Properties

Label 4334.2.a.a.1.11
Level $4334$
Weight $2$
Character 4334.1
Self dual yes
Analytic conductor $34.607$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4334,2,Mod(1,4334)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4334.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4334 = 2 \cdot 11 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4334.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.6071642360\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 23 x^{13} + 19 x^{12} + 194 x^{11} - 124 x^{10} - 761 x^{9} + 353 x^{8} + 1417 x^{7} - 465 x^{6} - 1128 x^{5} + 288 x^{4} + 316 x^{3} - 79 x^{2} - 20 x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-0.995042\) of defining polynomial
Character \(\chi\) \(=\) 4334.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.995042 q^{3} +1.00000 q^{4} +2.56257 q^{5} -0.995042 q^{6} -3.12926 q^{7} -1.00000 q^{8} -2.00989 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +0.995042 q^{3} +1.00000 q^{4} +2.56257 q^{5} -0.995042 q^{6} -3.12926 q^{7} -1.00000 q^{8} -2.00989 q^{9} -2.56257 q^{10} +1.00000 q^{11} +0.995042 q^{12} +1.90374 q^{13} +3.12926 q^{14} +2.54987 q^{15} +1.00000 q^{16} +3.95449 q^{17} +2.00989 q^{18} -0.294531 q^{19} +2.56257 q^{20} -3.11374 q^{21} -1.00000 q^{22} -4.99330 q^{23} -0.995042 q^{24} +1.56678 q^{25} -1.90374 q^{26} -4.98505 q^{27} -3.12926 q^{28} -6.71448 q^{29} -2.54987 q^{30} -2.58674 q^{31} -1.00000 q^{32} +0.995042 q^{33} -3.95449 q^{34} -8.01895 q^{35} -2.00989 q^{36} -8.71417 q^{37} +0.294531 q^{38} +1.89431 q^{39} -2.56257 q^{40} -2.08498 q^{41} +3.11374 q^{42} +3.12603 q^{43} +1.00000 q^{44} -5.15049 q^{45} +4.99330 q^{46} +5.20872 q^{47} +0.995042 q^{48} +2.79225 q^{49} -1.56678 q^{50} +3.93489 q^{51} +1.90374 q^{52} -3.14683 q^{53} +4.98505 q^{54} +2.56257 q^{55} +3.12926 q^{56} -0.293071 q^{57} +6.71448 q^{58} -6.61212 q^{59} +2.54987 q^{60} +6.08266 q^{61} +2.58674 q^{62} +6.28947 q^{63} +1.00000 q^{64} +4.87848 q^{65} -0.995042 q^{66} +1.50401 q^{67} +3.95449 q^{68} -4.96854 q^{69} +8.01895 q^{70} -3.24584 q^{71} +2.00989 q^{72} -10.5747 q^{73} +8.71417 q^{74} +1.55901 q^{75} -0.294531 q^{76} -3.12926 q^{77} -1.89431 q^{78} +5.87951 q^{79} +2.56257 q^{80} +1.06934 q^{81} +2.08498 q^{82} +11.7347 q^{83} -3.11374 q^{84} +10.1337 q^{85} -3.12603 q^{86} -6.68119 q^{87} -1.00000 q^{88} -8.04190 q^{89} +5.15049 q^{90} -5.95731 q^{91} -4.99330 q^{92} -2.57392 q^{93} -5.20872 q^{94} -0.754757 q^{95} -0.995042 q^{96} -16.7515 q^{97} -2.79225 q^{98} -2.00989 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{2} - q^{3} + 15 q^{4} - 7 q^{5} + q^{6} + q^{7} - 15 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 15 q^{2} - q^{3} + 15 q^{4} - 7 q^{5} + q^{6} + q^{7} - 15 q^{8} + 2 q^{9} + 7 q^{10} + 15 q^{11} - q^{12} - q^{13} - q^{14} - 6 q^{15} + 15 q^{16} - 6 q^{17} - 2 q^{18} - 14 q^{19} - 7 q^{20} - 3 q^{21} - 15 q^{22} + 2 q^{23} + q^{24} - 10 q^{25} + q^{26} - 7 q^{27} + q^{28} + 8 q^{29} + 6 q^{30} - 33 q^{31} - 15 q^{32} - q^{33} + 6 q^{34} - 8 q^{35} + 2 q^{36} - 9 q^{37} + 14 q^{38} - 9 q^{39} + 7 q^{40} - 10 q^{41} + 3 q^{42} - 6 q^{43} + 15 q^{44} - 20 q^{45} - 2 q^{46} - q^{47} - q^{48} - 30 q^{49} + 10 q^{50} + 12 q^{51} - q^{52} + 6 q^{53} + 7 q^{54} - 7 q^{55} - q^{56} - 24 q^{57} - 8 q^{58} - 15 q^{59} - 6 q^{60} - 25 q^{61} + 33 q^{62} + 12 q^{63} + 15 q^{64} + 31 q^{65} + q^{66} - 13 q^{67} - 6 q^{68} - 43 q^{69} + 8 q^{70} - 4 q^{71} - 2 q^{72} - 4 q^{73} + 9 q^{74} - 5 q^{75} - 14 q^{76} + q^{77} + 9 q^{78} - 20 q^{79} - 7 q^{80} + 11 q^{81} + 10 q^{82} + q^{83} - 3 q^{84} - q^{85} + 6 q^{86} + 22 q^{87} - 15 q^{88} - 41 q^{89} + 20 q^{90} - 31 q^{91} + 2 q^{92} + 14 q^{93} + q^{94} + 41 q^{95} + q^{96} - 57 q^{97} + 30 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.995042 0.574488 0.287244 0.957857i \(-0.407261\pi\)
0.287244 + 0.957857i \(0.407261\pi\)
\(4\) 1.00000 0.500000
\(5\) 2.56257 1.14602 0.573009 0.819549i \(-0.305776\pi\)
0.573009 + 0.819549i \(0.305776\pi\)
\(6\) −0.995042 −0.406224
\(7\) −3.12926 −1.18275 −0.591374 0.806397i \(-0.701414\pi\)
−0.591374 + 0.806397i \(0.701414\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.00989 −0.669964
\(10\) −2.56257 −0.810357
\(11\) 1.00000 0.301511
\(12\) 0.995042 0.287244
\(13\) 1.90374 0.528004 0.264002 0.964522i \(-0.414958\pi\)
0.264002 + 0.964522i \(0.414958\pi\)
\(14\) 3.12926 0.836329
\(15\) 2.54987 0.658373
\(16\) 1.00000 0.250000
\(17\) 3.95449 0.959105 0.479553 0.877513i \(-0.340799\pi\)
0.479553 + 0.877513i \(0.340799\pi\)
\(18\) 2.00989 0.473736
\(19\) −0.294531 −0.0675701 −0.0337850 0.999429i \(-0.510756\pi\)
−0.0337850 + 0.999429i \(0.510756\pi\)
\(20\) 2.56257 0.573009
\(21\) −3.11374 −0.679474
\(22\) −1.00000 −0.213201
\(23\) −4.99330 −1.04117 −0.520587 0.853808i \(-0.674287\pi\)
−0.520587 + 0.853808i \(0.674287\pi\)
\(24\) −0.995042 −0.203112
\(25\) 1.56678 0.313356
\(26\) −1.90374 −0.373355
\(27\) −4.98505 −0.959374
\(28\) −3.12926 −0.591374
\(29\) −6.71448 −1.24685 −0.623424 0.781884i \(-0.714259\pi\)
−0.623424 + 0.781884i \(0.714259\pi\)
\(30\) −2.54987 −0.465540
\(31\) −2.58674 −0.464593 −0.232296 0.972645i \(-0.574624\pi\)
−0.232296 + 0.972645i \(0.574624\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.995042 0.173215
\(34\) −3.95449 −0.678190
