77319 1.04650 0.523248 0.852181i \(-0.324720\pi\)
0.523248 + 0.852181i \(0.324720\pi\)
\(14\) −0.539926 −0.144301
\(15\) −2.90957 −0.751247
\(16\) 1.00000 0.250000
\(17\) −5.84469 −1.41754 −0.708772 0.705437i \(-0.750751\pi\)
−0.708772 + 0.705437i \(0.750751\pi\)
\(18\) −3.13710 −0.739421
\(19\) −0.884118 −0.202831 −0.101415 0.994844i \(-0.532337\pi\)
−0.101415 + 0.994844i \(0.532337\pi\)
\(20\) 1.17448 0.262622
\(21\) −1.33757 −0.291881
\(22\) −1.00000 −0.213201
\(23\) 5.41015 1.12809 0.564047 0.825743i \(-0.309244\pi\)
0.564047 + 0.825743i \(0.309244\pi\)
\(24\) 2.47732 0.505680
\(25\) −3.62059 −0.724118
\(26\) −3.77319 −0.739984
\(27\) −0.339631 −0.0653620
\(28\) 0.539926 0.102036
\(29\) −1.87829 −0.348789 −0.174395 0.984676i \(-0.555797\pi\)
−0.174395 + 0.984676i \(0.555797\pi\)
\(30\) 2.90957 0.531212
\(31\) 1.14143 0.205008 0.102504 0.994733i \(-0.467315\pi\)
0.102504 + 0.994733i \(0.467315\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.47732 −0.431245
\(34\) 5.84469 1.00236
\(35\) 0.634133 0.107188
\(36\) 3.13710 0.522849
\(37\) 2.52588 0.415252 0.207626 0.978208i \(-0.433426\pi\)
0.207626 + 0.978208i \(0.433426\pi\)
\(38\) 0.884118 0.143423
\(39\) −9.34739 −1.49678
\(40\) −1.17448 −0.185702
\(41\) −1.15235 −0.179967 −0.0899836 0.995943i \(-0.528681\pi\)
−0.0899836 + 0.995943i \(0.528681\pi\)
\(42\) 1.33757 0.206391
\(43\) −10.8504 −1.65467 −0.827337 0.561707i \(-0.810145\pi\)
−0.827337 + 0.561707i \(0.810145\pi\)
\(44\) 1.00000 0.150756
\(45\) 3.68447 0.549248
\(46\) −5.41015 −0.797683
\(47\) 0.607182 0.0885667 0.0442833 0.999019i \(-0.485900\pi\)
0.0442833 + 0.999019i \(0.485900\pi\)
\(48\) −2.47732 −0.357570
\(49\) −6.70848 −0.958354
\(50\) 3.62059 0.512029
\(51\) 14.4791 2.02748
\(52\) 3.77319 0.523248
\(53\) 2.28169 0.313414 0.156707 0.987645i \(-0.449912\pi\)
0.156707 + 0.987645i \(0.449912\pi\)
\(54\) 0.339631 0.0462179
\(55\) 1.17448 0.158367
\(56\) −0.539926 −0.0721506
\(57\) 2.19024 0.290104
\(58\) 1.87829 0.246631
\(59\) −7.45106 −0.970045 −0.485023 0.874502i \(-0.661189\pi\)
−0.485023 + 0.874502i \(0.661189\pi\)
\(60\) −2.90957 −0.375623
\(61\) −8.34390 −1.06833 −0.534164 0.845381i \(-0.679373\pi\)
−0.534164 + 0.845381i \(0.679373\pi\)
\(62\) −1.14143 −0.144962
\(63\) 1.69380 0.213399
\(64\) 1.00000 0.125000
\(65\) 4.43155 0.549666
\(66\) 2.47732 0.304937
\(67\) −14.3987 −1.75908 −0.879538 0.475829i \(-0.842148\pi\)
−0.879538 + 0.475829i \(0.842148\pi\)
\(68\) −5.84469 −0.708772
\(69\) −13.4026 −1.61349
\(70\) −0.634133 −0.0757934
\(71\) −6.18878 −0.734474 −0.367237 0.930127i \(-0.619696\pi\)
−0.367237 + 0.930127i \(0.619696\pi\)
\(72\) −3.13710 −0.369710
\(73\) 12.6792 1.48399 0.741996 0.670405i \(-0.233879\pi\)
0.741996 + 0.670405i \(0.233879\pi\)
\(74\) −2.52588 −0.293628
\(75\) 8.96935 1.03569
\(76\) −0.884118 −0.101415
\(77\) 0.539926 0.0615302
\(78\) 9.34739 1.05838
\(79\) 15.3800 1.73038 0.865190 0.501444i \(-0.167198\pi\)
0.865190 + 0.501444i \(0.167198\pi\)
\(80\) 1.17448 0.131311
\(81\) −8.56992 −0.952213
\(82\) 1.15235 0.127256
\(83\) 13.5215 1.48417 0.742087 0.670304i \(-0.233836\pi\)
0.742087 + 0.670304i \(0.233836\pi\)
\(84\) −1.33757 −0.145940
\(85\) −6.86448 −0.744558
\(86\) 10.8504 1.17003
\(87\) 4.65311 0.498866
\(88\) −1.00000 −0.106600
\(89\) −4.22512 −0.447861 −0.223931 0.974605i \(-0.571889\pi\)
−0.223931 + 0.974605i \(0.571889\pi\)
\(90\) −3.68447 −0.388377
\(91\) 2.03724 0.213561
\(92\) 5.41015 0.564047
\(93\) −2.82769 −0.293218
\(94\) −0.607182 −0.0626261
\(95\) −1.03838 −0.106536
\(96\) 2.47732 0.252840
\(97\) −14.4480 −1.46698 −0.733489 0.679702i \(-0.762109\pi\)
−0.733489 + 0.679702i \(0.762109\pi\)
\(98\) 6.70848 0.677659
\(99\) 3.13710 0.315290
\(100\) −3.62059 −0.362059
\(101\) 17.9364 1.78474 0.892371 0.451302i \(-0.149040\pi\)
0.892371 + 0.451302i \(0.149040\pi\)
\(102\) −14.4791 −1.43365
\(103\) 10.7356 1.05781 0.528905 0.848681i \(-0.322603\pi\)
0.528905 + 0.848681i \(0.322603\pi\)
\(104\) −3.77319 −0.369992
\(105\) −1.57095 −0.153309
\(106\) −2.28169 −0.221617
\(107\) 12.3551 1.19441 0.597205 0.802089i \(-0.296278\pi\)
0.597205 + 0.802089i \(0.296278\pi\)
\(108\) −0.339631 −0.0326810
\(109\) −16.4018 −1.57101 −0.785505 0.618855i \(-0.787597\pi\)
−0.785505 + 0.618855i \(0.787597\pi\)
\(110\) −1.17448 −0.111983
\(111\) −6.25741 −0.593927
\(112\) 0.539926 0.0510182
\(113\) 7.82432 0.736050 0.368025 0.929816i \(-0.380034\pi\)
0.368025 + 0.929816i \(0.380034\pi\)
\(114\) −2.19024 −0.205135
\(115\) 6.35412 0.592525
\(116\) −1.87829 −0.174395
\(117\) 11.8369 1.09432
\(118\) 7.45106 0.685926
\(119\) −3.15570 −0.289282
\(120\) 2.90957 0.265606
\(121\) 1.00000 0.0909091
\(122\) 8.34390 0.755421
\(123\) 2.85474 0.257403
\(124\) 1.14143 0.102504
\(125\) −10.1247 −0.905584
\(126\) −1.69380 −0.150896
