Properties

Label 432.8.a.q.1.1
Level $432$
Weight $8$
Character 432.1
Self dual yes
Analytic conductor $134.950$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,8,Mod(1,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 432.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(134.950331009\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.53113\) of defining polynomial
Character \(\chi\) \(=\) 432.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+65.8132 q^{5} +738.405 q^{7} -4961.26 q^{11} +5967.24 q^{13} +36651.6 q^{17} -22378.9 q^{19} +51473.6 q^{23} -73793.6 q^{25} -68495.7 q^{29} -150655. q^{31} +48596.8 q^{35} +489027. q^{37} +590635. q^{41} +842643. q^{43} -1.22637e6 q^{47} -278301. q^{49} +958904. q^{53} -326517. q^{55} +316269. q^{59} -29722.9 q^{61} +392723. q^{65} -293025. q^{67} -714537. q^{71} -3.96273e6 q^{73} -3.66342e6 q^{77} -2.53805e6 q^{79} -1.66311e6 q^{83} +2.41216e6 q^{85} +4.64819e6 q^{89} +4.40624e6 q^{91} -1.47283e6 q^{95} +1.47010e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 180 q^{5} - 700 q^{7} - 10890 q^{11} - 5480 q^{13} + 16416 q^{17} - 16024 q^{19} - 24372 q^{23} - 138880 q^{25} - 143280 q^{29} + 38708 q^{31} - 115650 q^{35} + 455620 q^{37} + 731880 q^{41} + 1088840 q^{43}+ \cdots + 4098670 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 65.8132 0.235461 0.117730 0.993046i \(-0.462438\pi\)
0.117730 + 0.993046i \(0.462438\pi\)
\(6\) 0 0
\(7\) 738.405 0.813676 0.406838 0.913500i \(-0.366631\pi\)
0.406838 + 0.913500i \(0.366631\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4961.26 −1.12387 −0.561937 0.827180i \(-0.689944\pi\)
−0.561937 + 0.827180i \(0.689944\pi\)
\(12\) 0 0
\(13\) 5967.24 0.753306 0.376653 0.926354i \(-0.377075\pi\)
0.376653 + 0.926354i \(0.377075\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 36651.6 1.80935 0.904674 0.426104i \(-0.140114\pi\)
0.904674 + 0.426104i \(0.140114\pi\)
\(18\) 0 0
\(19\) −22378.9 −0.748518 −0.374259 0.927324i \(-0.622103\pi\)
−0.374259 + 0.927324i \(0.622103\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 51473.6 0.882139 0.441069 0.897473i \(-0.354599\pi\)
0.441069 + 0.897473i \(0.354599\pi\)
\(24\) 0 0
\(25\) −73793.6 −0.944558
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −68495.7 −0.521519 −0.260760 0.965404i \(-0.583973\pi\)
−0.260760 + 0.965404i \(0.583973\pi\)
\(30\) 0 0
\(31\) −150655. −0.908275 −0.454137 0.890932i \(-0.650052\pi\)
−0.454137 + 0.890932i \(0.650052\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 48596.8 0.191589
\(36\) 0 0
\(37\) 489027. 1.58718 0.793591 0.608451i \(-0.208209\pi\)
0.793591 + 0.608451i \(0.208209\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 590635. 1.33837 0.669184 0.743096i \(-0.266644\pi\)
0.669184 + 0.743096i \(0.266644\pi\)
\(42\) 0 0
\(43\) 842643. 1.61623 0.808117 0.589023i \(-0.200487\pi\)
0.808117 + 0.589023i \(0.200487\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.22637e6 −1.72297 −0.861486 0.507782i \(-0.830466\pi\)
−0.861486 + 0.507782i \(0.830466\pi\)
\(48\) 0 0
\(49\) −278301. −0.337932
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 958904. 0.884727 0.442364 0.896836i \(-0.354140\pi\)
0.442364 + 0.896836i \(0.354140\pi\)
\(54\) 0 0
\(55\) −326517. −0.264628
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 316269. 0.200482 0.100241 0.994963i \(-0.468039\pi\)