\(35\) −8.01895 −1.35545
\(36\) −2.00989 −0.334982
\(37\) −8.71417 −1.43260 −0.716300 0.697792i \(-0.754166\pi\)
−0.716300 + 0.697792i \(0.754166\pi\)
\(38\) 0.294531 0.0477793
\(39\) 1.89431 0.303332
\(40\) −2.56257 −0.405178
\(41\) −2.08498 −0.325619 −0.162810 0.986658i \(-0.552056\pi\)
−0.162810 + 0.986658i \(0.552056\pi\)
\(42\) 3.11374 0.480461
\(43\) 3.12603 0.476715 0.238357 0.971178i \(-0.423391\pi\)
0.238357 + 0.971178i \(0.423391\pi\)
\(44\) 1.00000 0.150756
\(45\) −5.15049 −0.767790
\(46\) 4.99330 0.736222
\(47\) 5.20872 0.759770 0.379885 0.925034i \(-0.375964\pi\)
0.379885 + 0.925034i \(0.375964\pi\)
\(48\) 0.995042 0.143622
\(49\) 2.79225 0.398894
\(50\) −1.56678 −0.221576
\(51\) 3.93489 0.550994
\(52\) 1.90374 0.264002
\(53\) −3.14683 −0.432251 −0.216125 0.976366i \(-0.569342\pi\)
−0.216125 + 0.976366i \(0.569342\pi\)
\(54\) 4.98505 0.678380
\(55\) 2.56257 0.345537
\(56\) 3.12926 0.418165
\(57\) −0.293071 −0.0388182
\(58\) 6.71448 0.881654
\(59\) −6.61212 −0.860825 −0.430412 0.902632i \(-0.641632\pi\)
−0.430412 + 0.902632i \(0.641632\pi\)
\(60\) 2.54987 0.329186
\(61\) 6.08266 0.778805 0.389403 0.921068i \(-0.372681\pi\)
0.389403 + 0.921068i \(0.372681\pi\)
\(62\) 2.58674 0.328517
\(63\) 6.28947 0.792399
\(64\) 1.00000 0.125000
\(65\) 4.87848 0.605101
\(66\) −0.995042 −0.122481
\(67\) 1.50401 0.183743 0.0918717 0.995771i \(-0.470715\pi\)
0.0918717 + 0.995771i \(0.470715\pi\)
\(68\) 3.95449 0.479553
\(69\) −4.96854 −0.598142
\(70\) 8.01895 0.958448
\(71\) −3.24584 −0.385211 −0.192605 0.981276i \(-0.561694\pi\)
−0.192605 + 0.981276i \(0.561694\pi\)
\(72\) 2.00989 0.236868
\(73\) −10.5747 −1.23767 −0.618835 0.785521i \(-0.712395\pi\)
−0.618835 + 0.785521i \(0.712395\pi\)
\(74\) 8.71417 1.01300
\(75\) 1.55901 0.180019
\(76\) −0.294531 −0.0337850
\(77\) −3.12926 −0.356612
\(78\) −1.89431 −0.214488
\(79\) 5.87951 0.661496 0.330748 0.943719i \(-0.392699\pi\)
0.330748 + 0.943719i \(0.392699\pi\)
\(80\) 2.56257 0.286504
\(81\) 1.06934 0.118815
\(82\) 2.08498 0.230247
\(83\) 11.7347 1.28806 0.644028 0.765002i \(-0.277262\pi\)
0.644028 + 0.765002i \(0.277262\pi\)
\(84\) −3.11374 −0.339737
\(85\) 10.1337 1.09915
\(86\) −3.12603 −0.337088
\(87\) −6.68119 −0.716299
\(88\) −1.00000 −0.106600
\(89\) −8.04190 −0.852440 −0.426220 0.904620i \(-0.640155\pi\)
−0.426220 + 0.904620i \(0.640155\pi\)
\(90\) 5.15049 0.542910
\(91\) −5.95731 −0.624495
\(92\) −4.99330 −0.520587
\(93\) −2.57392 −0.266903
\(94\) −5.20872 −0.537239
\(95\) −0.754757 −0.0774365
\(96\) −0.995042 −0.101556
\(97\) −16.7515 −1.70086 −0.850429 0.526090i \(-0.823657\pi\)
−0.850429 + 0.526090i \(0.823657\pi\)
\(98\) −2.79225 −0.282060
\(99\) −2.00989 −0.202002
\(100\) 1.56678 0.156678
\(101\) −8.54689 −0.850447 −0.425223 0.905088i \(-0.639804\pi\)
−0.425223 + 0.905088i \(0.639804\pi\)
\(102\) −3.93489 −0.389612
\(103\) 0.178334 0.0175718 0.00878588 0.999961i \(-0.497203\pi\)
0.00878588 + 0.999961i \(0.497203\pi\)
\(104\) −1.90374 −0.186677
\(105\) −7.97919 −0.778689
\(106\) 3.14683 0.305648
\(107\) 8.85153 0.855710 0.427855 0.903847i \(-0.359269\pi\)
0.427855 + 0.903847i \(0.359269\pi\)
\(108\) −4.98505 −0.479687
\(109\) 12.3937 1.18710 0.593549 0.804798i \(-0.297726\pi\)
0.593549 + 0.804798i \(0.297726\pi\)
\(110\) −2.56257 −0.244332
\(111\) −8.67096 −0.823012
\(112\) −3.12926 −0.295687
\(113\) −17.8263 −1.67696 −0.838481 0.544931i \(-0.816556\pi\)
−0.838481 + 0.544931i \(0.816556\pi\)
\(114\) 0.293071 0.0274486
\(115\) −12.7957 −1.19320
\(116\) −6.71448 −0.623424
\(117\) −3.82632 −0.353743
\(118\) 6.61212 0.608695
\(119\) −12.3746 −1.13438
\(120\) −2.54987 −0.232770
\(121\) 1.00000 0.0909091
\(122\) −6.08266 −0.550699
\(123\) −2.07464 −0.187064
\(124\) −2.58674 −0.232296
\(125\) −8.79788 −0.786906
\(126\) −6.28947 −0.560310
\(127\) 3.69625 0.327989 0.163995 0.986461i \(-0.447562\pi\)
0.163995 + 0.986461i \(0.447562\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 3.11053 0.273867
\(130\) −4.87848 −0.427871
\(131\) 22.7260 1.98558 0.992790 0.119870i \(-0.0382479\pi\)
0.992790 + 0.119870i \(0.0382479\pi\)
\(132\) 0.995042 0.0866073
\(133\) 0.921664 0.0799184
\(134\) −1.50401 −0.129926
\(135\) −12.7746 −1.09946
\(136\) −3.95449 −0.339095
\(137\) −9.12680 −0.779755 −0.389878 0.920867i \(-0.627483\pi\)
−0.389878 + 0.920867i \(0.627483\pi\)
\(138\) 4.96854 0.422950
\(139\) −18.4287 −1.56311 −0.781553 0.623839i \(-0.785572\pi\)
−0.781553 + 0.623839i \(0.785572\pi\)
\(140\) −8.01895 −0.677725
\(141\) 5.18290 0.436479
\(142\) 3.24584 0.272385
\(143\) 1.90374 0.159199
\(144\) −2.00989 −0.167491
\(145\) −17.2063 −1.42891
\(146\) 10.5747 0.875165
\(147\) 2.77841 0.229159
\(148\) −8.71417 −0.716300
\(149\) −13.5549 −1.11046 −0.555229 0.831698i \(-0.687369\pi\)
−0.555229 + 0.831698i \(0.687369\pi\)
\(150\) −1.55901 −0.127293
\(151\) −1.63328 −0.132914 −0.0664572 0.997789i \(-0.521170\pi\)
−0.0664572 + 0.997789i \(0.521170\pi\)
\(152\) 0.294531 0.0238896
\(153\) −7.94810 −0.642566
\(154\) 3.12926 0.252163
\(155\) −6.62872 −0.532431
\(156\) 1.89431 0.151666
\(157\) 5.93137 0.473375 0.236687 0.971586i \(-0.423938\pi\)
0.236687 + 0.971586i \(0.423938\pi\)
\(158\) −5.87951 −0.467749
\(159\) −3.13123 −0.248323
\(160\) −2.56257 −0.202589
\(161\) 15.6253 1.23145
\(162\) −1.06934 −0.0840151
\(163\) 10.1123 0.792053 0.396026 0.918239i \(-0.370389\pi\)