\(127\) −6.81011 −0.604300 −0.302150 0.953260i \(-0.597704\pi\)
−0.302150 + 0.953260i \(0.597704\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 26.8799 2.36664
\(130\) −4.43155 −0.388673
\(131\) 10.8126 0.944700 0.472350 0.881411i \(-0.343406\pi\)
0.472350 + 0.881411i \(0.343406\pi\)
\(132\) −2.47732 −0.215623
\(133\) −0.477358 −0.0413922
\(134\) 14.3987 1.24385
\(135\) −0.398891 −0.0343310
\(136\) 5.84469 0.501178
\(137\) −8.34831 −0.713244 −0.356622 0.934249i \(-0.616072\pi\)
−0.356622 + 0.934249i \(0.616072\pi\)
\(138\) 13.4026 1.14091
\(139\) 0.295437 0.0250586 0.0125293 0.999922i \(-0.496012\pi\)
0.0125293 + 0.999922i \(0.496012\pi\)
\(140\) 0.634133 0.0535940
\(141\) −1.50418 −0.126675
\(142\) 6.18878 0.519351
\(143\) 3.77319 0.315530
\(144\) 3.13710 0.261425
\(145\) −2.20602 −0.183200
\(146\) −12.6792 −1.04934
\(147\) 16.6190 1.37071
\(148\) 2.52588 0.207626
\(149\) −3.70851 −0.303813 −0.151907 0.988395i \(-0.548541\pi\)
−0.151907 + 0.988395i \(0.548541\pi\)
\(150\) −8.96935 −0.732344
\(151\) 5.75292 0.468166 0.234083 0.972217i \(-0.424791\pi\)
0.234083 + 0.972217i \(0.424791\pi\)
\(152\) 0.884118 0.0717115
\(153\) −18.3353 −1.48232
\(154\) −0.539926 −0.0435084
\(155\) 1.34059 0.107679
\(156\) −9.34739 −0.748390
\(157\) 17.2199 1.37430 0.687151 0.726515i \(-0.258861\pi\)
0.687151 + 0.726515i \(0.258861\pi\)
\(158\) −15.3800 −1.22356
\(159\) −5.65246 −0.448269
\(160\) −1.17448 −0.0928510
\(161\) 2.92108 0.230213
\(162\) 8.56992 0.673316
\(163\) −21.0957 −1.65234 −0.826170 0.563421i \(-0.809485\pi\)
−0.826170 + 0.563421i \(0.809485\pi\)
\(164\) −1.15235 −0.0899836
\(165\) −2.90957 −0.226509
\(166\) −13.5215 −1.04947
\(167\) −12.7388 −0.985756 −0.492878 0.870098i \(-0.664055\pi\)
−0.492878 + 0.870098i \(0.664055\pi\)
\(168\) 1.33757 0.103195
\(169\) 1.23698 0.0951521
\(170\) 6.86448 0.526482
\(171\) −2.77356 −0.212100
\(172\) −10.8504 −0.827337
\(173\) −18.9753 −1.44267 −0.721334 0.692588i \(-0.756471\pi\)
−0.721334 + 0.692588i \(0.756471\pi\)
\(174\) −4.65311 −0.352751
\(175\) −1.95485 −0.147773
\(176\) 1.00000 0.0753778
\(177\) 18.4586 1.38744
\(178\) 4.22512 0.316686
\(179\) 20.0469 1.49837 0.749187 0.662358i \(-0.230444\pi\)
0.749187 + 0.662358i \(0.230444\pi\)
\(180\) 3.68447 0.274624
\(181\) −8.48119 −0.630402 −0.315201 0.949025i \(-0.602072\pi\)
−0.315201 + 0.949025i \(0.602072\pi\)
\(182\) −2.03724 −0.151010
\(183\) 20.6705 1.52801
\(184\) −5.41015 −0.398841
\(185\) 2.96660 0.218109
\(186\) 2.82769 0.207336
\(187\) −5.84469 −0.427406
\(188\) 0.607182 0.0442833
\(189\) −0.183375 −0.0133386
\(190\) 1.03838 0.0753321
\(191\) 1.98035 0.143293 0.0716465 0.997430i \(-0.477175\pi\)
0.0716465 + 0.997430i \(0.477175\pi\)
\(192\) −2.47732 −0.178785
\(193\) 11.9118 0.857432 0.428716 0.903439i \(-0.358966\pi\)
0.428716 + 0.903439i \(0.358966\pi\)
\(194\) 14.4480 1.03731
\(195\) −10.9783 −0.786176
\(196\) −6.70848 −0.479177
\(197\) 1.00000 0.0712470
\(198\) −3.13710 −0.222944
\(199\) 17.3954 1.23313 0.616565 0.787304i \(-0.288524\pi\)
0.616565 + 0.787304i \(0.288524\pi\)
\(200\) 3.62059 0.256014
\(201\) 35.6700 2.51597
\(202\) −17.9364 −1.26200
\(203\) −1.01414 −0.0711783
\(204\) 14.4791 1.01374
\(205\) −1.35342 −0.0945268
\(206\) −10.7356 −0.747985
\(207\) 16.9722 1.17965
\(208\) 3.77319 0.261624
\(209\) −0.884118 −0.0611557
\(210\) 1.57095 0.108406
\(211\) −21.2882 −1.46554 −0.732772 0.680475i \(-0.761774\pi\)
−0.732772 + 0.680475i \(0.761774\pi\)
\(212\) 2.28169 0.156707
\(213\) 15.3316 1.05050
\(214\) −12.3551 −0.844576
\(215\) −12.7436 −0.869108
\(216\) 0.339631 0.0231090
\(217\) 0.616289 0.0418364
\(218\) 16.4018 1.11087
\(219\) −31.4105 −2.12252
\(220\) 1.17448 0.0791836
\(221\) −22.0531 −1.48345
\(222\) 6.25741 0.419970
\(223\) −5.17257 −0.346381 −0.173191 0.984888i \(-0.555408\pi\)
−0.173191 + 0.984888i \(0.555408\pi\)
\(224\) −0.539926 −0.0360753
\(225\) −11.3581 −0.757209
\(226\) −7.82432 −0.520466
\(227\) −13.7127 −0.910145 −0.455073 0.890454i \(-0.650387\pi\)
−0.455073 + 0.890454i \(0.650387\pi\)
\(228\) 2.19024 0.145052
\(229\) −21.0838 −1.39325 −0.696627 0.717433i \(-0.745317\pi\)
−0.696627 + 0.717433i \(0.745317\pi\)
\(230\) −6.35412 −0.418979
\(231\) −1.33757 −0.0880054
\(232\) 1.87829 0.123316
\(233\) 3.24784 0.212773 0.106386 0.994325i \(-0.466072\pi\)
0.106386 + 0.994325i \(0.466072\pi\)
\(234\) −11.8369 −0.773800
\(235\) 0.713125 0.0465192
\(236\) −7.45106 −0.485023
\(237\) −38.1010 −2.47493
\(238\) 3.15570 0.204553
\(239\) −22.7158 −1.46936 −0.734681 0.678412i \(-0.762668\pi\)
−0.734681 + 0.678412i \(0.762668\pi\)
\(240\) −2.90957 −0.187812
\(241\) −22.5489 −1.45250 −0.726250 0.687431i \(-0.758738\pi\)
−0.726250 + 0.687431i \(0.758738\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 22.2493 1.42729
