Properties

Label 432.9.e.d.161.2
Level $432$
Weight $9$
Character 432.161
Analytic conductor $175.988$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,9,Mod(161,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.161");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.2
Root \(2.44949i\) of defining polynomial
Character \(\chi\) \(=\) 432.161
Dual form 432.9.e.d.161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+823.029i q^{5} -1967.00 q^{7} +O(q^{10})\) \(q+823.029i q^{5} -1967.00 q^{7} -12580.6i q^{11} -45505.0 q^{13} +59610.8i q^{17} -152399. q^{19} -131332. i q^{23} -286751. q^{25} +588583. i q^{29} +164350. q^{31} -1.61890e6i q^{35} -663937. q^{37} +938017. i q^{41} -575330. q^{43} -9.23426e6i q^{47} -1.89571e6 q^{49} -1.03765e7i q^{53} +1.03542e7 q^{55} -5.03987e6i q^{59} -1.92130e7 q^{61} -3.74519e7i q^{65} +598033. q^{67} +2.92721e7i q^{71} +1.28502e7 q^{73} +2.47460e7i q^{77} +2.35847e7 q^{79} +3.34509e7i q^{83} -4.90614e7 q^{85} +2.82848e7i q^{89} +8.95083e7 q^{91} -1.25429e8i q^{95} +1.36490e8 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3934 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3934 q^{7} - 91010 q^{13} - 304798 q^{19} - 573502 q^{25} + 328700 q^{31} - 1327874 q^{37} - 1150660 q^{43} - 3791424 q^{49} + 20708352 q^{55} - 38425922 q^{61} + 1196066 q^{67} + 25700350 q^{73} + 47169314 q^{79} - 98122752 q^{85} + 179016670 q^{91} + 272979262 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 823.029i 1.31685i 0.752648 + 0.658423i \(0.228776\pi\)
−0.752648 + 0.658423i \(0.771224\pi\)
\(6\) 0 0
\(7\) −1967.00 −0.819242 −0.409621 0.912256i \(-0.634339\pi\)
−0.409621 + 0.912256i \(0.634339\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 12580.6i − 0.859270i −0.903003 0.429635i \(-0.858642\pi\)
0.903003 0.429635i \(-0.141358\pi\)
\(12\) 0 0
\(13\) −45505.0 −1.59326 −0.796628 0.604470i \(-0.793385\pi\)
−0.796628 + 0.604470i \(0.793385\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 59610.8i 0.713722i 0.934157 + 0.356861i \(0.116153\pi\)
−0.934157 + 0.356861i \(0.883847\pi\)
\(18\) 0 0
\(19\) −152399. −1.16941 −0.584706 0.811245i \(-0.698790\pi\)
−0.584706 + 0.811245i \(0.698790\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 131332.i − 0.469309i −0.972079 0.234654i \(-0.924604\pi\)
0.972079 0.234654i \(-0.0753958\pi\)
\(24\) 0 0
\(25\) −286751. −0.734083
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 588583.i 0.832177i 0.909324 + 0.416089i \(0.136599\pi\)
−0.909324 + 0.416089i \(0.863401\pi\)
\(30\) 0 0
\(31\) 164350. 0.177960 0.0889801 0.996033i \(-0.471639\pi\)
0.0889801 + 0.996033i \(0.471639\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 1.61890e6i − 1.07882i
\(36\) 0 0
\(37\) −663937. −0.354258 −0.177129 0.984188i \(-0.556681\pi\)
−0.177129 + 0.984188i \(0.556681\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 938017.i 0.331952i 0.986130 + 0.165976i \(0.0530774\pi\)
−0.986130 + 0.165976i \(0.946923\pi\)
\(42\) 0 0
\(43\) −575330. −0.168284 −0.0841421 0.996454i \(-0.526815\pi\)
−0.0841421 + 0.996454i \(0.526815\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 9.23426e6i − 1.89239i −0.323596 0.946195i \(-0.604892\pi\)
0.323596 0.946195i \(-0.395108\pi\)
\(48\) 0 0
\(49\) −1.89571e6 −0.328843
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 1.03765e7i − 1.31507i −0.753425 0.657533i \(-0.771600\pi\)
0.753425 0.657533i \(-0.228400\pi\)
\(54\) 0 0
\(55\) 1.03542e7 1.13153
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 5.03987e6i − 0.415922i −0.978137 0.207961i \(-0.933317\pi\)
0.978137 0.207961i \(-0.0666827\pi\)
\(60\) 0 0
\(61\) −1.92130e7 −1.38763 −0.693817 0.720151i \(-0.744072\pi\)
−0.693817 + 0.720151i \(0.744072\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 3.74519e7i − 2.09807i
\(66\) 0 0
\(67\) 598033. 0.0296774 0.0148387 0.999890i \(-0.495277\pi\)
0.0148387 + 0.999890i \(0.495277\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.92721e7i 1.15191i 0.817480 + 0.575957i \(0.195370\pi\)
−0.817480 + 0.575957i \(0.804630\pi\)
\(72\) 0 0
\(73\) 1.28502e7 0.452499 0.226249 0.974069i \(-0.427354\pi\)