0.396026 + 0.918239i \(0.370389\pi\)
\(164\) −2.08498 −0.162810
\(165\) 2.54987 0.198507
\(166\) −11.7347 −0.910793
\(167\) 7.53363 0.582970 0.291485 0.956575i \(-0.405851\pi\)
0.291485 + 0.956575i \(0.405851\pi\)
\(168\) 3.11374 0.240230
\(169\) −9.37576 −0.721212
\(170\) −10.1337 −0.777217
\(171\) 0.591976 0.0452695
\(172\) 3.12603 0.238357
\(173\) −20.0913 −1.52752 −0.763758 0.645503i \(-0.776648\pi\)
−0.763758 + 0.645503i \(0.776648\pi\)
\(174\) 6.68119 0.506500
\(175\) −4.90285 −0.370621
\(176\) 1.00000 0.0753778
\(177\) −6.57934 −0.494533
\(178\) 8.04190 0.602766
\(179\) −19.4821 −1.45616 −0.728079 0.685493i \(-0.759587\pi\)
−0.728079 + 0.685493i \(0.759587\pi\)
\(180\) −5.15049 −0.383895
\(181\) 18.7951 1.39703 0.698514 0.715597i \(-0.253845\pi\)
0.698514 + 0.715597i \(0.253845\pi\)
\(182\) 5.95731 0.441585
\(183\) 6.05251 0.447414
\(184\) 4.99330 0.368111
\(185\) −22.3307 −1.64179
\(186\) 2.57392 0.188729
\(187\) 3.95449 0.289181
\(188\) 5.20872 0.379885
\(189\) 15.5995 1.13470
\(190\) 0.754757 0.0547559
\(191\) 2.99065 0.216396 0.108198 0.994129i \(-0.465492\pi\)
0.108198 + 0.994129i \(0.465492\pi\)
\(192\) 0.995042 0.0718110
\(193\) 9.06545 0.652545 0.326273 0.945276i \(-0.394207\pi\)
0.326273 + 0.945276i \(0.394207\pi\)
\(194\) 16.7515 1.20269
\(195\) 4.85430 0.347623
\(196\) 2.79225 0.199447
\(197\) 1.00000 0.0712470
\(198\) 2.00989 0.142837
\(199\) 17.8130 1.26273 0.631366 0.775485i \(-0.282495\pi\)
0.631366 + 0.775485i \(0.282495\pi\)
\(200\) −1.56678 −0.110788
\(201\) 1.49655 0.105558
\(202\) 8.54689 0.601357
\(203\) 21.0113 1.47471
\(204\) 3.93489 0.275497
\(205\) −5.34291 −0.373165
\(206\) −0.178334 −0.0124251
\(207\) 10.0360 0.697549
\(208\) 1.90374 0.132001
\(209\) −0.294531 −0.0203731
\(210\) 7.97919 0.550617
\(211\) −3.94688 −0.271714 −0.135857 0.990728i \(-0.543379\pi\)
−0.135857 + 0.990728i \(0.543379\pi\)
\(212\) −3.14683 −0.216125
\(213\) −3.22975 −0.221299
\(214\) −8.85153 −0.605078
\(215\) 8.01067 0.546323
\(216\) 4.98505 0.339190
\(217\) 8.09459 0.549496
\(218\) −12.3937 −0.839405
\(219\) −10.5222 −0.711027
\(220\) 2.56257 0.172769
\(221\) 7.52834 0.506411
\(222\) 8.67096 0.581957
\(223\) 3.49131 0.233796 0.116898 0.993144i \(-0.462705\pi\)
0.116898 + 0.993144i \(0.462705\pi\)
\(224\) 3.12926 0.209082
\(225\) −3.14905 −0.209937
\(226\) 17.8263 1.18579
\(227\) −21.8667 −1.45135 −0.725673 0.688039i \(-0.758472\pi\)
−0.725673 + 0.688039i \(0.758472\pi\)
\(228\) −0.293071 −0.0194091
\(229\) −9.38410 −0.620119 −0.310059 0.950717i \(-0.600349\pi\)
−0.310059 + 0.950717i \(0.600349\pi\)
\(230\) 12.7957 0.843723
\(231\) −3.11374 −0.204869
\(232\) 6.71448 0.440827
\(233\) −13.8547 −0.907653 −0.453827 0.891090i \(-0.649941\pi\)
−0.453827 + 0.891090i \(0.649941\pi\)
\(234\) 3.82632 0.250134
\(235\) 13.3477 0.870710
\(236\) −6.61212 −0.430412
\(237\) 5.85036 0.380022
\(238\) 12.3746 0.802128
\(239\) 1.63869 0.105998 0.0529991 0.998595i \(-0.483122\pi\)
0.0529991 + 0.998595i \(0.483122\pi\)
\(240\) 2.54987 0.164593
\(241\) −25.5272 −1.64435 −0.822175 0.569235i \(-0.807240\pi\)
−0.822175 + 0.569235i \(0.807240\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 16.0192 1.02763
\(244\) 6.08266 0.389403
\(245\) 7.15536 0.457139
\(246\) 2.07464 0.132274
\(247\) −0.560712 −0.0356772
\(248\) 2.58674 0.164258
\(249\) 11.6766 0.739972
\(250\) 8.79788 0.556427
\(251\) −6.88946 −0.434859 −0.217429 0.976076i \(-0.569767\pi\)
−0.217429 + 0.976076i \(0.569767\pi\)
\(252\) 6.28947 0.396199
\(253\) −4.99330 −0.313926
\(254\) −3.69625 −0.231924
\(255\) 10.0834 0.631449
\(256\) 1.00000 0.0625000
\(257\) 18.4023 1.14790 0.573952 0.818889i \(-0.305410\pi\)
0.573952 + 0.818889i \(0.305410\pi\)
\(258\) −3.11053 −0.193653
\(259\) 27.2689 1.69441
\(260\) 4.87848 0.302551
\(261\) 13.4954 0.835343
\(262\) −22.7260 −1.40402
\(263\) −16.6847 −1.02882 −0.514410 0.857544i \(-0.671989\pi\)
−0.514410 + 0.857544i \(0.671989\pi\)
\(264\) −0.995042 −0.0612406
\(265\) −8.06399 −0.495367
\(266\) −0.921664 −0.0565108
\(267\) −8.00203 −0.489716
\(268\) 1.50401 0.0918717
\(269\) 8.70770 0.530918 0.265459 0.964122i \(-0.414477\pi\)
0.265459 + 0.964122i \(0.414477\pi\)
\(270\) 12.7746 0.777435
\(271\) −31.1650 −1.89314 −0.946571 0.322496i \(-0.895478\pi\)
−0.946571 + 0.322496i \(0.895478\pi\)
\(272\) 3.95449 0.239776
\(273\) −5.92777 −0.358765
\(274\) 9.12680 0.551370
\(275\) 1.56678 0.0944803
\(276\) −4.96854 −0.299071
\(277\) 13.6513 0.820225 0.410113 0.912035i \(-0.365489\pi\)
0.410113 + 0.912035i \(0.365489\pi\)
\(278\) 18.4287 1.10528
\(279\) 5.19907 0.311260
\(280\) 8.01895 0.479224
\(281\) 18.9769 1.13207 0.566034 0.824382i \(-0.308477\pi\)
0.566034 + 0.824382i \(0.308477\pi\)
\(282\) −5.18290 −0.308637
\(283\) −17.5818 −1.04513 −0.522565 0.852599i \(-0.675025\pi\)
−0.522565 + 0.852599i \(0.675025\pi\)
\(284\) −3.24584 −0.192605
\(285\) −0.751015 −0.0444863
\(286\) −1.90374 −0.112571
\(287\) 6.52444 0.385125
\(288\) 2.00989 0.118434
\(289\) −1.36199 −0.0801172
\(290\) 17.2063 1.01039
\(291\) −16.6684 −0.977122
\(292\) −10.5747 −0.618835
\(293\) 12.4294 0.726135 0.363068 0.931763i \(-0.381729\pi\)
0.363068 + 0.931763i \(0.381729\pi\)
\(294\) −2.77841 −0.162040
\(295\) −16.9440 −0.986520
\(296\) 8.71417 0.506501
\(297\) −4.98505 −0.289262
\(298\) 13.5549 0.785212