\(244\) −8.34390 −0.534164
\(245\) −7.87899 −0.503371
\(246\) −2.85474 −0.182012
\(247\) −3.33595 −0.212261
\(248\) −1.14143 −0.0724811
\(249\) −33.4969 −2.12278
\(250\) 10.1247 0.640344
\(251\) 8.07513 0.509698 0.254849 0.966981i \(-0.417974\pi\)
0.254849 + 0.966981i \(0.417974\pi\)
\(252\) 1.69380 0.106699
\(253\) 5.41015 0.340133
\(254\) 6.81011 0.427304
\(255\) 17.0055 1.06493
\(256\) 1.00000 0.0625000
\(257\) 6.40997 0.399843 0.199922 0.979812i \(-0.435931\pi\)
0.199922 + 0.979812i \(0.435931\pi\)
\(258\) −26.8799 −1.67347
\(259\) 1.36379 0.0847416
\(260\) 4.43155 0.274833
\(261\) −5.89237 −0.364728
\(262\) −10.8126 −0.668004
\(263\) 21.3227 1.31482 0.657408 0.753535i \(-0.271653\pi\)
0.657408 + 0.753535i \(0.271653\pi\)
\(264\) 2.47732 0.152468
\(265\) 2.67980 0.164619
\(266\) 0.477358 0.0292687
\(267\) 10.4669 0.640567
\(268\) −14.3987 −0.879538
\(269\) −11.9333 −0.727584 −0.363792 0.931480i \(-0.618518\pi\)
−0.363792 + 0.931480i \(0.618518\pi\)
\(270\) 0.398891 0.0242757
\(271\) −2.15131 −0.130683 −0.0653414 0.997863i \(-0.520814\pi\)
−0.0653414 + 0.997863i \(0.520814\pi\)
\(272\) −5.84469 −0.354386
\(273\) −5.04689 −0.305452
\(274\) 8.34831 0.504340
\(275\) −3.62059 −0.218330
\(276\) −13.4026 −0.806744
\(277\) −8.75792 −0.526213 −0.263106 0.964767i \(-0.584747\pi\)
−0.263106 + 0.964767i \(0.584747\pi\)
\(278\) −0.295437 −0.0177191
\(279\) 3.58079 0.214376
\(280\) −0.634133 −0.0378967
\(281\) −27.4533 −1.63773 −0.818864 0.573987i \(-0.805396\pi\)
−0.818864 + 0.573987i \(0.805396\pi\)
\(282\) 1.50418 0.0895728
\(283\) −4.59254 −0.272998 −0.136499 0.990640i \(-0.543585\pi\)
−0.136499 + 0.990640i \(0.543585\pi\)
\(284\) −6.18878 −0.367237
\(285\) 2.57240 0.152376
\(286\) −3.77319 −0.223114
\(287\) −0.622184 −0.0367264
\(288\) −3.13710 −0.184855
\(289\) 17.1604 1.00943
\(290\) 2.20602 0.129542
\(291\) 35.7924 2.09819
\(292\) 12.6792 0.741996
\(293\) −0.240754 −0.0140650 −0.00703250 0.999975i \(-0.502239\pi\)
−0.00703250 + 0.999975i \(0.502239\pi\)
\(294\) −16.6190 −0.969241
\(295\) −8.75114 −0.509511
\(296\) −2.52588 −0.146814
\(297\) −0.339631 −0.0197074
\(298\) 3.70851 0.214828
\(299\) 20.4135 1.18054
\(300\) 8.96935 0.517846
\(301\) −5.85842 −0.337674
\(302\) −5.75292 −0.331043
\(303\) −44.4342 −2.55268
\(304\) −0.884118 −0.0507077
\(305\) −9.79977 −0.561133
\(306\) 18.3353 1.04816
\(307\) 30.5370 1.74284 0.871420 0.490538i \(-0.163200\pi\)
0.871420 + 0.490538i \(0.163200\pi\)
\(308\) 0.539926 0.0307651
\(309\) −26.5955 −1.51296
\(310\) −1.34059 −0.0761406
\(311\) −5.18206 −0.293848 −0.146924 0.989148i \(-0.546937\pi\)
−0.146924 + 0.989148i \(0.546937\pi\)
\(312\) 9.34739 0.529192
\(313\) −28.8064 −1.62823 −0.814117 0.580701i \(-0.802779\pi\)
−0.814117 + 0.580701i \(0.802779\pi\)
\(314\) −17.2199 −0.971778
\(315\) 1.98934 0.112086
\(316\) 15.3800 0.865190
\(317\) 11.6051 0.651805 0.325902 0.945403i \(-0.394332\pi\)
0.325902 + 0.945403i \(0.394332\pi\)
\(318\) 5.65246 0.316974
\(319\) −1.87829 −0.105164
\(320\) 1.17448 0.0656556
\(321\) −30.6074 −1.70834
\(322\) −2.92108 −0.162785
\(323\) 5.16739 0.287521
\(324\) −8.56992 −0.476106
\(325\) −13.6612 −0.757786
\(326\) 21.0957 1.16838
\(327\) 40.6325 2.24698
\(328\) 1.15235 0.0636280
\(329\) 0.327833 0.0180740
\(330\) 2.90957 0.160166
\(331\) 9.28416 0.510304 0.255152 0.966901i \(-0.417875\pi\)
0.255152 + 0.966901i \(0.417875\pi\)
\(332\) 13.5215 0.742087
\(333\) 7.92393 0.434229
\(334\) 12.7388 0.697035
\(335\) −16.9110 −0.923945
\(336\) −1.33757 −0.0729702
\(337\) 23.1156 1.25919 0.629595 0.776924i \(-0.283221\pi\)
0.629595 + 0.776924i \(0.283221\pi\)
\(338\) −1.23698 −0.0672827
\(339\) −19.3833 −1.05276
\(340\) −6.86448 −0.372279
\(341\) 1.14143 0.0618121
\(342\) 2.77356 0.149977
\(343\) −7.40156 −0.399647
\(344\) 10.8504 0.585015
\(345\) −15.7412 −0.847476
\(346\) 18.9753 1.02012
\(347\) 22.4255 1.20386 0.601932 0.798548i \(-0.294398\pi\)
0.601932 + 0.798548i \(0.294398\pi\)
\(348\) 4.65311 0.249433
\(349\) −30.9220 −1.65522 −0.827608 0.561306i \(-0.810299\pi\)
−0.827608 + 0.561306i \(0.810299\pi\)
\(350\) 1.95485 0.104491
\(351\) −1.28149 −0.0684010
\(352\) −1.00000 −0.0533002
\(353\) 0.158420 0.00843184 0.00421592 0.999991i \(-0.498658\pi\)
0.00421592 + 0.999991i \(0.498658\pi\)
\(354\) −18.4586 −0.981065
\(355\) −7.26862 −0.385778
\(356\) −4.22512 −0.223931
\(357\) 7.81766 0.413754
\(358\) −20.0469 −1.05951
\(359\) −13.5023 −0.712626 −0.356313 0.934367i \(-0.615966\pi\)
−0.356313 + 0.934367i \(0.615966\pi\)
\(360\) −3.68447 −0.194188
\(361\) −18.2183 −0.958860
\(362\) 8.48119 0.445762
\(363\) −2.47732 −0.130025
\(364\) 2.03724 0.106781
\(365\) 14.8915 0.779459
\(366\) −20.6705 −1.08046
\(367\) −25.4621 −1.32911 −0.664555 0.747239i \(-0.731379\pi\)
−0.664555 + 0.747239i \(0.731379\pi\)
\(368\) 5.41015 0.282023