0.226249 + 0.974069i \(0.427354\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.47460e7i 0.703950i
\(78\) 0 0
\(79\) 2.35847e7 0.605510 0.302755 0.953068i \(-0.402094\pi\)
0.302755 + 0.953068i \(0.402094\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.34509e7i 0.704849i 0.935840 + 0.352424i \(0.114643\pi\)
−0.935840 + 0.352424i \(0.885357\pi\)
\(84\) 0 0
\(85\) −4.90614e7 −0.939862
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.82848e7i 0.450809i 0.974265 + 0.225405i \(0.0723704\pi\)
−0.974265 + 0.225405i \(0.927630\pi\)
\(90\) 0 0
\(91\) 8.95083e7 1.30526
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 1.25429e8i − 1.53994i
\(96\) 0 0
\(97\) 1.36490e8 1.54175 0.770873 0.636989i \(-0.219820\pi\)
0.770873 + 0.636989i \(0.219820\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 4.02494e7i − 0.386789i −0.981121 0.193394i \(-0.938050\pi\)
0.981121 0.193394i \(-0.0619497\pi\)
\(102\) 0 0
\(103\) −3.35907e7 −0.298449 −0.149225 0.988803i \(-0.547678\pi\)
−0.149225 + 0.988803i \(0.547678\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.95483e8i 1.49133i 0.666322 + 0.745664i \(0.267868\pi\)
−0.666322 + 0.745664i \(0.732132\pi\)
\(108\) 0 0
\(109\) −1.01182e8 −0.716800 −0.358400 0.933568i \(-0.616678\pi\)
−0.358400 + 0.933568i \(0.616678\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.14504e8i 1.92891i 0.264238 + 0.964457i \(0.414880\pi\)
−0.264238 + 0.964457i \(0.585120\pi\)
\(114\) 0 0
\(115\) 1.08090e8 0.618007
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 1.17254e8i − 0.584711i
\(120\) 0 0
\(121\) 5.60879e7 0.261654
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.54913e7i 0.350172i
\(126\) 0 0
\(127\) −4.30869e8 −1.65627 −0.828133 0.560532i \(-0.810597\pi\)
−0.828133 + 0.560532i \(0.810597\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 1.88933e8i − 0.641538i −0.947158 0.320769i \(-0.896059\pi\)
0.947158 0.320769i \(-0.103941\pi\)
\(132\) 0 0
\(133\) 2.99769e8 0.958032
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.22998e8i 0.349152i 0.984644 + 0.174576i \(0.0558555\pi\)
−0.984644 + 0.174576i \(0.944144\pi\)
\(138\) 0 0
\(139\) −1.72072e8 −0.460947 −0.230474 0.973079i \(-0.574028\pi\)
−0.230474 + 0.973079i \(0.574028\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.72479e8i 1.36904i
\(144\) 0 0
\(145\) −4.84421e8 −1.09585
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 7.31667e8i − 1.48446i −0.670145 0.742230i \(-0.733768\pi\)
0.670145 0.742230i \(-0.266232\pi\)
\(150\) 0 0
\(151\) −1.85952e8 −0.357679 −0.178840 0.983878i \(-0.557234\pi\)
−0.178840 + 0.983878i \(0.557234\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.35265e8i 0.234346i
\(156\) 0 0
\(157\) 9.74007e8 1.60311 0.801556 0.597920i \(-0.204006\pi\)
0.801556 + 0.597920i \(0.204006\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.58330e8i 0.384477i
\(162\) 0 0
\(163\) 1.15499e9 1.63616 0.818082 0.575102i \(-0.195038\pi\)
0.818082 + 0.575102i \(0.195038\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.14302e8i 0.146956i 0.997297 + 0.0734779i \(0.0234098\pi\)
−0.997297 + 0.0734779i \(0.976590\pi\)
\(168\) 0 0
\(169\) 1.25497e9 1.53847
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1.65322e9i − 1.84564i −0.385235 0.922819i \(-0.625879\pi\)
0.385235 0.922819i \(-0.374121\pi\)
\(174\) 0 0
\(175\) 5.64039e8 0.601391
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 4.17229e8i − 0.406408i −0.979136 0.203204i \(-0.934865\pi\)
0.979136 0.203204i \(-0.0651355\pi\)
\(180\) 0 0
\(181\) 1.16424e9 1.08475 0.542374 0.840137i \(-0.317526\pi\)
0.542374 + 0.840137i \(0.317526\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 5.46439e8i − 0.466503i
\(186\) 0 0
\(187\) 7.49938e8 0.613280
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 1.61055e9i − 1.21016i −0.796166 0.605078i \(-0.793142\pi\)
0.796166 0.605078i \(-0.206858\pi\)
\(192\) 0 0
\(193\) −7.10279e8 −0.511917 −0.255959 0.966688i \(-0.582391\pi\)
−0.255959 + 0.966688i \(0.582391\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.41623e9i 0.940303i 0.882586 + 0.470152i \(0.155801\pi\)
−0.882586 + 0.470152i \(0.844199\pi\)
\(198\) 0 0
\(199\) 2.34324e9 1.49419 0.747093 0.664720i \(-0.231449\pi\)