\(299\) −9.50596 −0.549744
\(300\) 1.55901 0.0900095
\(301\) −9.78214 −0.563833
\(302\) 1.63328 0.0939847
\(303\) −8.50451 −0.488571
\(304\) −0.294531 −0.0168925
\(305\) 15.5873 0.892524
\(306\) 7.94810 0.454363
\(307\) 9.74562 0.556212 0.278106 0.960550i \(-0.410293\pi\)
0.278106 + 0.960550i \(0.410293\pi\)
\(308\) −3.12926 −0.178306
\(309\) 0.177450 0.0100948
\(310\) 6.62872 0.376486
\(311\) 1.36689 0.0775090 0.0387545 0.999249i \(-0.487661\pi\)
0.0387545 + 0.999249i \(0.487661\pi\)
\(312\) −1.89431 −0.107244
\(313\) −26.7863 −1.51405 −0.757026 0.653385i \(-0.773348\pi\)
−0.757026 + 0.653385i \(0.773348\pi\)
\(314\) −5.93137 −0.334726
\(315\) 16.1172 0.908102
\(316\) 5.87951 0.330748
\(317\) −19.7902 −1.11153 −0.555763 0.831341i \(-0.687574\pi\)
−0.555763 + 0.831341i \(0.687574\pi\)
\(318\) 3.13123 0.175591
\(319\) −6.71448 −0.375939
\(320\) 2.56257 0.143252
\(321\) 8.80765 0.491595
\(322\) −15.6253 −0.870765
\(323\) −1.16472 −0.0648068
\(324\) 1.06934 0.0594077
\(325\) 2.98275 0.165453
\(326\) −10.1123 −0.560066
\(327\) 12.3322 0.681973
\(328\) 2.08498 0.115124
\(329\) −16.2994 −0.898617
\(330\) −2.54987 −0.140366
\(331\) 18.6813 1.02681 0.513407 0.858145i \(-0.328383\pi\)
0.513407 + 0.858145i \(0.328383\pi\)
\(332\) 11.7347 0.644028
\(333\) 17.5145 0.959791
\(334\) −7.53363 −0.412222
\(335\) 3.85412 0.210573
\(336\) −3.11374 −0.169869
\(337\) 8.20542 0.446977 0.223489 0.974707i \(-0.428255\pi\)
0.223489 + 0.974707i \(0.428255\pi\)
\(338\) 9.37576 0.509974
\(339\) −17.7380 −0.963394
\(340\) 10.1337 0.549576
\(341\) −2.58674 −0.140080
\(342\) −0.591976 −0.0320104
\(343\) 13.1671 0.710958
\(344\) −3.12603 −0.168544
\(345\) −12.7322 −0.685481
\(346\) 20.0913 1.08012
\(347\) 9.33023 0.500873 0.250436 0.968133i \(-0.419426\pi\)
0.250436 + 0.968133i \(0.419426\pi\)
\(348\) −6.68119 −0.358149
\(349\) −1.32129 −0.0707270 −0.0353635 0.999375i \(-0.511259\pi\)
−0.0353635 + 0.999375i \(0.511259\pi\)
\(350\) 4.90285 0.262069
\(351\) −9.49026 −0.506553
\(352\) −1.00000 −0.0533002
\(353\) 2.28040 0.121373 0.0606866 0.998157i \(-0.480671\pi\)
0.0606866 + 0.998157i \(0.480671\pi\)
\(354\) 6.57934 0.349688
\(355\) −8.31771 −0.441458
\(356\) −8.04190 −0.426220
\(357\) −12.3133 −0.651687
\(358\) 19.4821 1.02966
\(359\) 5.33610 0.281629 0.140814 0.990036i \(-0.455028\pi\)
0.140814 + 0.990036i \(0.455028\pi\)
\(360\) 5.15049 0.271455
\(361\) −18.9133 −0.995434
\(362\) −18.7951 −0.987848
\(363\) 0.995042 0.0522262
\(364\) −5.95731 −0.312248
\(365\) −27.0983 −1.41839
\(366\) −6.05251 −0.316370
\(367\) 2.73239 0.142630 0.0713149 0.997454i \(-0.477280\pi\)
0.0713149 + 0.997454i \(0.477280\pi\)
\(368\) −4.99330 −0.260294
\(369\) 4.19058 0.218153
\(370\) 22.3307 1.16092
\(371\) 9.84725 0.511244
\(372\) −2.57392 −0.133451
\(373\) −17.1447 −0.887721 −0.443860 0.896096i \(-0.646391\pi\)
−0.443860 + 0.896096i \(0.646391\pi\)
\(374\) −3.95449 −0.204482
\(375\) −8.75426 −0.452068
\(376\) −5.20872 −0.268619
\(377\) −12.7827 −0.658340
\(378\) −15.5995 −0.802352
\(379\) 7.08218 0.363787 0.181894 0.983318i \(-0.441777\pi\)
0.181894 + 0.983318i \(0.441777\pi\)
\(380\) −0.754757 −0.0387182
\(381\) 3.67793 0.188426
\(382\) −2.99065 −0.153015
\(383\) 26.7343 1.36606 0.683030 0.730390i \(-0.260662\pi\)
0.683030 + 0.730390i \(0.260662\pi\)
\(384\) −0.995042 −0.0507780
\(385\) −8.01895 −0.408684
\(386\) −9.06545 −0.461419
\(387\) −6.28297 −0.319382
\(388\) −16.7515 −0.850429
\(389\) 0.457062 0.0231740 0.0115870 0.999933i \(-0.496312\pi\)
0.0115870 + 0.999933i \(0.496312\pi\)
\(390\) −4.85430 −0.245807
\(391\) −19.7460 −0.998596
\(392\) −2.79225 −0.141030
\(393\) 22.6133 1.14069
\(394\) −1.00000 −0.0503793
\(395\) 15.0667 0.758086
\(396\) −2.00989 −0.101001
\(397\) 3.76562 0.188991 0.0944955 0.995525i \(-0.469876\pi\)
0.0944955 + 0.995525i \(0.469876\pi\)
\(398\) −17.8130 −0.892886
\(399\) 0.917094 0.0459121
\(400\) 1.56678 0.0783389
\(401\) −32.4273 −1.61934 −0.809672 0.586883i \(-0.800355\pi\)
−0.809672 + 0.586883i \(0.800355\pi\)
\(402\) −1.49655 −0.0746410
\(403\) −4.92450 −0.245307
\(404\) −8.54689 −0.425223
\(405\) 2.74026 0.136164
\(406\) −21.0113 −1.04278
\(407\) −8.71417 −0.431945
\(408\) −3.93489 −0.194806
\(409\) −22.8999 −1.13233 −0.566164 0.824292i \(-0.691573\pi\)
−0.566164 + 0.824292i \(0.691573\pi\)
\(410\) 5.34291 0.263868
\(411\) −9.08155 −0.447960
\(412\) 0.178334 0.00878588
\(413\) 20.6910 1.01814
\(414\) −10.0360 −0.493242
\(415\) 30.0711 1.47613
\(416\) −1.90374 −0.0933387
\(417\) −18.3374 −0.897985
\(418\) 0.294531 0.0144060
\(419\) −8.17923 −0.399582 −0.199791 0.979839i \(-0.564026\pi\)
−0.199791 + 0.979839i \(0.564026\pi\)
\(420\) −7.97919 −0.389345
\(421\) −13.4607 −0.656035 −0.328018 0.944672i \(-0.606381\pi\)
−0.328018 + 0.944672i \(0.606381\pi\)
\(422\) 3.94688 0.192131
\(423\) −10.4690 −0.509019
\(424\) 3.14683 0.152824
\(425\) 6.19581 0.300541
\(426\) 3.22975 0.156482
\(427\) −19.0342 −0.921131
\(428\) 8.85153 0.427855
\(429\) 1.89431 0.0914579
\(430\) −8.01067 −0.386309
\(431\) 28.0492 1.35108 0.675541 0.737322i \(-0.263910\pi\)
0.675541 + 0.737322i \(0.263910\pi\)
\(432\) −4.98505 −0.239843
\(433\) 27.0089 1.29797 0.648983 0.760803i \(-0.275195\pi\)
0.648983 + 0.760803i \(0.275195\pi\)
\(434\) −8.09459 −0.388553
\(435\) −17.1210 −0.820891
\(436\) 12.3937 0.593549