\(369\) −3.61504 −0.188191
\(370\) −2.96660 −0.154226
\(371\) 1.23194 0.0639592
\(372\) −2.82769 −0.146609
\(373\) 23.3957 1.21138 0.605691 0.795700i \(-0.292897\pi\)
0.605691 + 0.795700i \(0.292897\pi\)
\(374\) 5.84469 0.302222
\(375\) 25.0822 1.29524
\(376\) −0.607182 −0.0313130
\(377\) −7.08714 −0.365006
\(378\) 0.183375 0.00943181
\(379\) 3.72885 0.191538 0.0957691 0.995404i \(-0.469469\pi\)
0.0957691 + 0.995404i \(0.469469\pi\)
\(380\) −1.03838 −0.0532679
\(381\) 16.8708 0.864317
\(382\) −1.98035 −0.101324
\(383\) −24.1680 −1.23493 −0.617464 0.786599i \(-0.711840\pi\)
−0.617464 + 0.786599i \(0.711840\pi\)
\(384\) 2.47732 0.126420
\(385\) 0.634133 0.0323184
\(386\) −11.9118 −0.606296
\(387\) −34.0388 −1.73029
\(388\) −14.4480 −0.733489
\(389\) −25.4423 −1.28998 −0.644988 0.764193i \(-0.723138\pi\)
−0.644988 + 0.764193i \(0.723138\pi\)
\(390\) 10.9783 0.555910
\(391\) −31.6206 −1.59912
\(392\) 6.70848 0.338829
\(393\) −26.7862 −1.35118
\(394\) −1.00000 −0.0503793
\(395\) 18.0635 0.908873
\(396\) 3.13710 0.157645
\(397\) −19.7031 −0.988868 −0.494434 0.869215i \(-0.664625\pi\)
−0.494434 + 0.869215i \(0.664625\pi\)
\(398\) −17.3954 −0.871955
\(399\) 1.18257 0.0592024
\(400\) −3.62059 −0.181030
\(401\) 4.76826 0.238116 0.119058 0.992887i \(-0.462013\pi\)
0.119058 + 0.992887i \(0.462013\pi\)
\(402\) −35.6700 −1.77906
\(403\) 4.30685 0.214539
\(404\) 17.9364 0.892371
\(405\) −10.0652 −0.500145
\(406\) 1.01414 0.0503307
\(407\) 2.52588 0.125203
\(408\) −14.4791 −0.716824
\(409\) −31.6504 −1.56501 −0.782506 0.622643i \(-0.786059\pi\)
−0.782506 + 0.622643i \(0.786059\pi\)
\(410\) 1.35342 0.0668405
\(411\) 20.6814 1.02014
\(412\) 10.7356 0.528905
\(413\) −4.02302 −0.197960
\(414\) −16.9722 −0.834136
\(415\) 15.8807 0.779554
\(416\) −3.77319 −0.184996
\(417\) −0.731890 −0.0358408
\(418\) 0.884118 0.0432436
\(419\) −4.15370 −0.202922 −0.101461 0.994840i \(-0.532352\pi\)
−0.101461 + 0.994840i \(0.532352\pi\)
\(420\) −1.57095 −0.0766544
\(421\) −35.5667 −1.73341 −0.866707 0.498818i \(-0.833768\pi\)
−0.866707 + 0.498818i \(0.833768\pi\)
\(422\) 21.2882 1.03630
\(423\) 1.90479 0.0926140
\(424\) −2.28169 −0.110809
\(425\) 21.1612 1.02647
\(426\) −15.3316 −0.742817
\(427\) −4.50509 −0.218016
\(428\) 12.3551 0.597205
\(429\) −9.34739 −0.451296
\(430\) 12.7436 0.614552
\(431\) −9.40098 −0.452829 −0.226415 0.974031i \(-0.572700\pi\)
−0.226415 + 0.974031i \(0.572700\pi\)
\(432\) −0.339631 −0.0163405
\(433\) 7.91627 0.380432 0.190216 0.981742i \(-0.439081\pi\)
0.190216 + 0.981742i \(0.439081\pi\)
\(434\) −0.616289 −0.0295828
\(435\) 5.46500 0.262027
\(436\) −16.4018 −0.785505
\(437\) −4.78321 −0.228812
\(438\) 31.4105 1.50085
\(439\) −18.4842 −0.882201 −0.441101 0.897458i \(-0.645412\pi\)
−0.441101 + 0.897458i \(0.645412\pi\)
\(440\) −1.17448 −0.0559913
\(441\) −21.0451 −1.00215
\(442\) 22.0531 1.04896
\(443\) 19.4468 0.923945 0.461973 0.886894i \(-0.347142\pi\)
0.461973 + 0.886894i \(0.347142\pi\)
\(444\) −6.25741 −0.296963
\(445\) −4.96233 −0.235237
\(446\) 5.17257 0.244928
\(447\) 9.18716 0.434538
\(448\) 0.539926 0.0255091
\(449\) −28.5274 −1.34629 −0.673146 0.739510i \(-0.735057\pi\)
−0.673146 + 0.739510i \(0.735057\pi\)
\(450\) 11.3581 0.535428
\(451\) −1.15235 −0.0542621
\(452\) 7.82432 0.368025
\(453\) −14.2518 −0.669608
\(454\) 13.7127 0.643570
\(455\) 2.39271 0.112172
\(456\) −2.19024 −0.102567
\(457\) −17.8937 −0.837032 −0.418516 0.908209i \(-0.637450\pi\)
−0.418516 + 0.908209i \(0.637450\pi\)
\(458\) 21.0838 0.985180
\(459\) 1.98504 0.0926536
\(460\) 6.35412 0.296263
\(461\) −39.2738 −1.82916 −0.914582 0.404400i \(-0.867480\pi\)
−0.914582 + 0.404400i \(0.867480\pi\)
\(462\) 1.33757 0.0622292
\(463\) 25.6911 1.19397 0.596984 0.802253i \(-0.296366\pi\)
0.596984 + 0.802253i \(0.296366\pi\)
\(464\) −1.87829 −0.0871973
\(465\) −3.32108 −0.154011
\(466\) −3.24784 −0.150453
\(467\) −13.9249 −0.644370 −0.322185 0.946677i \(-0.604417\pi\)
−0.322185 + 0.946677i \(0.604417\pi\)
\(468\) 11.8369 0.547159
\(469\) −7.77420 −0.358979
\(470\) −0.713125 −0.0328940
\(471\) −42.6593 −1.96563
\(472\) 7.45106 0.342963
\(473\) −10.8504 −0.498903
\(474\) 38.1010 1.75004
\(475\) 3.20103 0.146873
\(476\) −3.15570 −0.144641
\(477\) 7.15787 0.327736
\(478\) 22.7158 1.03900
\(479\) 13.5517 0.619191 0.309596 0.950868i \(-0.399806\pi\)
0.309596 + 0.950868i \(0.399806\pi\)
\(480\) 2.90957 0.132803
\(481\) 9.53063 0.434559
\(482\) 22.5489 1.02707
\(483\) −7.23643 −0.329269
\(484\) 1.00000 0.0454545
\(485\) −16.9690 −0.770522
\(486\) −22.2493 −1.00925
\(487\) 27.5587 1.24880 0.624401 0.781104i \(-0.285343\pi\)
0.624401 + 0.781104i \(0.285343\pi\)
\(488\) 8.34390 0.377711
\(489\) 52.2607 2.36331
\(490\) 7.87899 0.355937
\(491\) 15.9053 0.717794 0.358897 0.933377i \(-0.383153\pi\)