0.747093 + 0.664720i \(0.231449\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 1.15774e9i − 0.681754i
\(204\) 0 0
\(205\) −7.72015e8 −0.437130
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.91727e9i 1.00484i
\(210\) 0 0
\(211\) −1.06517e9 −0.537389 −0.268695 0.963225i \(-0.586592\pi\)
−0.268695 + 0.963225i \(0.586592\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 4.73513e8i − 0.221604i
\(216\) 0 0
\(217\) −3.23276e8 −0.145792
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 2.71259e9i − 1.13714i
\(222\) 0 0
\(223\) −1.99586e9 −0.807068 −0.403534 0.914965i \(-0.632218\pi\)
−0.403534 + 0.914965i \(0.632218\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 1.79923e9i − 0.677615i −0.940856 0.338807i \(-0.889977\pi\)
0.940856 0.338807i \(-0.110023\pi\)
\(228\) 0 0
\(229\) 1.59787e9 0.581032 0.290516 0.956870i \(-0.406173\pi\)
0.290516 + 0.956870i \(0.406173\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.98411e9i 1.69108i 0.533912 + 0.845540i \(0.320721\pi\)
−0.533912 + 0.845540i \(0.679279\pi\)
\(234\) 0 0
\(235\) 7.60006e9 2.49199
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.89754e9i 1.80751i 0.428055 + 0.903753i \(0.359199\pi\)
−0.428055 + 0.903753i \(0.640801\pi\)
\(240\) 0 0
\(241\) 2.26174e9 0.670463 0.335231 0.942136i \(-0.391185\pi\)
0.335231 + 0.942136i \(0.391185\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1.56023e9i − 0.433035i
\(246\) 0 0
\(247\) 6.93492e9 1.86317
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.31815e9i 0.835989i 0.908450 + 0.417994i \(0.137267\pi\)
−0.908450 + 0.417994i \(0.862733\pi\)
\(252\) 0 0
\(253\) −1.65223e9 −0.403263
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.05018e9i 0.699185i 0.936902 + 0.349593i \(0.113680\pi\)
−0.936902 + 0.349593i \(0.886320\pi\)
\(258\) 0 0
\(259\) 1.30596e9 0.290223
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.97422e9i 0.412640i 0.978485 + 0.206320i \(0.0661489\pi\)
−0.978485 + 0.206320i \(0.933851\pi\)
\(264\) 0 0
\(265\) 8.54016e9 1.73174
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 3.49334e9i − 0.667163i −0.942721 0.333581i \(-0.891743\pi\)
0.942721 0.333581i \(-0.108257\pi\)
\(270\) 0 0
\(271\) −1.43226e9 −0.265549 −0.132774 0.991146i \(-0.542389\pi\)
−0.132774 + 0.991146i \(0.542389\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.60749e9i 0.630775i
\(276\) 0 0
\(277\) 3.35095e9 0.569179 0.284589 0.958650i \(-0.408143\pi\)
0.284589 + 0.958650i \(0.408143\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.29040e9i 0.688133i 0.938945 + 0.344067i \(0.111805\pi\)
−0.938945 + 0.344067i \(0.888195\pi\)
\(282\) 0 0
\(283\) 9.91145e7 0.0154522 0.00772612 0.999970i \(-0.497541\pi\)
0.00772612 + 0.999970i \(0.497541\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 1.84508e9i − 0.271949i
\(288\) 0 0
\(289\) 3.42231e9 0.490601
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 9.02972e8i − 0.122519i −0.998122 0.0612596i \(-0.980488\pi\)
0.998122 0.0612596i \(-0.0195117\pi\)
\(294\) 0 0
\(295\) 4.14796e9 0.547705
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.97626e9i 0.747729i
\(300\) 0 0
\(301\) 1.13167e9 0.137865
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 1.58128e10i − 1.82730i
\(306\) 0 0
\(307\) −3.36397e9 −0.378703 −0.189352 0.981909i \(-0.560639\pi\)
−0.189352 + 0.981909i \(0.560639\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 1.33023e10i − 1.42196i −0.703215 0.710978i \(-0.748253\pi\)
0.703215 0.710978i \(-0.251747\pi\)
\(312\) 0 0
\(313\) 1.31249e10 1.36748 0.683738 0.729728i \(-0.260353\pi\)
0.683738 + 0.729728i \(0.260353\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 6.98520e9i − 0.691739i −0.938283 0.345869i \(-0.887584\pi\)
0.938283 0.345869i \(-0.112416\pi\)
\(318\) 0 0
\(319\) 7.40472e9 0.715065
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 9.08462e9i − 0.834635i
\(324\) 0 0
\(325\) 1.30486e10 1.16958
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.81638e10i 1.55033i
\(330\) 0 0
\(331\) 1.18733e10 0.989140 0.494570 0.869138i \(-0.335326\pi\)
0.494570 + 0.869138i \(0.335326\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.92198e8i 0.0390806i
\(336\) 0 0