\(437\) 1.47068 0.0703522
\(438\) 10.5222 0.502772
\(439\) −4.82076 −0.230082 −0.115041 0.993361i \(-0.536700\pi\)
−0.115041 + 0.993361i \(0.536700\pi\)
\(440\) −2.56257 −0.122166
\(441\) −5.61213 −0.267244
\(442\) −7.52834 −0.358087
\(443\) −22.2916 −1.05910 −0.529552 0.848277i \(-0.677640\pi\)
−0.529552 + 0.848277i \(0.677640\pi\)
\(444\) −8.67096 −0.411506
\(445\) −20.6079 −0.976910
\(446\) −3.49131 −0.165318
\(447\) −13.4877 −0.637944
\(448\) −3.12926 −0.147844
\(449\) 20.7460 0.979063 0.489532 0.871986i \(-0.337168\pi\)
0.489532 + 0.871986i \(0.337168\pi\)
\(450\) 3.14905 0.148448
\(451\) −2.08498 −0.0981778
\(452\) −17.8263 −0.838481
\(453\) −1.62518 −0.0763577
\(454\) 21.8667 1.02626
\(455\) −15.2660 −0.715683
\(456\) 0.293071 0.0137243
\(457\) 6.90837 0.323160 0.161580 0.986860i \(-0.448341\pi\)
0.161580 + 0.986860i \(0.448341\pi\)
\(458\) 9.38410 0.438490
\(459\) −19.7134 −0.920140
\(460\) −12.7957 −0.596602
\(461\) 30.7360 1.43152 0.715759 0.698347i \(-0.246081\pi\)
0.715759 + 0.698347i \(0.246081\pi\)
\(462\) 3.11374 0.144864
\(463\) −20.8646 −0.969659 −0.484829 0.874609i \(-0.661118\pi\)
−0.484829 + 0.874609i \(0.661118\pi\)
\(464\) −6.71448 −0.311712
\(465\) −6.59585 −0.305875
\(466\) 13.8547 0.641808
\(467\) −11.0242 −0.510140 −0.255070 0.966923i \(-0.582098\pi\)
−0.255070 + 0.966923i \(0.582098\pi\)
\(468\) −3.82632 −0.176872
\(469\) −4.70642 −0.217322
\(470\) −13.3477 −0.615685
\(471\) 5.90196 0.271948
\(472\) 6.61212 0.304347
\(473\) 3.12603 0.143735
\(474\) −5.85036 −0.268716
\(475\) −0.461465 −0.0211735
\(476\) −12.3746 −0.567190
\(477\) 6.32479 0.289592
\(478\) −1.63869 −0.0749521
\(479\) −0.454795 −0.0207801 −0.0103901 0.999946i \(-0.503307\pi\)
−0.0103901 + 0.999946i \(0.503307\pi\)
\(480\) −2.54987 −0.116385
\(481\) −16.5896 −0.756418
\(482\) 25.5272 1.16273
\(483\) 15.5478 0.707452
\(484\) 1.00000 0.0454545
\(485\) −42.9269 −1.94921
\(486\) −16.0192 −0.726645
\(487\) −10.9083 −0.494304 −0.247152 0.968977i \(-0.579495\pi\)
−0.247152 + 0.968977i \(0.579495\pi\)
\(488\) −6.08266 −0.275349
\(489\) 10.0621 0.455025
\(490\) −7.15536 −0.323246
\(491\) −4.13367 −0.186550 −0.0932751 0.995640i \(-0.529734\pi\)
−0.0932751 + 0.995640i \(0.529734\pi\)
\(492\) −2.07464 −0.0935321
\(493\) −26.5524 −1.19586
\(494\) 0.560712 0.0252276
\(495\) −5.15049 −0.231497
\(496\) −2.58674 −0.116148
\(497\) 10.1571 0.455607
\(498\) −11.6766 −0.523239
\(499\) −34.1697 −1.52965 −0.764824 0.644239i \(-0.777174\pi\)
−0.764824 + 0.644239i \(0.777174\pi\)
\(500\) −8.79788 −0.393453
\(501\) 7.49628 0.334909
\(502\) 6.88946 0.307491
\(503\) −7.35332 −0.327868 −0.163934 0.986471i \(-0.552418\pi\)
−0.163934 + 0.986471i \(0.552418\pi\)
\(504\) −6.28947 −0.280155
\(505\) −21.9020 −0.974627
\(506\) 4.99330 0.221979
\(507\) −9.32927 −0.414328
\(508\) 3.69625 0.163995
\(509\) 12.2409 0.542569 0.271284 0.962499i \(-0.412552\pi\)
0.271284 + 0.962499i \(0.412552\pi\)
\(510\) −10.0834 −0.446502
\(511\) 33.0908 1.46385
\(512\) −1.00000 −0.0441942
\(513\) 1.46825 0.0648250
\(514\) −18.4023 −0.811690
\(515\) 0.456993 0.0201375
\(516\) 3.11053 0.136933
\(517\) 5.20872 0.229079
\(518\) −27.2689 −1.19813
\(519\) −19.9917 −0.877539
\(520\) −4.87848 −0.213936
\(521\) 44.5314 1.95096 0.975479 0.220095i \(-0.0706366\pi\)
0.975479 + 0.220095i \(0.0706366\pi\)
\(522\) −13.4954 −0.590676
\(523\) 23.6154 1.03263 0.516314 0.856399i \(-0.327304\pi\)
0.516314 + 0.856399i \(0.327304\pi\)
\(524\) 22.7260 0.992790
\(525\) −4.87855 −0.212917
\(526\) 16.6847 0.727486
\(527\) −10.2293 −0.445593
\(528\) 0.995042 0.0433036
\(529\) 1.93303 0.0840446
\(530\) 8.06399 0.350277
\(531\) 13.2896 0.576721
\(532\) 0.921664 0.0399592
\(533\) −3.96927 −0.171928
\(534\) 8.00203 0.346282
\(535\) 22.6827 0.980659
\(536\) −1.50401 −0.0649631
\(537\) −19.3855 −0.836545
\(538\) −8.70770 −0.375416
\(539\) 2.79225 0.120271
\(540\) −12.7746 −0.549729
\(541\) −28.5526 −1.22757 −0.613786 0.789472i \(-0.710354\pi\)
−0.613786 + 0.789472i \(0.710354\pi\)
\(542\) 31.1650 1.33865
\(543\) 18.7019 0.802575
\(544\) −3.95449 −0.169547
\(545\) 31.7597 1.36043
\(546\) 5.92777 0.253685
\(547\) 19.0536 0.814674 0.407337 0.913278i \(-0.366457\pi\)
0.407337 + 0.913278i \(0.366457\pi\)
\(548\) −9.12680 −0.389878
\(549\) −12.2255 −0.521771
\(550\) −1.56678 −0.0668077
\(551\) 1.97762 0.0842496
\(552\) 4.96854 0.211475
\(553\) −18.3985 −0.782384
\(554\) −13.6513 −0.579987
\(555\) −22.2200 −0.943185
\(556\) −18.4287 −0.781553
\(557\) 2.63193 0.111518 0.0557592 0.998444i \(-0.482242\pi\)
0.0557592 + 0.998444i \(0.482242\pi\)
\(558\) −5.19907 −0.220094
\(559\) 5.95116 0.251707
\(560\) −8.01895 −0.338863
\(561\) 3.93489 0.166131
\(562\) −18.9769 −0.800493
\(563\) 27.1339 1.14356 0.571779 0.820408i \(-0.306254\pi\)
0.571779 + 0.820408i \(0.306254\pi\)
\(564\) 5.18290 0.218239
\(565\) −45.6813 −1.92183
\(566\) 17.5818 0.739019
\(567\) −3.34624 −0.140529
\(568\) 3.24584 0.136193
\(569\) −7.97804 −0.334457 −0.167228 0.985918i \(-0.553482\pi\)
−0.167228 + 0.985918i \(0.553482\pi\)
\(570\) 0.751015 0.0314566
\(571\) −29.6305 −1.24000 −0.619998 0.784603i \(-0.712867\pi\)
−0.619998 + 0.784603i \(0.712867\pi\)
\(572\) 1.90374 0.0795995
\(573\) 2.97583 0.124317
\(574\) −6.52444 −0.272325
\(575\) −7.82339 −0.326258
\(576\) −2.00989 −0.0837455
\(577\) 24.5831 1.02341 0.511705 0.859161i \(-0.329014\pi\)