0.358897 + 0.933377i \(0.383153\pi\)
\(492\) 2.85474 0.128702
\(493\) 10.9780 0.494424
\(494\) 3.33595 0.150091
\(495\) 3.68447 0.165604
\(496\) 1.14143 0.0512519
\(497\) −3.34148 −0.149886
\(498\) 33.4969 1.50103
\(499\) −25.2344 −1.12965 −0.564823 0.825212i \(-0.691056\pi\)
−0.564823 + 0.825212i \(0.691056\pi\)
\(500\) −10.1247 −0.452792
\(501\) 31.5580 1.40991
\(502\) −8.07513 −0.360411
\(503\) −29.1228 −1.29852 −0.649261 0.760565i \(-0.724922\pi\)
−0.649261 + 0.760565i \(0.724922\pi\)
\(504\) −1.69380 −0.0754478
\(505\) 21.0660 0.937426
\(506\) −5.41015 −0.240510
\(507\) −3.06438 −0.136094
\(508\) −6.81011 −0.302150
\(509\) −31.0295 −1.37536 −0.687680 0.726014i \(-0.741371\pi\)
−0.687680 + 0.726014i \(0.741371\pi\)
\(510\) −17.0055 −0.753016
\(511\) 6.84584 0.302842
\(512\) −1.00000 −0.0441942
\(513\) 0.300274 0.0132574
\(514\) −6.40997 −0.282732
\(515\) 12.6088 0.555609
\(516\) 26.8799 1.18332
\(517\) 0.607182 0.0267039
\(518\) −1.36379 −0.0599214
\(519\) 47.0079 2.06342
\(520\) −4.43155 −0.194336
\(521\) −42.3633 −1.85597 −0.927985 0.372619i \(-0.878460\pi\)
−0.927985 + 0.372619i \(0.878460\pi\)
\(522\) 5.89237 0.257902
\(523\) 26.7650 1.17035 0.585176 0.810906i \(-0.301025\pi\)
0.585176 + 0.810906i \(0.301025\pi\)
\(524\) 10.8126 0.472350
\(525\) 4.84278 0.211356
\(526\) −21.3227 −0.929715
\(527\) −6.67132 −0.290607
\(528\) −2.47732 −0.107811
\(529\) 6.26969 0.272595
\(530\) −2.67980 −0.116403
\(531\) −23.3747 −1.01438
\(532\) −0.477358 −0.0206961
\(533\) −4.34805 −0.188335
\(534\) −10.4669 −0.452949
\(535\) 14.5108 0.627358
\(536\) 14.3987 0.621927
\(537\) −49.6625 −2.14309
\(538\) 11.9333 0.514480
\(539\) −6.70848 −0.288955
\(540\) −0.398891 −0.0171655
\(541\) −13.7426 −0.590838 −0.295419 0.955368i \(-0.595459\pi\)
−0.295419 + 0.955368i \(0.595459\pi\)
\(542\) 2.15131 0.0924067
\(543\) 21.0106 0.901651
\(544\) 5.84469 0.250589
\(545\) −19.2637 −0.825165
\(546\) 5.04689 0.215987
\(547\) −39.3492 −1.68245 −0.841224 0.540687i \(-0.818164\pi\)
−0.841224 + 0.540687i \(0.818164\pi\)
\(548\) −8.34831 −0.356622
\(549\) −26.1756 −1.11715
\(550\) 3.62059 0.154382
\(551\) 1.66063 0.0707451
\(552\) 13.4026 0.570454
\(553\) 8.30403 0.353123
\(554\) 8.75792 0.372088
\(555\) −7.34922 −0.311957
\(556\) 0.295437 0.0125293
\(557\) 34.1475 1.44688 0.723439 0.690389i \(-0.242560\pi\)
0.723439 + 0.690389i \(0.242560\pi\)
\(558\) −3.58079 −0.151587
\(559\) −40.9407 −1.73161
\(560\) 0.634133 0.0267970
\(561\) 14.4791 0.611310
\(562\) 27.4533 1.15805
\(563\) 11.7652 0.495845 0.247922 0.968780i \(-0.420252\pi\)
0.247922 + 0.968780i \(0.420252\pi\)
\(564\) −1.50418 −0.0633375
\(565\) 9.18953 0.386607
\(566\) 4.59254 0.193039
\(567\) −4.62712 −0.194321
\(568\) 6.18878 0.259676
\(569\) 17.9116 0.750892 0.375446 0.926844i \(-0.377490\pi\)
0.375446 + 0.926844i \(0.377490\pi\)
\(570\) −2.57240 −0.107746
\(571\) −37.4522 −1.56733 −0.783663 0.621187i \(-0.786651\pi\)
−0.783663 + 0.621187i \(0.786651\pi\)
\(572\) 3.77319 0.157765
\(573\) −4.90595 −0.204949
\(574\) 0.622184 0.0259695
\(575\) −19.5879 −0.816873
\(576\) 3.13710 0.130712
\(577\) −28.8280 −1.20012 −0.600062 0.799954i \(-0.704857\pi\)
−0.600062 + 0.799954i \(0.704857\pi\)
\(578\) −17.1604 −0.713777
\(579\) −29.5094 −1.22637
\(580\) −2.20602 −0.0915998
\(581\) 7.30058 0.302879
\(582\) −35.7924 −1.48364
\(583\) 2.28169 0.0944978
\(584\) −12.6792 −0.524670
\(585\) 13.9022 0.574785
\(586\) 0.240754 0.00994545
\(587\) −0.316448 −0.0130612 −0.00653061 0.999979i \(-0.502079\pi\)
−0.00653061 + 0.999979i \(0.502079\pi\)
\(588\) 16.6190 0.685357
\(589\) −1.00916 −0.0415818
\(590\) 8.75114 0.360279
\(591\) −2.47732 −0.101903
\(592\) 2.52588 0.103813
\(593\) −47.0430 −1.93182 −0.965912 0.258869i \(-0.916650\pi\)
−0.965912 + 0.258869i \(0.916650\pi\)
\(594\) 0.339631 0.0139352
\(595\) −3.70631 −0.151944
\(596\) −3.70851 −0.151907
\(597\) −43.0940 −1.76372
\(598\) −20.4135 −0.834771
\(599\) 21.1359 0.863591 0.431796 0.901971i \(-0.357880\pi\)
0.431796 + 0.901971i \(0.357880\pi\)
\(600\) −8.96935 −0.366172
\(601\) 41.2331 1.68193 0.840966 0.541088i \(-0.181987\pi\)
0.840966 + 0.541088i \(0.181987\pi\)
\(602\) 5.85842 0.238771
\(603\) −45.1700 −1.83946
\(604\) 5.75292 0.234083
\(605\) 1.17448 0.0477495
\(606\) 44.4342 1.80502
\(607\) 1.50077 0.0609142 0.0304571 0.999536i \(-0.490304\pi\)
0.0304571 + 0.999536i \(0.490304\pi\)
\(608\) 0.884118 0.0358557
\(609\) 2.51233 0.101805
\(610\) 9.79977 0.396781
\(611\) 2.29102 0.0926846
\(612\) −18.3353 −0.741162
\(613\) 9.46197 0.382165 0.191083 0.981574i \(-0.438800\pi\)
0.191083 + 0.981574i \(0.438800\pi\)
\(614\) −30.5370 −1.23237
\(615\) 3.35284 0.135200
\(616\) −0.539926 −0.0217542
\(617\) 37.1697 1.49640 0.748198 0.663476i \(-0.230919\pi\)
0.748198 + 0.663476i \(0.230919\pi\)