0.100241 + 0.994963i \(0.468039\pi\)
\(60\) 0 0
\(61\) −29722.9 −0.0167663 −0.00838315 0.999965i \(-0.502668\pi\)
−0.00838315 + 0.999965i \(0.502668\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 392723. 0.177374
\(66\) 0 0
\(67\) −293025. −0.119026 −0.0595130 0.998228i \(-0.518955\pi\)
−0.0595130 + 0.998228i \(0.518955\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −714537. −0.236930 −0.118465 0.992958i \(-0.537797\pi\)
−0.118465 + 0.992958i \(0.537797\pi\)
\(72\) 0 0
\(73\) −3.96273e6 −1.19224 −0.596121 0.802894i \(-0.703292\pi\)
−0.596121 + 0.802894i \(0.703292\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.66342e6 −0.914470
\(78\) 0 0
\(79\) −2.53805e6 −0.579168 −0.289584 0.957153i \(-0.593517\pi\)
−0.289584 + 0.957153i \(0.593517\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.66311e6 −0.319263 −0.159631 0.987177i \(-0.551031\pi\)
−0.159631 + 0.987177i \(0.551031\pi\)
\(84\) 0 0
\(85\) 2.41216e6 0.426030
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.64819e6 0.698906 0.349453 0.936954i \(-0.386368\pi\)
0.349453 + 0.936954i \(0.386368\pi\)
\(90\) 0 0
\(91\) 4.40624e6 0.612947
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.47283e6 −0.176246
\(96\) 0 0
\(97\) 1.47010e7 1.63548 0.817738 0.575590i \(-0.195228\pi\)
0.817738 + 0.575590i \(0.195228\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.28380e6 0.896604 0.448302 0.893882i \(-0.352029\pi\)
0.448302 + 0.893882i \(0.352029\pi\)
\(102\) 0 0
\(103\) −4.11049e6 −0.370650 −0.185325 0.982677i \(-0.559334\pi\)
−0.185325 + 0.982677i \(0.559334\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.77931e7 1.40414 0.702068 0.712110i \(-0.252260\pi\)
0.702068 + 0.712110i \(0.252260\pi\)
\(108\) 0 0
\(109\) −1.72244e7 −1.27394 −0.636972 0.770887i \(-0.719813\pi\)
−0.636972 + 0.770887i \(0.719813\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.16751e6 −0.141315 −0.0706573 0.997501i \(-0.522510\pi\)
−0.0706573 + 0.997501i \(0.522510\pi\)
\(114\) 0 0
\(115\) 3.38764e6 0.207709
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.70638e7 1.47222
\(120\) 0 0
\(121\) 5.12697e6 0.263095
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.99825e6 −0.457867
\(126\) 0 0
\(127\) −9.66827e6 −0.418828 −0.209414 0.977827i \(-0.567156\pi\)
−0.209414 + 0.977827i \(0.567156\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.22431e7 1.64175 0.820873 0.571111i \(-0.193487\pi\)
0.820873 + 0.571111i \(0.193487\pi\)
\(132\) 0 0
\(133\) −1.65247e7 −0.609051
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.01451e6 −0.266290 −0.133145 0.991097i \(-0.542508\pi\)
−0.133145 + 0.991097i \(0.542508\pi\)
\(138\) 0 0
\(139\) −1.46010e7 −0.461138 −0.230569 0.973056i \(-0.574059\pi\)
−0.230569 + 0.973056i \(0.574059\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.96050e7 −0.846622
\(144\) 0 0
\(145\) −4.50792e6 −0.122797
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.07087e7 1.00817 0.504086 0.863653i \(-0.331829\pi\)
0.504086 + 0.863653i \(0.331829\pi\)
\(150\) 0 0
\(151\) 5.29940e7 1.25259 0.626293 0.779588i \(-0.284572\pi\)
0.626293 + 0.779588i \(0.284572\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.91508e6 −0.213863
\(156\) 0 0
\(157\) 4.10669e7 0.846922 0.423461 0.905914i \(-0.360815\pi\)
0.423461 + 0.905914i \(0.360815\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.80083e7 0.717775