\(337\) 9.15419e9 0.709741 0.354871 0.934915i \(-0.384525\pi\)
0.354871 + 0.934915i \(0.384525\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 2.06762e9i − 0.152916i
\(342\) 0 0
\(343\) 1.50682e10 1.08864
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.05081e10i − 1.41451i −0.706957 0.707257i \(-0.749933\pi\)
0.706957 0.707257i \(-0.250067\pi\)
\(348\) 0 0
\(349\) 1.34799e10 0.908625 0.454312 0.890842i \(-0.349885\pi\)
0.454312 + 0.890842i \(0.349885\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.78259e9i 0.630021i 0.949088 + 0.315011i \(0.102008\pi\)
−0.949088 + 0.315011i \(0.897992\pi\)
\(354\) 0 0
\(355\) −2.40917e10 −1.51689
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 1.67338e10i − 1.00743i −0.863868 0.503717i \(-0.831965\pi\)
0.863868 0.503717i \(-0.168035\pi\)
\(360\) 0 0
\(361\) 6.24189e9 0.367525
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.05761e10i 0.595871i
\(366\) 0 0
\(367\) 1.49879e10 0.826184 0.413092 0.910689i \(-0.364449\pi\)
0.413092 + 0.910689i \(0.364449\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.04106e10i 1.07736i
\(372\) 0 0
\(373\) −1.97964e10 −1.02271 −0.511353 0.859371i \(-0.670855\pi\)
−0.511353 + 0.859371i \(0.670855\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2.67835e10i − 1.32587i
\(378\) 0 0
\(379\) 5.34899e9 0.259248 0.129624 0.991563i \(-0.458623\pi\)
0.129624 + 0.991563i \(0.458623\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.44938e10i 0.673577i 0.941580 + 0.336788i \(0.109341\pi\)
−0.941580 + 0.336788i \(0.890659\pi\)
\(384\) 0 0
\(385\) −2.03667e10 −0.926994
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.80507e10i 0.788308i 0.919044 + 0.394154i \(0.128962\pi\)
−0.919044 + 0.394154i \(0.871038\pi\)
\(390\) 0 0
\(391\) 7.82879e9 0.334956
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.94108e10i 0.797363i
\(396\) 0 0
\(397\) 3.82640e10 1.54038 0.770191 0.637814i \(-0.220161\pi\)
0.770191 + 0.637814i \(0.220161\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 4.26602e10i − 1.64985i −0.565241 0.824926i \(-0.691217\pi\)
0.565241 0.824926i \(-0.308783\pi\)
\(402\) 0 0
\(403\) −7.47875e9 −0.283536
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.35271e9i 0.304404i
\(408\) 0 0
\(409\) −3.53953e10 −1.26489 −0.632444 0.774606i \(-0.717948\pi\)
−0.632444 + 0.774606i \(0.717948\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.91343e9i 0.340741i
\(414\) 0 0
\(415\) −2.75311e10 −0.928177
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.45926e10i 0.473453i 0.971576 + 0.236726i \(0.0760745\pi\)
−0.971576 + 0.236726i \(0.923926\pi\)
\(420\) 0 0
\(421\) −2.65099e10 −0.843879 −0.421939 0.906624i \(-0.638650\pi\)
−0.421939 + 0.906624i \(0.638650\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 1.70935e10i − 0.523931i
\(426\) 0 0
\(427\) 3.77919e10 1.13681
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.61676e9i 0.133791i 0.997760 + 0.0668957i \(0.0213095\pi\)
−0.997760 + 0.0668957i \(0.978691\pi\)
\(432\) 0 0
\(433\) −1.64494e10 −0.467948 −0.233974 0.972243i \(-0.575173\pi\)
−0.233974 + 0.972243i \(0.575173\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.00148e10i 0.548816i
\(438\) 0 0
\(439\) 2.61475e10 0.703999 0.351999 0.936000i \(-0.385502\pi\)
0.351999 + 0.936000i \(0.385502\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 4.31455e10i − 1.12027i −0.828403 0.560133i \(-0.810750\pi\)
0.828403 0.560133i \(-0.189250\pi\)
\(444\) 0 0
\(445\) −2.32792e10 −0.593646
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.18287e10i 0.537084i 0.963268 + 0.268542i \(0.0865418\pi\)
−0.963268 + 0.268542i \(0.913458\pi\)
\(450\) 0 0
\(451\) 1.18008e10 0.285237
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.36679e10i 1.71883i
\(456\) 0 0
\(457\) 2.46905e10 0.566064 0.283032 0.959110i \(-0.408660\pi\)
0.283032 + 0.959110i \(0.408660\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.61732e10i 0.579500i 0.957102 + 0.289750i \(0.0935722\pi\)
−0.957102 + 0.289750i \(0.906428\pi\)
\(462\) 0 0
\(463\) −7.04102e10 −1.53219 −0.766093 0.642729i \(-0.777802\pi\)