\(618\) 26.5955 1.06983
\(619\) 13.5189 0.543372 0.271686 0.962386i \(-0.412419\pi\)
0.271686 + 0.962386i \(0.412419\pi\)
\(620\) 1.34059 0.0538396
\(621\) −1.83745 −0.0737345
\(622\) 5.18206 0.207782
\(623\) −2.28125 −0.0913963
\(624\) −9.34739 −0.374195
\(625\) 6.21162 0.248465
\(626\) 28.8064 1.15134
\(627\) 2.19024 0.0874698
\(628\) 17.2199 0.687151
\(629\) −14.7630 −0.588639
\(630\) −1.98934 −0.0792571
\(631\) 9.69831 0.386084 0.193042 0.981191i \(-0.438165\pi\)
0.193042 + 0.981191i \(0.438165\pi\)
\(632\) −15.3800 −0.611782
\(633\) 52.7377 2.09614
\(634\) −11.6051 −0.460896
\(635\) −7.99836 −0.317405
\(636\) −5.65246 −0.224135
\(637\) −25.3124 −1.00291
\(638\) 1.87829 0.0743621
\(639\) −19.4148 −0.768038
\(640\) −1.17448 −0.0464255
\(641\) 13.8442 0.546811 0.273406 0.961899i \(-0.411850\pi\)
0.273406 + 0.961899i \(0.411850\pi\)
\(642\) 30.6074 1.20798
\(643\) −15.5032 −0.611388 −0.305694 0.952130i \(-0.598888\pi\)
−0.305694 + 0.952130i \(0.598888\pi\)
\(644\) 2.92108 0.115107
\(645\) 31.5700 1.24307
\(646\) −5.16739 −0.203308
\(647\) −2.71766 −0.106842 −0.0534211 0.998572i \(-0.517013\pi\)
−0.0534211 + 0.998572i \(0.517013\pi\)
\(648\) 8.56992 0.336658
\(649\) −7.45106 −0.292480
\(650\) 13.6612 0.535836
\(651\) −1.52674 −0.0598378
\(652\) −21.0957 −0.826170
\(653\) 2.12189 0.0830359 0.0415180 0.999138i \(-0.486781\pi\)
0.0415180 + 0.999138i \(0.486781\pi\)
\(654\) −40.6325 −1.58886
\(655\) 12.6992 0.496198
\(656\) −1.15235 −0.0449918
\(657\) 39.7760 1.55181
\(658\) −0.327833 −0.0127803
\(659\) 7.37349 0.287230 0.143615 0.989634i \(-0.454127\pi\)
0.143615 + 0.989634i \(0.454127\pi\)
\(660\) −2.90957 −0.113255
\(661\) 28.7791 1.11938 0.559688 0.828704i \(-0.310921\pi\)
0.559688 + 0.828704i \(0.310921\pi\)
\(662\) −9.28416 −0.360839
\(663\) 54.6326 2.12175
\(664\) −13.5215 −0.524734
\(665\) −0.560649 −0.0217410
\(666\) −7.92393 −0.307046
\(667\) −10.1618 −0.393467
\(668\) −12.7388 −0.492878
\(669\) 12.8141 0.495422
\(670\) 16.9110 0.653328
\(671\) −8.34390 −0.322113
\(672\) 1.33757 0.0515977
\(673\) −14.0466 −0.541458 −0.270729 0.962656i \(-0.587265\pi\)
−0.270729 + 0.962656i \(0.587265\pi\)
\(674\) −23.1156 −0.890381
\(675\) 1.22966 0.0473298
\(676\) 1.23698 0.0475761
\(677\) −21.5963 −0.830013 −0.415006 0.909819i \(-0.636221\pi\)
−0.415006 + 0.909819i \(0.636221\pi\)
\(678\) 19.3833 0.744412
\(679\) −7.80087 −0.299370
\(680\) 6.86448 0.263241
\(681\) 33.9707 1.30176
\(682\) −1.14143 −0.0437078
\(683\) 11.8798 0.454566 0.227283 0.973829i \(-0.427016\pi\)
0.227283 + 0.973829i \(0.427016\pi\)
\(684\) −2.77356 −0.106050
\(685\) −9.80495 −0.374628
\(686\) 7.40156 0.282593
\(687\) 52.2312 1.99274
\(688\) −10.8504 −0.413668
\(689\) 8.60924 0.327986
\(690\) 15.7412 0.599256
\(691\) −27.1893 −1.03433 −0.517165 0.855886i \(-0.673013\pi\)
−0.517165 + 0.855886i \(0.673013\pi\)
\(692\) −18.9753 −0.721334
\(693\) 1.69380 0.0643421
\(694\) −22.4255 −0.851260
\(695\) 0.346985 0.0131619
\(696\) −4.65311 −0.176376
\(697\) 6.73514 0.255111
\(698\) 30.9220 1.17041
\(699\) −8.04592 −0.304325
\(700\) −1.95485 −0.0738864
\(701\) 41.4364 1.56503 0.782515 0.622632i \(-0.213936\pi\)
0.782515 + 0.622632i \(0.213936\pi\)
\(702\) 1.28149 0.0483668
\(703\) −2.23318 −0.0842259
\(704\) 1.00000 0.0376889
\(705\) −1.76664 −0.0665354
\(706\) −0.158420 −0.00596221
\(707\) 9.68434 0.364217
\(708\) 18.4586 0.693718
\(709\) 12.5616 0.471762 0.235881 0.971782i \(-0.424202\pi\)
0.235881 + 0.971782i \(0.424202\pi\)
\(710\) 7.26862 0.272786
\(711\) 48.2484 1.80946
\(712\) 4.22512 0.158343
\(713\) 6.17532 0.231268
\(714\) −7.81766 −0.292568
\(715\) 4.43155 0.165731
\(716\) 20.0469 0.749187
\(717\) 56.2742 2.10160
\(718\) 13.5023 0.503903
\(719\) 18.7025 0.697484 0.348742 0.937219i \(-0.386609\pi\)
0.348742 + 0.937219i \(0.386609\pi\)
\(720\) 3.68447 0.137312
\(721\) 5.79643 0.215870
\(722\) 18.2183 0.678016
\(723\) 55.8606 2.07748
\(724\) −8.48119 −0.315201
\(725\) 6.80051 0.252565
\(726\) 2.47732 0.0919418
\(727\) −35.7845 −1.32718 −0.663588 0.748099i \(-0.730967\pi\)
−0.663588 + 0.748099i \(0.730967\pi\)
\(728\) −2.03724 −0.0755052
\(729\) −29.4088 −1.08921
\(730\) −14.8915 −0.551160
\(731\) 63.4173 2.34557
\(732\) 20.6705 0.764003
\(733\) 35.1916 1.29983 0.649916 0.760006i \(-0.274804\pi\)
0.649916 + 0.760006i \(0.274804\pi\)
\(734\) 25.4621 0.939823
\(735\) 19.5188 0.719960
\(736\) −5.41015 −0.199421
\(737\) −14.3987 −0.530381
\(738\) 3.61504 0.133071
\(739\) 33.9222 1.24785 0.623925 0.781485i \(-0.285537\pi\)
0.623925 + 0.781485i \(0.285537\pi\)
\(740\) 2.96660 0.109055
\(741\) 8.26420 0.303593
\(742\) −1.23194 −0.0452260
\(743\) −17.2746 −0.633744 −0.316872 0.948468i \(-0.602633\pi\)
−0.316872 + 0.948468i \(0.602633\pi\)
\(744\) 2.82769 0.103668
\(745\) −4.35558 −0.159576