\(162\) 0 0
\(163\) 4.33772e7 0.784522 0.392261 0.919854i \(-0.371693\pi\)
0.392261 + 0.919854i \(0.371693\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.86845e7 −0.642731 −0.321365 0.946955i \(-0.604142\pi\)
−0.321365 + 0.946955i \(0.604142\pi\)
\(168\) 0 0
\(169\) −2.71406e7 −0.432529
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.30547e7 0.779045 0.389523 0.921017i \(-0.372640\pi\)
0.389523 + 0.921017i \(0.372640\pi\)
\(174\) 0 0
\(175\) −5.44896e7 −0.768564
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.34132e8 1.74802 0.874012 0.485904i \(-0.161509\pi\)
0.874012 + 0.485904i \(0.161509\pi\)
\(180\) 0 0
\(181\) 6.35105e6 0.0796105 0.0398053 0.999207i \(-0.487326\pi\)
0.0398053 + 0.999207i \(0.487326\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.21845e7 0.373719
\(186\) 0 0
\(187\) −1.81839e8 −2.03348
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.15843e8 1.20297 0.601483 0.798885i \(-0.294577\pi\)
0.601483 + 0.798885i \(0.294577\pi\)
\(192\) 0 0
\(193\) 5.73856e7 0.574582 0.287291 0.957843i \(-0.407245\pi\)
0.287291 + 0.957843i \(0.407245\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.04846e8 0.977059 0.488530 0.872547i \(-0.337533\pi\)
0.488530 + 0.872547i \(0.337533\pi\)
\(198\) 0 0
\(199\) 2.10623e8 1.89461 0.947304 0.320335i \(-0.103795\pi\)
0.947304 + 0.320335i \(0.103795\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.05776e7 −0.424348
\(204\) 0 0
\(205\) 3.88716e7 0.315133
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.11028e8 0.841240
\(210\) 0 0
\(211\) 6.49193e7 0.475757 0.237878 0.971295i \(-0.423548\pi\)
0.237878 + 0.971295i \(0.423548\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.54570e7 0.380559
\(216\) 0 0
\(217\) −1.11244e8 −0.739041
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.18709e8 1.36299
\(222\) 0 0
\(223\) −1.40879e8 −0.850705 −0.425352 0.905028i \(-0.639850\pi\)
−0.425352 + 0.905028i \(0.639850\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.40163e6 0.0193017 0.00965086 0.999953i \(-0.496928\pi\)
0.00965086 + 0.999953i \(0.496928\pi\)
\(228\) 0 0
\(229\) −2.76169e7 −0.151967 −0.0759836 0.997109i \(-0.524210\pi\)
−0.0759836 + 0.997109i \(0.524210\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.51458e8 1.82023 0.910117 0.414351i \(-0.135992\pi\)
0.910117 + 0.414351i \(0.135992\pi\)
\(234\) 0 0
\(235\) −8.07112e7 −0.405692
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.79195e8 1.79668 0.898339 0.439302i \(-0.144774\pi\)
0.898339 + 0.439302i \(0.144774\pi\)
\(240\) 0 0
\(241\) 2.99276e7 0.137725 0.0688624 0.997626i \(-0.478063\pi\)
0.0688624 + 0.997626i \(0.478063\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.83159e7 −0.0795696
\(246\) 0 0
\(247\) −1.33540e8 −0.563863
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.71456e7 0.0684374 0.0342187 0.999414i \(-0.489106\pi\)
0.0342187 + 0.999414i \(0.489106\pi\)
\(252\) 0 0
\(253\) −2.55374e8 −0.991414
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.79449e7 −0.359928 −0.179964 0.983673i \(-0.557598\pi\)
−0.179964 + 0.983673i \(0.557598\pi\)
\(258\) 0 0
\(259\) 3.61100e8 1.29145
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.92540e7 0.302540 0.151270 0.988492i \(-0.451664\pi\)
0.151270 + 0.988492i \(0.451664\pi\)
\(264\) 0 0
\(265\) 6.31085e7 0.208318