−0.766093 + 0.642729i \(0.777802\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.07220e10i 0.225428i 0.993627 + 0.112714i \(0.0359543\pi\)
−0.993627 + 0.112714i \(0.964046\pi\)
\(468\) 0 0
\(469\) −1.17633e9 −0.0243130
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.23798e9i 0.144602i
\(474\) 0 0
\(475\) 4.37006e10 0.858445
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 1.40034e10i − 0.266005i −0.991116 0.133003i \(-0.957538\pi\)
0.991116 0.133003i \(-0.0424619\pi\)
\(480\) 0 0
\(481\) 3.02125e10 0.564424
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.12335e11i 2.03024i
\(486\) 0 0
\(487\) −1.72271e9 −0.0306264 −0.0153132 0.999883i \(-0.504875\pi\)
−0.0153132 + 0.999883i \(0.504875\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 3.70419e10i − 0.637334i −0.947867 0.318667i \(-0.896765\pi\)
0.947867 0.318667i \(-0.103235\pi\)
\(492\) 0 0
\(493\) −3.50859e10 −0.593943
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 5.75782e10i − 0.943696i
\(498\) 0 0
\(499\) 1.33497e10 0.215312 0.107656 0.994188i \(-0.465665\pi\)
0.107656 + 0.994188i \(0.465665\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 5.91175e10i − 0.923516i −0.887006 0.461758i \(-0.847219\pi\)
0.887006 0.461758i \(-0.152781\pi\)
\(504\) 0 0
\(505\) 3.31264e10 0.509341
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 3.32051e10i − 0.494691i −0.968927 0.247345i \(-0.920442\pi\)
0.968927 0.247345i \(-0.0795583\pi\)
\(510\) 0 0
\(511\) −2.52763e10 −0.370706
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 2.76461e10i − 0.393012i
\(516\) 0 0
\(517\) −1.16172e11 −1.62608
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.53746e10i 0.344388i 0.985063 + 0.172194i \(0.0550856\pi\)
−0.985063 + 0.172194i \(0.944914\pi\)
\(522\) 0 0
\(523\) −1.27775e11 −1.70781 −0.853903 0.520432i \(-0.825771\pi\)
−0.853903 + 0.520432i \(0.825771\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.79703e9i 0.127014i
\(528\) 0 0
\(529\) 6.10629e10 0.779749
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 4.26845e10i − 0.528885i
\(534\) 0 0
\(535\) −1.60888e11 −1.96385
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.38492e10i 0.282565i
\(540\) 0 0
\(541\) 6.16835e9 0.0720078 0.0360039 0.999352i \(-0.488537\pi\)
0.0360039 + 0.999352i \(0.488537\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 8.32758e10i − 0.943915i
\(546\) 0 0
\(547\) −1.02309e11 −1.14279 −0.571394 0.820676i \(-0.693597\pi\)
−0.571394 + 0.820676i \(0.693597\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 8.96995e10i − 0.973158i
\(552\) 0 0
\(553\) −4.63910e10 −0.496059
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 1.00553e11i − 1.04466i −0.852743 0.522331i \(-0.825063\pi\)
0.852743 0.522331i \(-0.174937\pi\)
\(558\) 0 0
\(559\) 2.61804e10 0.268120
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 1.29004e11i − 1.28402i −0.766697 0.642009i \(-0.778101\pi\)
0.766697 0.642009i \(-0.221899\pi\)
\(564\) 0 0
\(565\) −2.58846e11 −2.54008
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 1.38131e10i − 0.131778i −0.997827 0.0658889i \(-0.979012\pi\)
0.997827 0.0658889i \(-0.0209883\pi\)
\(570\) 0 0
\(571\) −7.83161e10 −0.736727 −0.368363 0.929682i \(-0.620082\pi\)
−0.368363 + 0.929682i \(0.620082\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.76595e10i 0.344511i
\(576\) 0 0
\(577\) −6.44834e10 −0.581761 −0.290880 0.956759i \(-0.593948\pi\)
−0.290880 + 0.956759i \(0.593948\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 6.57980e10i − 0.577442i
\(582\) 0 0
\(583\) −1.30542e11 −1.13000
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.10003e11i 0.926512i 0.886225 + 0.463256i \(0.153319\pi\)
−0.886225 + 0.463256i \(0.846681\pi\)
\(588\) 0 0
\(589\) −2.50468e10 −0.208109
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.33048e9i 0.0754545i 0.999288 + 0.0377273i \(0.0120118\pi\)
−0.999288 + 0.0377273i \(0.987988\pi\)
\(594\) 0 0
\(595\) 9.65037e10 0.769974
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.12693e10i 0.631276i 0.948880 + 0.315638i \(0.102219\pi\)
−0.948880 + 0.315638i \(0.897781\pi\)
\(600\) 0 0
\(601\) 1.80583e11 1.38414 0.692069 0.721831i \(-0.256699\pi\)
0.692069 + 0.721831i \(0.256699\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.61619e10i 0.344558i