0.511705 + 0.859161i \(0.329014\pi\)
\(578\) 1.36199 0.0566514
\(579\) 9.02050 0.374879
\(580\) −17.2063 −0.714454
\(581\) −36.7210 −1.52345
\(582\) 16.6684 0.690929
\(583\) −3.14683 −0.130329
\(584\) 10.5747 0.437583
\(585\) −9.80522 −0.405396
\(586\) −12.4294 −0.513455
\(587\) 24.0361 0.992075 0.496038 0.868301i \(-0.334788\pi\)
0.496038 + 0.868301i \(0.334788\pi\)
\(588\) 2.77841 0.114580
\(589\) 0.761876 0.0313926
\(590\) 16.9440 0.697575
\(591\) 0.995042 0.0409306
\(592\) −8.71417 −0.358150
\(593\) 11.5671 0.475004 0.237502 0.971387i \(-0.423671\pi\)
0.237502 + 0.971387i \(0.423671\pi\)
\(594\) 4.98505 0.204539
\(595\) −31.7109 −1.30002
\(596\) −13.5549 −0.555229
\(597\) 17.7247 0.725423
\(598\) 9.50596 0.388728
\(599\) 18.2758 0.746728 0.373364 0.927685i \(-0.378204\pi\)
0.373364 + 0.927685i \(0.378204\pi\)
\(600\) −1.55901 −0.0636463
\(601\) 7.20217 0.293783 0.146891 0.989153i \(-0.453073\pi\)
0.146891 + 0.989153i \(0.453073\pi\)
\(602\) 9.78214 0.398690
\(603\) −3.02289 −0.123101
\(604\) −1.63328 −0.0664572
\(605\) 2.56257 0.104183
\(606\) 8.50451 0.345472
\(607\) 35.8257 1.45412 0.727060 0.686573i \(-0.240886\pi\)
0.727060 + 0.686573i \(0.240886\pi\)
\(608\) 0.294531 0.0119448
\(609\) 20.9072 0.847201
\(610\) −15.5873 −0.631110
\(611\) 9.91608 0.401161
\(612\) −7.94810 −0.321283
\(613\) −36.6366 −1.47974 −0.739869 0.672751i \(-0.765112\pi\)
−0.739869 + 0.672751i \(0.765112\pi\)
\(614\) −9.74562 −0.393301
\(615\) −5.31642 −0.214379
\(616\) 3.12926 0.126081
\(617\) 10.9171 0.439506 0.219753 0.975556i \(-0.429475\pi\)
0.219753 + 0.975556i \(0.429475\pi\)
\(618\) −0.177450 −0.00713807
\(619\) −38.9758 −1.56657 −0.783284 0.621664i \(-0.786457\pi\)
−0.783284 + 0.621664i \(0.786457\pi\)
\(620\) −6.62872 −0.266216
\(621\) 24.8919 0.998876
\(622\) −1.36689 −0.0548072
\(623\) 25.1652 1.00822
\(624\) 1.89431 0.0758329
\(625\) −30.3791 −1.21516
\(626\) 26.7863 1.07060
\(627\) −0.293071 −0.0117041
\(628\) 5.93137 0.236687
\(629\) −34.4601 −1.37401
\(630\) −16.1172 −0.642125
\(631\) 3.68578 0.146729 0.0733644 0.997305i \(-0.476626\pi\)
0.0733644 + 0.997305i \(0.476626\pi\)
\(632\) −5.87951 −0.233874
\(633\) −3.92731 −0.156097
\(634\) 19.7902 0.785968
\(635\) 9.47192 0.375881
\(636\) −3.13123 −0.124161
\(637\) 5.31574 0.210617
\(638\) 6.71448 0.265829
\(639\) 6.52379 0.258077
\(640\) −2.56257 −0.101295
\(641\) 35.2533 1.39242 0.696210 0.717838i \(-0.254868\pi\)
0.696210 + 0.717838i \(0.254868\pi\)
\(642\) −8.80765 −0.347610
\(643\) 26.7484 1.05485 0.527427 0.849600i \(-0.323157\pi\)
0.527427 + 0.849600i \(0.323157\pi\)
\(644\) 15.6253 0.615724
\(645\) 7.97095 0.313856
\(646\) 1.16472 0.0458253
\(647\) 40.5449 1.59399 0.796993 0.603989i \(-0.206423\pi\)
0.796993 + 0.603989i \(0.206423\pi\)
\(648\) −1.06934 −0.0420076
\(649\) −6.61212 −0.259548
\(650\) −2.98275 −0.116993
\(651\) 8.05445 0.315679
\(652\) 10.1123 0.396026
\(653\) 21.5110 0.841792 0.420896 0.907109i \(-0.361716\pi\)
0.420896 + 0.907109i \(0.361716\pi\)
\(654\) −12.3322 −0.482228
\(655\) 58.2370 2.27551
\(656\) −2.08498 −0.0814048
\(657\) 21.2539 0.829194
\(658\) 16.2994 0.635418
\(659\) −28.6952 −1.11781 −0.558903 0.829233i \(-0.688778\pi\)
−0.558903 + 0.829233i \(0.688778\pi\)
\(660\) 2.54987 0.0992534
\(661\) 43.7005 1.69975 0.849876 0.526983i \(-0.176677\pi\)
0.849876 + 0.526983i \(0.176677\pi\)
\(662\) −18.6813 −0.726068
\(663\) 7.49102 0.290927
\(664\) −11.7347 −0.455396
\(665\) 2.36183 0.0915879
\(666\) −17.5145 −0.678674
\(667\) 33.5274 1.29819
\(668\) 7.53363 0.291485
\(669\) 3.47400 0.134313
\(670\) −3.85412 −0.148898
\(671\) 6.08266 0.234819
\(672\) 3.11374 0.120115
\(673\) 9.03236 0.348172 0.174086 0.984730i \(-0.444303\pi\)
0.174086 + 0.984730i \(0.444303\pi\)
\(674\) −8.20542 −0.316061
\(675\) −7.81047 −0.300625
\(676\) −9.37576 −0.360606
\(677\) −36.3899 −1.39858 −0.699289 0.714839i \(-0.746500\pi\)
−0.699289 + 0.714839i \(0.746500\pi\)
\(678\) 17.7380 0.681222
\(679\) 52.4198 2.01169
\(680\) −10.1337 −0.388609
\(681\) −21.7583 −0.833781
\(682\) 2.58674 0.0990515
\(683\) −16.2003 −0.619888 −0.309944 0.950755i \(-0.600310\pi\)
−0.309944 + 0.950755i \(0.600310\pi\)
\(684\) 0.591976 0.0226348
\(685\) −23.3881 −0.893613
\(686\) −13.1671 −0.502723
\(687\) −9.33757 −0.356251
\(688\) 3.12603 0.119179
\(689\) −5.99077 −0.228230
\(690\) 12.7322 0.484708
\(691\) −21.3504 −0.812208 −0.406104 0.913827i \(-0.633113\pi\)
−0.406104 + 0.913827i \(0.633113\pi\)
\(692\) −20.0913 −0.763758
\(693\) 6.28947 0.238917
\(694\) −9.33023 −0.354171
\(695\) −47.2250 −1.79135
\(696\) 6.68119 0.253250
\(697\) −8.24503 −0.312303
\(698\) 1.32129 0.0500115
\(699\) −13.7860 −0.521436
\(700\) −4.90285 −0.185310
\(701\) −1.42100 −0.0536705 −0.0268352 0.999640i \(-0.508543\pi\)
−0.0268352 + 0.999640i \(0.508543\pi\)
\(702\) 9.49026 0.358187
\(703\) 2.56659 0.0968009
\(704\) 1.00000 0.0376889
\(705\) 13.2816 0.500212
\(706\) −2.28040 −0.0858238
\(707\) 26.7454 1.00586
\(708\) −6.57934 −0.247267
\(709\) −3.84648 −0.144458 −0.0722288 0.997388i \(-0.523011\pi\)
−0.0722288 + 0.997388i \(0.523011\pi\)
\(710\) 8.31771 0.312158
\(711\) −11.8172 −0.443179
\(712\) 8.04190 0.301383
\(713\) 12.9164 0.483722
\(714\) 12.3133 0.460813
\(715\) 4.87848 0.182445
\(716\) −19.4821 −0.728079
\(717\) 1.63057 0.0608947
\(718\) −5.33610 −0.199142