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.34653e8 −1.67471 −0.837354 0.546662i \(-0.815898\pi\)
−0.837354 + 0.546662i \(0.815898\pi\)
\(270\) 0 0
\(271\) −2.11501e8 −0.645535 −0.322768 0.946478i \(-0.604613\pi\)
−0.322768 + 0.946478i \(0.604613\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.66110e8 1.06157
\(276\) 0 0
\(277\) −3.24017e8 −0.915986 −0.457993 0.888956i \(-0.651432\pi\)
−0.457993 + 0.888956i \(0.651432\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.91210e7 0.132067 0.0660336 0.997817i \(-0.478966\pi\)
0.0660336 + 0.997817i \(0.478966\pi\)
\(282\) 0 0
\(283\) 4.03017e8 1.05699 0.528495 0.848936i \(-0.322756\pi\)
0.528495 + 0.848936i \(0.322756\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.36128e8 1.08900
\(288\) 0 0
\(289\) 9.33004e8 2.27374
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.85906e8 1.12854 0.564268 0.825592i \(-0.309159\pi\)
0.564268 + 0.825592i \(0.309159\pi\)
\(294\) 0 0
\(295\) 2.08147e7 0.0472056
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.07155e8 0.664521
\(300\) 0 0
\(301\) 6.22212e8 1.31509
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.95616e6 −0.00394780
\(306\) 0 0
\(307\) −2.82215e8 −0.556668 −0.278334 0.960484i \(-0.589782\pi\)
−0.278334 + 0.960484i \(0.589782\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.04440e7 −0.132795 −0.0663977 0.997793i \(-0.521151\pi\)
−0.0663977 + 0.997793i \(0.521151\pi\)
\(312\) 0 0
\(313\) −4.78096e8 −0.881273 −0.440636 0.897686i \(-0.645247\pi\)
−0.440636 + 0.897686i \(0.645247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.89470e8 1.21565 0.607824 0.794072i \(-0.292043\pi\)
0.607824 + 0.794072i \(0.292043\pi\)
\(318\) 0 0
\(319\) 3.39825e8 0.586123
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.20225e8 −1.35433
\(324\) 0 0
\(325\) −4.40344e8 −0.711542
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.05555e8 −1.40194
\(330\) 0 0
\(331\) −5.36833e8 −0.813657 −0.406829 0.913504i \(-0.633365\pi\)
−0.406829 + 0.913504i \(0.633365\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.92849e7 −0.0280259
\(336\) 0 0
\(337\) −1.24011e9 −1.76505 −0.882524 0.470268i \(-0.844157\pi\)
−0.882524 + 0.470268i \(0.844157\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.47438e8 1.02079
\(342\) 0 0
\(343\) −8.13607e8 −1.08864
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.86766e7 −0.0625413 −0.0312706 0.999511i \(-0.509955\pi\)
−0.0312706 + 0.999511i \(0.509955\pi\)
\(348\) 0 0
\(349\) 1.23665e9 1.55725 0.778626 0.627488i \(-0.215917\pi\)
0.778626 + 0.627488i \(0.215917\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.06858e7 0.0734304 0.0367152 0.999326i \(-0.488311\pi\)
0.0367152 + 0.999326i \(0.488311\pi\)
\(354\) 0 0
\(355\) −4.70260e7 −0.0557878
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.36061e8 0.611482 0.305741 0.952115i \(-0.401096\pi\)
0.305741 + 0.952115i \(0.401096\pi\)
\(360\) 0 0
\(361\) −3.93055e8 −0.439722
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.60800e8 −0.280726
\(366\) 0 0
\(367\) 4.31327e8 0.455487 0.227743 0.973721i \(-0.426865\pi\)
0.227743 + 0.973721i \(0.426865\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.08059e8 0.719881
\(372\) 0 0
\(373\) 2.69689e8 0.269080 0.134540 0.990908i \(-0.457044\pi\)
0.134540 + 0.990908i \(0.457044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.08730e8 −0.392864