\(606\) 0 0
\(607\) −1.15750e11 −0.852644 −0.426322 0.904571i \(-0.640191\pi\)
−0.426322 + 0.904571i \(0.640191\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.20205e11i 3.01506i
\(612\) 0 0
\(613\) 7.01257e10 0.496632 0.248316 0.968679i \(-0.420123\pi\)
0.248316 + 0.968679i \(0.420123\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.79037e10i 0.123538i 0.998090 + 0.0617691i \(0.0196742\pi\)
−0.998090 + 0.0617691i \(0.980326\pi\)
\(618\) 0 0
\(619\) −1.35992e11 −0.926300 −0.463150 0.886280i \(-0.653281\pi\)
−0.463150 + 0.886280i \(0.653281\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 5.56362e10i − 0.369322i
\(624\) 0 0
\(625\) −1.82374e11 −1.19521
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 3.95778e10i − 0.252842i
\(630\) 0 0
\(631\) 2.50988e11 1.58320 0.791600 0.611040i \(-0.209248\pi\)
0.791600 + 0.611040i \(0.209248\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 3.54617e11i − 2.18105i
\(636\) 0 0
\(637\) 8.62644e10 0.523931
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 2.57286e10i − 0.152400i −0.997093 0.0761999i \(-0.975721\pi\)
0.997093 0.0761999i \(-0.0242787\pi\)
\(642\) 0 0
\(643\) −4.29706e10 −0.251378 −0.125689 0.992070i \(-0.540114\pi\)
−0.125689 + 0.992070i \(0.540114\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 2.20975e11i − 1.26103i −0.776177 0.630516i \(-0.782843\pi\)
0.776177 0.630516i \(-0.217157\pi\)
\(648\) 0 0
\(649\) −6.34045e10 −0.357389
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.99011e11i 1.64450i 0.569125 + 0.822251i \(0.307282\pi\)
−0.569125 + 0.822251i \(0.692718\pi\)
\(654\) 0 0
\(655\) 1.55497e11 0.844806
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.99806e11i 1.58964i 0.606846 + 0.794820i \(0.292435\pi\)
−0.606846 + 0.794820i \(0.707565\pi\)
\(660\) 0 0
\(661\) −2.11448e11 −1.10764 −0.553820 0.832637i \(-0.686830\pi\)
−0.553820 + 0.832637i \(0.686830\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.46718e11i 1.26158i
\(666\) 0 0
\(667\) 7.72997e10 0.390548
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.41710e11i 1.19235i
\(672\) 0 0
\(673\) −1.90166e11 −0.926985 −0.463493 0.886101i \(-0.653404\pi\)
−0.463493 + 0.886101i \(0.653404\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.14815e11i 0.546570i 0.961933 + 0.273285i \(0.0881102\pi\)
−0.961933 + 0.273285i \(0.911890\pi\)
\(678\) 0 0
\(679\) −2.68475e11 −1.26306
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 3.07050e11i − 1.41100i −0.708710 0.705500i \(-0.750723\pi\)
0.708710 0.705500i \(-0.249277\pi\)
\(684\) 0 0
\(685\) −1.01231e11 −0.459780
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.72183e11i 2.09524i
\(690\) 0 0
\(691\) 2.20597e11 0.967582 0.483791 0.875184i \(-0.339259\pi\)
0.483791 + 0.875184i \(0.339259\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 1.41620e11i − 0.606996i
\(696\) 0 0
\(697\) −5.59160e10 −0.236922
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 4.11156e11i − 1.70269i −0.524609 0.851343i \(-0.675788\pi\)
0.524609 0.851343i \(-0.324212\pi\)
\(702\) 0 0
\(703\) 1.01183e11 0.414274
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.91705e10i 0.316874i
\(708\) 0 0
\(709\) 1.41043e11 0.558169 0.279084 0.960267i \(-0.409969\pi\)
0.279084 + 0.960267i \(0.409969\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 2.15844e10i − 0.0835183i
\(714\) 0 0
\(715\) −4.71167e11 −1.80281
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.87514e11i 0.701645i 0.936442 + 0.350823i \(0.114098\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(720\) 0 0
\(721\) 6.60730e10 0.244502
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 1.68777e11i − 0.610887i
\(726\) 0 0
\(727\) −6.74621e10 −0.241503 −0.120751 0.992683i \(-0.538530\pi\)
−0.120751 + 0.992683i \(0.538530\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 3.42959e10i − 0.120108i
\(732\) 0 0
\(733\) −5.51348e11 −1.90990 −0.954948 0.296773i \(-0.904090\pi\)
−0.954948 + 0.296773i \(0.904090\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 7.52360e9i − 0.0255009i
\(738\) 0 0
\(739\) 3.53894e11 1.18658 0.593288 0.804990i \(-0.297829\pi\)