\(719\) −6.28497 −0.234390 −0.117195 0.993109i \(-0.537390\pi\)
−0.117195 + 0.993109i \(0.537390\pi\)
\(720\) −5.15049 −0.191948
\(721\) −0.558053 −0.0207830
\(722\) 18.9133 0.703878
\(723\) −25.4006 −0.944659
\(724\) 18.7951 0.698514
\(725\) −10.5201 −0.390707
\(726\) −0.995042 −0.0369295
\(727\) −9.54742 −0.354094 −0.177047 0.984202i \(-0.556655\pi\)
−0.177047 + 0.984202i \(0.556655\pi\)
\(728\) 5.95731 0.220792
\(729\) 12.7318 0.471546
\(730\) 27.0983 1.00295
\(731\) 12.3618 0.457219
\(732\) 6.05251 0.223707
\(733\) 11.2994 0.417353 0.208677 0.977985i \(-0.433084\pi\)
0.208677 + 0.977985i \(0.433084\pi\)
\(734\) −2.73239 −0.100854
\(735\) 7.11988 0.262621
\(736\) 4.99330 0.184055
\(737\) 1.50401 0.0554007
\(738\) −4.19058 −0.154257
\(739\) −44.7141 −1.64484 −0.822418 0.568884i \(-0.807375\pi\)
−0.822418 + 0.568884i \(0.807375\pi\)
\(740\) −22.3307 −0.820893
\(741\) −0.557932 −0.0204961
\(742\) −9.84725 −0.361504
\(743\) 25.9003 0.950191 0.475096 0.879934i \(-0.342413\pi\)
0.475096 + 0.879934i \(0.342413\pi\)
\(744\) 2.57392 0.0943644
\(745\) −34.7353 −1.27260
\(746\) 17.1447 0.627714
\(747\) −23.5856 −0.862951
\(748\) 3.95449 0.144591
\(749\) −27.6987 −1.01209
\(750\) 8.75426 0.319660
\(751\) −2.08433 −0.0760583 −0.0380291 0.999277i \(-0.512108\pi\)
−0.0380291 + 0.999277i \(0.512108\pi\)
\(752\) 5.20872 0.189943
\(753\) −6.85530 −0.249821
\(754\) 12.7827 0.465517
\(755\) −4.18540 −0.152322
\(756\) 15.5995 0.567349
\(757\) −32.6203 −1.18560 −0.592802 0.805348i \(-0.701978\pi\)
−0.592802 + 0.805348i \(0.701978\pi\)
\(758\) −7.08218 −0.257236
\(759\) −4.96854 −0.180347
\(760\) 0.754757 0.0273779
\(761\) 31.2108 1.13139 0.565696 0.824614i \(-0.308608\pi\)
0.565696 + 0.824614i \(0.308608\pi\)
\(762\) −3.67793 −0.133237
\(763\) −38.7830 −1.40404
\(764\) 2.99065 0.108198
\(765\) −20.3676 −0.736392
\(766\) −26.7343 −0.965950
\(767\) −12.5878 −0.454519
\(768\) 0.995042 0.0359055
\(769\) 3.67189 0.132412 0.0662058 0.997806i \(-0.478911\pi\)
0.0662058 + 0.997806i \(0.478911\pi\)
\(770\) 8.01895 0.288983
\(771\) 18.3111 0.659457
\(772\) 9.06545 0.326273
\(773\) −10.1714 −0.365839 −0.182919 0.983128i \(-0.558555\pi\)
−0.182919 + 0.983128i \(0.558555\pi\)
\(774\) 6.28297 0.225837
\(775\) −4.05285 −0.145583
\(776\) 16.7515 0.601344
\(777\) 27.1337 0.973415
\(778\) −0.457062 −0.0163865
\(779\) 0.614091 0.0220021
\(780\) 4.85430 0.173812
\(781\) −3.24584 −0.116145
\(782\) 19.7460 0.706114
\(783\) 33.4720 1.19619
\(784\) 2.79225 0.0997234
\(785\) 15.1996 0.542496
\(786\) −22.6133 −0.806590
\(787\) 4.77793 0.170315 0.0851574 0.996368i \(-0.472861\pi\)
0.0851574 + 0.996368i \(0.472861\pi\)
\(788\) 1.00000 0.0356235
\(789\) −16.6019 −0.591045
\(790\) −15.0667 −0.536048
\(791\) 55.7832 1.98342
\(792\) 2.00989 0.0714184
\(793\) 11.5798 0.411212
\(794\) −3.76562 −0.133637
\(795\) −8.02401 −0.284582
\(796\) 17.8130 0.631366
\(797\) 35.4770 1.25666 0.628330 0.777947i \(-0.283739\pi\)
0.628330 + 0.777947i \(0.283739\pi\)
\(798\) −0.917094 −0.0324648
\(799\) 20.5979 0.728700
\(800\) −1.56678 −0.0553940
\(801\) 16.1633 0.571104
\(802\) 32.4273 1.14505
\(803\) −10.5747 −0.373172
\(804\) 1.49655 0.0527792
\(805\) 40.0410 1.41126
\(806\) 4.92450 0.173458
\(807\) 8.66452 0.305006
\(808\) 8.54689 0.300678
\(809\) −14.6835 −0.516243 −0.258121 0.966112i \(-0.583103\pi\)
−0.258121 + 0.966112i \(0.583103\pi\)
\(810\) −2.74026 −0.0962828
\(811\) 39.0318 1.37059 0.685295 0.728265i \(-0.259673\pi\)
0.685295 + 0.728265i \(0.259673\pi\)
\(812\) 21.0113 0.737353
\(813\) −31.0105 −1.08759
\(814\) 8.71417 0.305431
\(815\) 25.9134 0.907706
\(816\) 3.93489 0.137749
\(817\) −0.920712 −0.0322116
\(818\) 22.8999 0.800677
\(819\) 11.9735 0.418389
\(820\) −5.34291 −0.186583
\(821\) 55.0725 1.92204 0.961021 0.276474i \(-0.0891659\pi\)
0.961021 + 0.276474i \(0.0891659\pi\)
\(822\) 9.08155 0.316755
\(823\) 23.5681 0.821533 0.410767 0.911740i \(-0.365261\pi\)
0.410767 + 0.911740i \(0.365261\pi\)
\(824\) −0.178334 −0.00621255
\(825\) 1.55901 0.0542778
\(826\) −20.6910 −0.719933
\(827\) −20.3938 −0.709161 −0.354580 0.935026i \(-0.615376\pi\)
−0.354580 + 0.935026i \(0.615376\pi\)
\(828\) 10.0360 0.348775
\(829\) −50.0122 −1.73699 −0.868497 0.495694i \(-0.834914\pi\)
−0.868497 + 0.495694i \(0.834914\pi\)
\(830\) −30.0711 −1.04378
\(831\) 13.5836 0.471209
\(832\) 1.90374 0.0660005
\(833\) 11.0419 0.382581
\(834\) 18.3374 0.634971
\(835\) 19.3055 0.668093
\(836\) −0.294531 −0.0101866
\(837\) 12.8951 0.445718
\(838\) 8.17923 0.282547
\(839\) 27.8434 0.961259 0.480630 0.876924i \(-0.340408\pi\)
0.480630 + 0.876924i \(0.340408\pi\)
\(840\) 7.97919 0.275308
\(841\) 16.0842 0.554629
\(842\) 13.4607 0.463887
\(843\) 18.8828 0.650359
\(844\) −3.94688 −0.135857
\(845\) −24.0261 −0.826522
\(846\) 10.4690 0.359931
\(847\) −3.12926 −0.107523
\(848\) −3.14683 −0.108063
\(849\) −17.4946 −0.600415
\(850\) −6.19581 −0.212515
\(851\) 43.5124 1.49159
\(852\) −3.22975 −0.110649
\(853\) −21.0784 −0.721711 −0.360855 0.932622i \(-0.617515\pi\)
−0.360855 + 0.932622i \(0.617515\pi\)
\(854\) 19.0342 0.651338
\(855\) 1.51698 0.0518796
\(856\) −8.85153 −0.302539
\(857\) 2.15342 0.0735593 0.0367796 0.999323i \(-0.488290\pi\)
0.0367796 + 0.999323i \(0.488290\pi\)
\(858\) −1.89431 −0.0646705
\(859\) −9.58472 −0.327026 −0.163513 0.986541i \(-0.552283\pi\)