\(378\) 0 0
\(379\) 8.03807e8 0.758429 0.379214 0.925309i \(-0.376194\pi\)
0.379214 + 0.925309i \(0.376194\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.83923e8 −0.894882 −0.447441 0.894314i \(-0.647664\pi\)
−0.447441 + 0.894314i \(0.647664\pi\)
\(384\) 0 0
\(385\) −2.41102e8 −0.215322
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.16250e8 −0.186265 −0.0931326 0.995654i \(-0.529688\pi\)
−0.0931326 + 0.995654i \(0.529688\pi\)
\(390\) 0 0
\(391\) 1.88659e9 1.59610
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.67037e8 −0.136371
\(396\) 0 0
\(397\) 4.33533e8 0.347741 0.173870 0.984769i \(-0.444373\pi\)
0.173870 + 0.984769i \(0.444373\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.42713e9 1.87970 0.939849 0.341591i \(-0.110966\pi\)
0.939849 + 0.341591i \(0.110966\pi\)
\(402\) 0 0
\(403\) −8.98993e8 −0.684209
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.42619e9 −1.78379
\(408\) 0 0
\(409\) 9.18976e8 0.664160 0.332080 0.943251i \(-0.392250\pi\)
0.332080 + 0.943251i \(0.392250\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.33535e8 0.163127
\(414\) 0 0
\(415\) −1.09455e8 −0.0751738
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.10024e9 −0.730699 −0.365349 0.930870i \(-0.619050\pi\)
−0.365349 + 0.930870i \(0.619050\pi\)
\(420\) 0 0
\(421\) −2.14909e9 −1.40367 −0.701837 0.712337i \(-0.747637\pi\)
−0.701837 + 0.712337i \(0.747637\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.70466e9 −1.70904
\(426\) 0 0
\(427\) −2.19476e7 −0.0136423
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.61850e9 −0.973737 −0.486869 0.873475i \(-0.661861\pi\)
−0.486869 + 0.873475i \(0.661861\pi\)
\(432\) 0 0
\(433\) 1.16527e9 0.689794 0.344897 0.938641i \(-0.387914\pi\)
0.344897 + 0.938641i \(0.387914\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.15192e9 −0.660296
\(438\) 0 0
\(439\) −2.08096e9 −1.17392 −0.586958 0.809617i \(-0.699675\pi\)
−0.586958 + 0.809617i \(0.699675\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.23100e9 −1.21923 −0.609616 0.792697i \(-0.708676\pi\)
−0.609616 + 0.792697i \(0.708676\pi\)
\(444\) 0 0
\(445\) 3.05912e8 0.164565
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.52631e9 −1.31712 −0.658559 0.752529i \(-0.728834\pi\)
−0.658559 + 0.752529i \(0.728834\pi\)
\(450\) 0 0
\(451\) −2.93030e9 −1.50416
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.89989e8 0.144325
\(456\) 0 0
\(457\) −1.87627e9 −0.919579 −0.459790 0.888028i \(-0.652075\pi\)
−0.459790 + 0.888028i \(0.652075\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.97321e9 −0.938036 −0.469018 0.883189i \(-0.655392\pi\)
−0.469018 + 0.883189i \(0.655392\pi\)
\(462\) 0 0
\(463\) 1.60344e9 0.750790 0.375395 0.926865i \(-0.377507\pi\)
0.375395 + 0.926865i \(0.377507\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.32390e9 0.601515 0.300757 0.953701i \(-0.402761\pi\)
0.300757 + 0.953701i \(0.402761\pi\)
\(468\) 0 0
\(469\) −2.16371e8 −0.0968486
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.18057e9 −1.81644
\(474\) 0 0
\(475\) 1.65142e9 0.707018
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.44225e9 1.01535 0.507675 0.861548i \(-0.330505\pi\)
0.507675 + 0.861548i \(0.330505\pi\)
\(480\) 0 0
\(481\) 2.91814e9 1.19563
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.67517e8 0.385090
\(486\) 0 0