\(746\) −23.3957 −0.856576
\(747\) 42.4181 1.55200
\(748\) −5.84469 −0.213703
\(749\) 6.67082 0.243746
\(750\) −25.0822 −0.915871
\(751\) −12.0602 −0.440082 −0.220041 0.975491i \(-0.570619\pi\)
−0.220041 + 0.975491i \(0.570619\pi\)
\(752\) 0.607182 0.0221417
\(753\) −20.0047 −0.729010
\(754\) 7.08714 0.258098
\(755\) 6.75670 0.245901
\(756\) −0.183375 −0.00666930
\(757\) −1.22428 −0.0444973 −0.0222487 0.999752i \(-0.507083\pi\)
−0.0222487 + 0.999752i \(0.507083\pi\)
\(758\) −3.72885 −0.135438
\(759\) −13.4026 −0.486485
\(760\) 1.03838 0.0376661
\(761\) −11.5768 −0.419657 −0.209829 0.977738i \(-0.567291\pi\)
−0.209829 + 0.977738i \(0.567291\pi\)
\(762\) −16.8708 −0.611165
\(763\) −8.85577 −0.320600
\(764\) 1.98035 0.0716465
\(765\) −21.5345 −0.778583
\(766\) 24.1680 0.873226
\(767\) −28.1143 −1.01515
\(768\) −2.47732 −0.0893925
\(769\) 53.8959 1.94354 0.971768 0.235940i \(-0.0758169\pi\)
0.971768 + 0.235940i \(0.0758169\pi\)
\(770\) −0.634133 −0.0228526
\(771\) −15.8795 −0.571887
\(772\) 11.9118 0.428716
\(773\) 48.7571 1.75367 0.876836 0.480790i \(-0.159650\pi\)
0.876836 + 0.480790i \(0.159650\pi\)
\(774\) 34.0388 1.22350
\(775\) −4.13266 −0.148450
\(776\) 14.4480 0.518655
\(777\) −3.37853 −0.121204
\(778\) 25.4423 0.912151
\(779\) 1.01882 0.0365028
\(780\) −10.9783 −0.393088
\(781\) −6.18878 −0.221452
\(782\) 31.6206 1.13075
\(783\) 0.637924 0.0227976
\(784\) −6.70848 −0.239589
\(785\) 20.2245 0.721844
\(786\) 26.7862 0.955432
\(787\) −15.8791 −0.566029 −0.283014 0.959116i \(-0.591334\pi\)
−0.283014 + 0.959116i \(0.591334\pi\)
\(788\) 1.00000 0.0356235
\(789\) −52.8232 −1.88055
\(790\) −18.0635 −0.642670
\(791\) 4.22455 0.150208
\(792\) −3.13710 −0.111472
\(793\) −31.4831 −1.11800
\(794\) 19.7031 0.699235
\(795\) −6.63872 −0.235451
\(796\) 17.3954 0.616565
\(797\) −52.3754 −1.85523 −0.927615 0.373537i \(-0.878145\pi\)
−0.927615 + 0.373537i \(0.878145\pi\)
\(798\) −1.18257 −0.0418624
\(799\) −3.54879 −0.125547
\(800\) 3.62059 0.128007
\(801\) −13.2546 −0.468328
\(802\) −4.76826 −0.168373
\(803\) 12.6792 0.447440
\(804\) 35.6700 1.25798
\(805\) 3.43075 0.120918
\(806\) −4.30685 −0.151702
\(807\) 29.5625 1.04065
\(808\) −17.9364 −0.631002
\(809\) 44.6334 1.56923 0.784613 0.619986i \(-0.212862\pi\)
0.784613 + 0.619986i \(0.212862\pi\)
\(810\) 10.0652 0.353656
\(811\) 46.5397 1.63423 0.817115 0.576475i \(-0.195572\pi\)
0.817115 + 0.576475i \(0.195572\pi\)
\(812\) −1.01414 −0.0355892
\(813\) 5.32948 0.186913
\(814\) −2.52588 −0.0885321
\(815\) −24.7765 −0.867883
\(816\) 14.4791 0.506871
\(817\) 9.59305 0.335618
\(818\) 31.6504 1.10663
\(819\) 6.39103 0.223321
\(820\) −1.35342 −0.0472634
\(821\) −17.4852 −0.610237 −0.305119 0.952314i \(-0.598696\pi\)
−0.305119 + 0.952314i \(0.598696\pi\)
\(822\) −20.6814 −0.721347
\(823\) −40.3592 −1.40683 −0.703417 0.710778i \(-0.748343\pi\)
−0.703417 + 0.710778i \(0.748343\pi\)
\(824\) −10.7356 −0.373992
\(825\) 8.96935 0.312273
\(826\) 4.02302 0.139979
\(827\) 37.1226 1.29088 0.645439 0.763812i \(-0.276674\pi\)
0.645439 + 0.763812i \(0.276674\pi\)
\(828\) 16.9722 0.589823
\(829\) 26.0075 0.903277 0.451639 0.892201i \(-0.350840\pi\)
0.451639 + 0.892201i \(0.350840\pi\)
\(830\) −15.8807 −0.551228
\(831\) 21.6961 0.752631
\(832\) 3.77319 0.130812
\(833\) 39.2090 1.35851
\(834\) 0.731890 0.0253433
\(835\) −14.9615 −0.517763
\(836\) −0.884118 −0.0305779
\(837\) −0.387666 −0.0133997
\(838\) 4.15370 0.143487
\(839\) 31.9226 1.10209 0.551046 0.834475i \(-0.314229\pi\)
0.551046 + 0.834475i \(0.314229\pi\)
\(840\) 1.57095 0.0542029
\(841\) −25.4720 −0.878346
\(842\) 35.5667 1.22571
\(843\) 68.0106 2.34241
\(844\) −21.2882 −0.732772
\(845\) 1.45281 0.0499781
\(846\) −1.90479 −0.0654880
\(847\) 0.539926 0.0185521
\(848\) 2.28169 0.0783534
\(849\) 11.3772 0.390463
\(850\) −21.1612 −0.725824
\(851\) 13.6654 0.468443
\(852\) 15.3316 0.525251
\(853\) 16.5369 0.566213 0.283107 0.959088i \(-0.408635\pi\)
0.283107 + 0.959088i \(0.408635\pi\)
\(854\) 4.50509 0.154161
\(855\) −3.25750 −0.111404
\(856\) −12.3551 −0.422288
\(857\) −27.1295 −0.926725 −0.463362 0.886169i \(-0.653357\pi\)
−0.463362 + 0.886169i \(0.653357\pi\)
\(858\) 9.34739 0.319115
\(859\) −13.2556 −0.452274 −0.226137 0.974096i \(-0.572610\pi\)
−0.226137 + 0.974096i \(0.572610\pi\)
\(860\) −12.7436 −0.434554
\(861\) 1.54135 0.0525290
\(862\) 9.40098 0.320199
\(863\) 35.5277 1.20938 0.604689 0.796462i \(-0.293297\pi\)
0.604689 + 0.796462i \(0.293297\pi\)
\(864\) 0.339631 0.0115545
\(865\) −22.2862 −0.757753
\(866\) −7.91627 −0.269006
\(867\) −42.5116 −1.44377
\(868\) 0.616289 0.0209182
\(869\) 15.3800 0.521729
\(870\) −5.46500 −0.185281
\(871\) −54.3289 −1.84086
\(872\) 16.4018 0.555436
\(873\) −45.3249 −1.53402
\(874\) 4.78321 0.161794
\(875\) −5.46660 −0.184805
\(876\) −31.4105 −1.06126