0.593288 + 0.804990i \(0.297829\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.61456e10i 0.151417i 0.997130 + 0.0757086i \(0.0241219\pi\)
−0.997130 + 0.0757086i \(0.975878\pi\)
\(744\) 0 0
\(745\) 6.02183e11 1.95480
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 3.84515e11i − 1.22176i
\(750\) 0 0
\(751\) 2.78555e11 0.875690 0.437845 0.899050i \(-0.355742\pi\)
0.437845 + 0.899050i \(0.355742\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 1.53044e11i − 0.471008i
\(756\) 0 0
\(757\) −2.54100e11 −0.773786 −0.386893 0.922125i \(-0.626452\pi\)
−0.386893 + 0.922125i \(0.626452\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 5.04366e11i − 1.50386i −0.659243 0.751930i \(-0.729123\pi\)
0.659243 0.751930i \(-0.270877\pi\)
\(762\) 0 0
\(763\) 1.99025e11 0.587233
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.29339e11i 0.662670i
\(768\) 0 0
\(769\) 2.16447e11 0.618937 0.309468 0.950910i \(-0.399849\pi\)
0.309468 + 0.950910i \(0.399849\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 4.05778e11i − 1.13650i −0.822855 0.568252i \(-0.807620\pi\)
0.822855 0.568252i \(-0.192380\pi\)
\(774\) 0 0
\(775\) −4.71275e10 −0.130637
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 1.42953e11i − 0.388189i
\(780\) 0 0
\(781\) 3.68260e11 0.989806
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.01636e11i 2.11105i
\(786\) 0 0
\(787\) −6.28441e11 −1.63820 −0.819098 0.573653i \(-0.805526\pi\)
−0.819098 + 0.573653i \(0.805526\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 6.18630e11i − 1.58025i
\(792\) 0 0
\(793\) 8.74286e11 2.21086
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 3.23780e11i − 0.802447i −0.915980 0.401224i \(-0.868585\pi\)
0.915980 0.401224i \(-0.131415\pi\)
\(798\) 0 0
\(799\) 5.50462e11 1.35064
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 1.61663e11i − 0.388819i
\(804\) 0 0
\(805\) −2.12613e11 −0.506297
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 4.65514e10i − 0.108677i −0.998523 0.0543386i \(-0.982695\pi\)
0.998523 0.0543386i \(-0.0173050\pi\)
\(810\) 0 0
\(811\) −9.90434e9 −0.0228951 −0.0114475 0.999934i \(-0.503644\pi\)
−0.0114475 + 0.999934i \(0.503644\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.50587e11i 2.15457i
\(816\) 0 0
\(817\) 8.76797e10 0.196794
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 3.00799e11i − 0.662069i −0.943619 0.331034i \(-0.892602\pi\)
0.943619 0.331034i \(-0.107398\pi\)
\(822\) 0 0
\(823\) −3.64988e10 −0.0795571 −0.0397785 0.999209i \(-0.512665\pi\)
−0.0397785 + 0.999209i \(0.512665\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.63233e11i 0.776540i 0.921546 + 0.388270i \(0.126927\pi\)
−0.921546 + 0.388270i \(0.873073\pi\)
\(828\) 0 0
\(829\) −1.99283e11 −0.421941 −0.210971 0.977492i \(-0.567662\pi\)
−0.210971 + 0.977492i \(0.567662\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 1.13005e11i − 0.234702i
\(834\) 0 0
\(835\) −9.40735e10 −0.193518
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 4.55688e11i − 0.919644i −0.888011 0.459822i \(-0.847913\pi\)
0.888011 0.459822i \(-0.152087\pi\)
\(840\) 0 0
\(841\) 1.53816e11 0.307481
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.03288e12i 2.02592i
\(846\) 0 0
\(847\) −1.10325e11 −0.214358
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.71961e10i 0.166257i
\(852\) 0 0
\(853\) −3.80568e11 −0.718846 −0.359423 0.933175i \(-0.617027\pi\)
−0.359423 + 0.933175i \(0.617027\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2.04675e11i − 0.379438i −0.981838 0.189719i \(-0.939242\pi\)
0.981838 0.189719i \(-0.0607577\pi\)
\(858\) 0 0
\(859\) −2.40882e11 −0.442417 −0.221208 0.975227i \(-0.571000\pi\)
−0.221208 + 0.975227i \(0.571000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 8.63484e11i − 1.55672i −0.627817 0.778361i \(-0.716051\pi\)
0.627817 0.778361i \(-0.283949\pi\)
\(864\) 0 0
\(865\) 1.36065e12 2.43042
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 2.96709e11i − 0.520297i
\(870\) 0 0
\(871\) −2.72135e10 −0.0472837
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 1.68161e11i − 0.286876i
\(876\) 0 0
\(877\) −4.79159e11 −0.809993 −0.404997 0.914318i \(-0.632727\pi\)