−0.163513 + 0.986541i \(0.552283\pi\)
\(860\) 8.01067 0.273162
\(861\) 6.49209 0.221250
\(862\) −28.0492 −0.955359
\(863\) 25.9499 0.883346 0.441673 0.897176i \(-0.354385\pi\)
0.441673 + 0.897176i \(0.354385\pi\)
\(864\) 4.98505 0.169595
\(865\) −51.4855 −1.75056
\(866\) −27.0089 −0.917800
\(867\) −1.35524 −0.0460263
\(868\) 8.09459 0.274748
\(869\) 5.87951 0.199449
\(870\) 17.1210 0.580457
\(871\) 2.86324 0.0970172
\(872\) −12.3937 −0.419702
\(873\) 33.6687 1.13951
\(874\) −1.47068 −0.0497465
\(875\) 27.5308 0.930712
\(876\) −10.5222 −0.355513
\(877\) 24.1158 0.814334 0.407167 0.913354i \(-0.366517\pi\)
0.407167 + 0.913354i \(0.366517\pi\)
\(878\) 4.82076 0.162693
\(879\) 12.3678 0.417156
\(880\) 2.56257 0.0863843
\(881\) −8.59796 −0.289673 −0.144836 0.989456i \(-0.546266\pi\)
−0.144836 + 0.989456i \(0.546266\pi\)
\(882\) 5.61213 0.188970
\(883\) −11.3673 −0.382541 −0.191270 0.981537i \(-0.561261\pi\)
−0.191270 + 0.981537i \(0.561261\pi\)
\(884\) 7.52834 0.253206
\(885\) −16.8600 −0.566744
\(886\) 22.2916 0.748900
\(887\) −42.8502 −1.43877 −0.719385 0.694611i \(-0.755576\pi\)
−0.719385 + 0.694611i \(0.755576\pi\)
\(888\) 8.67096 0.290979
\(889\) −11.5665 −0.387929
\(890\) 20.6079 0.690780
\(891\) 1.06934 0.0358242
\(892\) 3.49131 0.116898
\(893\) −1.53413 −0.0513377
\(894\) 13.4877 0.451095
\(895\) −49.9242 −1.66878
\(896\) 3.12926 0.104541
\(897\) −9.45883 −0.315821
\(898\) −20.7460 −0.692302
\(899\) 17.3686 0.579276
\(900\) −3.14905 −0.104968
\(901\) −12.4441 −0.414574
\(902\) 2.08498 0.0694222
\(903\) −9.73364 −0.323915
\(904\) 17.8263 0.592895
\(905\) 48.1638 1.60102
\(906\) 1.62518 0.0539930
\(907\) 12.9470 0.429899 0.214949 0.976625i \(-0.431041\pi\)
0.214949 + 0.976625i \(0.431041\pi\)
\(908\) −21.8667 −0.725673
\(909\) 17.1783 0.569769
\(910\) 15.2660 0.506064
\(911\) −9.71771 −0.321962 −0.160981 0.986958i \(-0.551466\pi\)
−0.160981 + 0.986958i \(0.551466\pi\)
\(912\) −0.293071 −0.00970454
\(913\) 11.7347 0.388363
\(914\) −6.90837 −0.228509
\(915\) 15.5100 0.512744
\(916\) −9.38410 −0.310059
\(917\) −71.1155 −2.34844
\(918\) 19.7134 0.650638
\(919\) −24.2958 −0.801445 −0.400722 0.916200i \(-0.631241\pi\)
−0.400722 + 0.916200i \(0.631241\pi\)
\(920\) 12.7957 0.421861
\(921\) 9.69730 0.319537
\(922\) −30.7360 −1.01224
\(923\) −6.17925 −0.203393
\(924\) −3.11374 −0.102435
\(925\) −13.6532 −0.448914
\(926\) 20.8646 0.685652
\(927\) −0.358432 −0.0117724
\(928\) 6.71448 0.220414
\(929\) 28.4257 0.932618 0.466309 0.884622i \(-0.345584\pi\)
0.466309 + 0.884622i \(0.345584\pi\)
\(930\) 6.59585 0.216287
\(931\) −0.822406 −0.0269533
\(932\) −13.8547 −0.453827
\(933\) 1.36011 0.0445280
\(934\) 11.0242 0.360723
\(935\) 10.1337 0.331407
\(936\) 3.82632 0.125067
\(937\) 19.3229 0.631253 0.315626 0.948884i \(-0.397785\pi\)
0.315626 + 0.948884i \(0.397785\pi\)
\(938\) 4.70642 0.153670
\(939\) −26.6535 −0.869804
\(940\) 13.3477 0.435355
\(941\) −22.9015 −0.746567 −0.373283 0.927717i \(-0.621768\pi\)
−0.373283 + 0.927717i \(0.621768\pi\)
\(942\) −5.90196 −0.192296
\(943\) 10.4109 0.339026
\(944\) −6.61212 −0.215206
\(945\) 39.9749 1.30038
\(946\) −3.12603 −0.101636
\(947\) −2.13705 −0.0694448 −0.0347224 0.999397i \(-0.511055\pi\)
−0.0347224 + 0.999397i \(0.511055\pi\)
\(948\) 5.85036 0.190011
\(949\) −20.1315 −0.653495
\(950\) 0.461465 0.0149719
\(951\) −19.6920 −0.638558
\(952\) 12.3746 0.401064
\(953\) 44.7005 1.44799 0.723995 0.689805i \(-0.242304\pi\)
0.723995 + 0.689805i \(0.242304\pi\)
\(954\) −6.32479 −0.204773
\(955\) 7.66377 0.247994
\(956\) 1.63869 0.0529991
\(957\) −6.68119 −0.215972
\(958\) 0.454795 0.0146938
\(959\) 28.5601 0.922254
\(960\) 2.54987 0.0822966
\(961\) −24.3088 −0.784154
\(962\) 16.5896 0.534869
\(963\) −17.7906 −0.573295
\(964\) −25.5272 −0.822175
\(965\) 23.2309 0.747828
\(966\) −15.5478 −0.500244
\(967\) 16.0521 0.516202 0.258101 0.966118i \(-0.416903\pi\)
0.258101 + 0.966118i \(0.416903\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −1.15895 −0.0372307
\(970\) 42.9269 1.37830
\(971\) −42.8898 −1.37640 −0.688200 0.725521i \(-0.741599\pi\)
−0.688200 + 0.725521i \(0.741599\pi\)
\(972\) 16.0192 0.513816
\(973\) 57.6683 1.84876
\(974\) 10.9083 0.349525
\(975\) 2.96796 0.0950507
\(976\) 6.08266 0.194701
\(977\) −49.3586 −1.57912 −0.789561 0.613672i \(-0.789692\pi\)
−0.789561 + 0.613672i \(0.789692\pi\)
\(978\) −10.0621 −0.321751
\(979\) −8.04190 −0.257020
\(980\) 7.15536 0.228569
\(981\) −24.9099 −0.795312
\(982\) 4.13367 0.131911
\(983\) 18.6318 0.594262 0.297131 0.954837i \(-0.403970\pi\)
0.297131 + 0.954837i \(0.403970\pi\)
\(984\) 2.07464 0.0661372
\(985\) 2.56257 0.0816504
\(986\) 26.5524 0.845599
\(987\) −16.2186 −0.516244
\(988\) −0.560712 −0.0178386
\(989\) −15.6092 −0.496343
\(990\) 5.15049 0.163693
\(991\) −46.2037 −1.46771 −0.733855 0.679306i \(-0.762281\pi\)
−0.733855 + 0.679306i \(0.762281\pi\)
\(992\) 2.58674 0.0821292
\(993\) 18.5886 0.589893
\(994\) −10.1571 −0.322163
\(995\) 45.6471 1.44711
\(996\) 11.6766 0.369986
\(997\) −2.35218 −0.0744944 −0.0372472 0.999306i \(-0.511859\pi\)
−0.0372472 + 0.999306i \(0.511859\pi\)
\(998\) 34.1697 1.08162
\(999\) 43.4406 1.37440
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4334.2.a.a.1.11 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4334.2.a.a.1.11 15 1.1 even 1 trivial