\(877\) 37.6943 1.27285 0.636423 0.771340i \(-0.280413\pi\)
0.636423 + 0.771340i \(0.280413\pi\)
\(878\) 18.4842 0.623811
\(879\) 0.596424 0.0201169
\(880\) 1.17448 0.0395918
\(881\) 28.3534 0.955252 0.477626 0.878563i \(-0.341497\pi\)
0.477626 + 0.878563i \(0.341497\pi\)
\(882\) 21.0451 0.708627
\(883\) −28.1102 −0.945983 −0.472992 0.881067i \(-0.656826\pi\)
−0.472992 + 0.881067i \(0.656826\pi\)
\(884\) −22.0531 −0.741727
\(885\) 21.6793 0.728743
\(886\) −19.4468 −0.653328
\(887\) 49.3466 1.65690 0.828448 0.560066i \(-0.189224\pi\)
0.828448 + 0.560066i \(0.189224\pi\)
\(888\) 6.25741 0.209985
\(889\) −3.67695 −0.123321
\(890\) 4.96233 0.166338
\(891\) −8.56992 −0.287103
\(892\) −5.17257 −0.173191
\(893\) −0.536821 −0.0179640
\(894\) −9.18716 −0.307265
\(895\) 23.5447 0.787013
\(896\) −0.539926 −0.0180376
\(897\) −50.5708 −1.68851
\(898\) 28.5274 0.951972
\(899\) −2.14394 −0.0715044
\(900\) −11.3581 −0.378605
\(901\) −13.3357 −0.444278
\(902\) 1.15235 0.0383691
\(903\) 14.5132 0.482968
\(904\) −7.82432 −0.260233
\(905\) −9.96102 −0.331115
\(906\) 14.2518 0.473484
\(907\) −54.3605 −1.80501 −0.902505 0.430679i \(-0.858274\pi\)
−0.902505 + 0.430679i \(0.858274\pi\)
\(908\) −13.7127 −0.455073
\(909\) 56.2683 1.86630
\(910\) −2.39271 −0.0793174
\(911\) 19.1457 0.634326 0.317163 0.948371i \(-0.397270\pi\)
0.317163 + 0.948371i \(0.397270\pi\)
\(912\) 2.19024 0.0725261
\(913\) 13.5215 0.447495
\(914\) 17.8937 0.591871
\(915\) 24.2771 0.802577
\(916\) −21.0838 −0.696627
\(917\) 5.83799 0.192787
\(918\) −1.98504 −0.0655160
\(919\) −19.9997 −0.659730 −0.329865 0.944028i \(-0.607003\pi\)
−0.329865 + 0.944028i \(0.607003\pi\)
\(920\) −6.35412 −0.209489
\(921\) −75.6498 −2.49275
\(922\) 39.2738 1.29341
\(923\) −23.3515 −0.768623
\(924\) −1.33757 −0.0440027
\(925\) −9.14518 −0.300692
\(926\) −25.6911 −0.844263
\(927\) 33.6786 1.10615
\(928\) 1.87829 0.0616578
\(929\) −42.3670 −1.39002 −0.695008 0.719002i \(-0.744599\pi\)
−0.695008 + 0.719002i \(0.744599\pi\)
\(930\) 3.32108 0.108902
\(931\) 5.93109 0.194384
\(932\) 3.24784 0.106386
\(933\) 12.8376 0.420285
\(934\) 13.9249 0.455638
\(935\) −6.86448 −0.224493
\(936\) −11.8369 −0.386900
\(937\) 38.0785 1.24397 0.621985 0.783029i \(-0.286326\pi\)
0.621985 + 0.783029i \(0.286326\pi\)
\(938\) 7.77420 0.253837
\(939\) 71.3626 2.32883
\(940\) 0.713125 0.0232596
\(941\) −7.40740 −0.241474 −0.120737 0.992685i \(-0.538526\pi\)
−0.120737 + 0.992685i \(0.538526\pi\)
\(942\) 42.6593 1.38991
\(943\) −6.23439 −0.203020
\(944\) −7.45106 −0.242511
\(945\) −0.215371 −0.00700603
\(946\) 10.8504 0.352777
\(947\) 33.7478 1.09666 0.548328 0.836263i \(-0.315264\pi\)
0.548328 + 0.836263i \(0.315264\pi\)
\(948\) −38.1010 −1.23746
\(949\) 47.8412 1.55299
\(950\) −3.20103 −0.103855
\(951\) −28.7494 −0.932263
\(952\) 3.15570 0.102277
\(953\) 29.5012 0.955637 0.477818 0.878459i \(-0.341428\pi\)
0.477818 + 0.878459i \(0.341428\pi\)
\(954\) −7.15787 −0.231745
\(955\) 2.32589 0.0752639
\(956\) −22.7158 −0.734681
\(957\) 4.65311 0.150414
\(958\) −13.5517 −0.437834
\(959\) −4.50747 −0.145554
\(960\) −2.90957 −0.0939058
\(961\) −29.6971 −0.957972
\(962\) −9.53063 −0.307280
\(963\) 38.7591 1.24899
\(964\) −22.5489 −0.726250
\(965\) 13.9902 0.450361
\(966\) 7.23643 0.232828
\(967\) −47.1369 −1.51582 −0.757909 0.652360i \(-0.773779\pi\)
−0.757909 + 0.652360i \(0.773779\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −12.8013 −0.411236
\(970\) 16.9690 0.544841
\(971\) 16.8301 0.540105 0.270052 0.962846i \(-0.412959\pi\)
0.270052 + 0.962846i \(0.412959\pi\)
\(972\) 22.2493 0.713646
\(973\) 0.159514 0.00511378
\(974\) −27.5587 −0.883037
\(975\) 33.8431 1.08385
\(976\) −8.34390 −0.267082
\(977\) −1.63026 −0.0521568 −0.0260784 0.999660i \(-0.508302\pi\)
−0.0260784 + 0.999660i \(0.508302\pi\)
\(978\) −52.2607 −1.67111
\(979\) −4.22512 −0.135035
\(980\) −7.87899 −0.251685
\(981\) −51.4541 −1.64280
\(982\) −15.9053 −0.507557
\(983\) −51.3995 −1.63939 −0.819695 0.572801i \(-0.805857\pi\)
−0.819695 + 0.572801i \(0.805857\pi\)
\(984\) −2.85474 −0.0910058
\(985\) 1.17448 0.0374221
\(986\) −10.9780 −0.349611
\(987\) −0.812147 −0.0258509
\(988\) −3.33595 −0.106131
\(989\) −58.7023 −1.86663
\(990\) −3.68447 −0.117100
\(991\) −51.2733 −1.62875 −0.814376 0.580338i \(-0.802920\pi\)
−0.814376 + 0.580338i \(0.802920\pi\)
\(992\) −1.14143 −0.0362406
\(993\) −22.9998 −0.729877
\(994\) 3.34148 0.105985
\(995\) 20.4306 0.647695
\(996\) −33.4969 −1.06139
\(997\) 43.6887 1.38364 0.691818 0.722072i \(-0.256810\pi\)
0.691818 + 0.722072i \(0.256810\pi\)
\(998\) 25.2344 0.798781
\(999\) −0.857867 −0.0271417
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4334.2.a.a.1.2 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4334.2.a.a.1.2 15 1.1 even 1 trivial