−0.404997 + 0.914318i \(0.632727\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 6.43291e11i − 1.06783i −0.845537 0.533917i \(-0.820720\pi\)
0.845537 0.533917i \(-0.179280\pi\)
\(882\) 0 0
\(883\) 1.08619e12 1.78674 0.893371 0.449319i \(-0.148333\pi\)
0.893371 + 0.449319i \(0.148333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.68383e11i − 0.272022i −0.990707 0.136011i \(-0.956572\pi\)
0.990707 0.136011i \(-0.0434283\pi\)
\(888\) 0 0
\(889\) 8.47519e11 1.35688
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.40729e12i 2.21299i
\(894\) 0 0
\(895\) 3.43391e11 0.535177
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.67336e10i 0.148094i
\(900\) 0 0
\(901\) 6.18552e11 0.938592
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.58204e11i 1.42845i
\(906\) 0 0
\(907\) 6.69645e11 0.989500 0.494750 0.869035i \(-0.335260\pi\)
0.494750 + 0.869035i \(0.335260\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.19351e12i 1.73282i 0.499337 + 0.866408i \(0.333577\pi\)
−0.499337 + 0.866408i \(0.666423\pi\)
\(912\) 0 0
\(913\) 4.20832e11 0.605656
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.71631e11i 0.525575i
\(918\) 0 0
\(919\) 7.65817e11 1.07365 0.536825 0.843693i \(-0.319623\pi\)
0.536825 + 0.843693i \(0.319623\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1.33203e12i − 1.83529i
\(924\) 0 0
\(925\) 1.90385e11 0.260055
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 4.26646e11i − 0.572803i −0.958110 0.286401i \(-0.907541\pi\)
0.958110 0.286401i \(-0.0924591\pi\)
\(930\) 0 0
\(931\) 2.88905e11 0.384553
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.17221e11i 0.807596i
\(936\) 0 0
\(937\) 1.35431e12 1.75695 0.878477 0.477784i \(-0.158560\pi\)
0.878477 + 0.477784i \(0.158560\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1.88655e10i − 0.0240608i −0.999928 0.0120304i \(-0.996171\pi\)
0.999928 0.0120304i \(-0.00382948\pi\)
\(942\) 0 0
\(943\) 1.23192e11 0.155788
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.03707e11i 0.750631i 0.926897 + 0.375316i \(0.122466\pi\)
−0.926897 + 0.375316i \(0.877534\pi\)
\(948\) 0 0
\(949\) −5.84747e11 −0.720947
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.59941e10i 0.0800080i 0.999200 + 0.0400040i \(0.0127371\pi\)
−0.999200 + 0.0400040i \(0.987263\pi\)
\(954\) 0 0
\(955\) 1.32553e12 1.59359
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 2.41937e11i − 0.286040i
\(960\) 0 0
\(961\) −8.25880e11 −0.968330
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 5.84580e11i − 0.674116i
\(966\) 0 0
\(967\) −5.39935e11 −0.617498 −0.308749 0.951144i \(-0.599910\pi\)
−0.308749 + 0.951144i \(0.599910\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.23031e11i 0.813355i 0.913572 + 0.406677i \(0.133313\pi\)
−0.913572 + 0.406677i \(0.866687\pi\)
\(972\) 0 0
\(973\) 3.38466e11 0.377627
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 4.79457e11i − 0.526225i −0.964765 0.263112i \(-0.915251\pi\)
0.964765 0.263112i \(-0.0847490\pi\)
\(978\) 0 0
\(979\) 3.55839e11 0.387367
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 9.92587e11i − 1.06305i −0.847042 0.531526i \(-0.821619\pi\)
0.847042 0.531526i \(-0.178381\pi\)
\(984\) 0 0
\(985\) −1.16560e12 −1.23823
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.55591e10i 0.0789772i
\(990\) 0 0
\(991\) −9.53660e11 −0.988778 −0.494389 0.869241i \(-0.664608\pi\)
−0.494389 + 0.869241i \(0.664608\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.92855e12i 1.96761i
\(996\) 0 0
\(997\) −1.51632e12 −1.53465 −0.767324 0.641259i \(-0.778412\pi\)
−0.767324 + 0.641259i \(0.778412\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.9.e.d.161.2 2
3.2 odd 2 inner 432.9.e.d.161.1 2
4.3 odd 2 27.9.b.b.26.1 2
12.11 even 2 27.9.b.b.26.2 yes 2
36.7 odd 6 81.9.d.e.53.1 4
36.11 even 6 81.9.d.e.53.2 4
36.23 even 6 81.9.d.e.26.1 4
36.31 odd 6 81.9.d.e.26.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.9.b.b.26.1 2 4.3 odd 2
27.9.b.b.26.2 yes 2 12.11 even 2
81.9.d.e.26.1 4 36.23 even 6
81.9.d.e.26.2 4 36.31 odd 6
81.9.d.e.53.1 4 36.7 odd 6
81.9.d.e.53.2 4 36.11 even 6
432.9.e.d.161.1 2 3.2 odd 2 inner
432.9.e.d.161.2 2 1.1 even 1 trivial