\(487\) 1.37309e7 0.00538701 0.00269350 0.999996i \(-0.499143\pi\)
0.00269350 + 0.999996i \(0.499143\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.32242e8 0.241045 0.120522 0.992711i \(-0.461543\pi\)
0.120522 + 0.992711i \(0.461543\pi\)
\(492\) 0 0
\(493\) −2.51048e9 −0.943610
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.27618e8 −0.192784
\(498\) 0 0
\(499\) 2.43365e9 0.876812 0.438406 0.898777i \(-0.355543\pi\)
0.438406 + 0.898777i \(0.355543\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.00281e9 −0.701700 −0.350850 0.936432i \(-0.614107\pi\)
−0.350850 + 0.936432i \(0.614107\pi\)
\(504\) 0 0
\(505\) 6.10997e8 0.211115
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.28309e8 −0.177573 −0.0887863 0.996051i \(-0.528299\pi\)
−0.0887863 + 0.996051i \(0.528299\pi\)
\(510\) 0 0
\(511\) −2.92610e9 −0.970099
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.70525e8 −0.0872733
\(516\) 0 0
\(517\) 6.08433e9 1.93640
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.76283e9 −0.546109 −0.273055 0.961999i \(-0.588034\pi\)
−0.273055 + 0.961999i \(0.588034\pi\)
\(522\) 0 0
\(523\) 3.39318e9 1.03717 0.518586 0.855026i \(-0.326459\pi\)
0.518586 + 0.855026i \(0.326459\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.52175e9 −1.64339
\(528\) 0 0
\(529\) −7.55295e8 −0.221831
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.52446e9 1.00820
\(534\) 0 0
\(535\) 1.17102e9 0.330619
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.38073e9 0.379793
\(540\) 0 0
\(541\) −3.83907e9 −1.04240 −0.521202 0.853433i \(-0.674516\pi\)
−0.521202 + 0.853433i \(0.674516\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.13359e9 −0.299964
\(546\) 0 0
\(547\) −4.31235e9 −1.12657 −0.563285 0.826263i \(-0.690463\pi\)
−0.563285 + 0.826263i \(0.690463\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.53286e9 0.390366
\(552\) 0 0
\(553\) −1.87410e9 −0.471255
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.84109e9 −0.451421 −0.225710 0.974194i \(-0.572470\pi\)
−0.225710 + 0.974194i \(0.572470\pi\)
\(558\) 0 0
\(559\) 5.02825e9 1.21752
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.16055e9 0.274085 0.137042 0.990565i \(-0.456240\pi\)
0.137042 + 0.990565i \(0.456240\pi\)
\(564\) 0 0
\(565\) −1.42651e8 −0.0332740
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.02920e8 0.159960 0.0799802 0.996796i \(-0.474514\pi\)
0.0799802 + 0.996796i \(0.474514\pi\)
\(570\) 0 0
\(571\) 7.95929e8 0.178915 0.0894577 0.995991i \(-0.471487\pi\)
0.0894577 + 0.995991i \(0.471487\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.79842e9 −0.833232
\(576\) 0 0
\(577\) −4.44712e9 −0.963749 −0.481874 0.876240i \(-0.660044\pi\)
−0.481874 + 0.876240i \(0.660044\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.22805e9 −0.259776
\(582\) 0 0
\(583\) −4.75737e9 −0.994323
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.50846e9 −1.12408 −0.562039 0.827111i \(-0.689983\pi\)
−0.562039 + 0.827111i \(0.689983\pi\)
\(588\) 0 0
\(589\) 3.37150e9 0.679859
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.05850e9 −1.58695 −0.793475 0.608603i \(-0.791730\pi\)
−0.793475 + 0.608603i \(0.791730\pi\)
\(594\) 0 0
\(595\) 1.78115e9 0.346650
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.39566e9 0.645551 0.322775 0.946476i \(-0.395384\pi\)
0.322775 + 0.946476i \(0.395384\pi\)
\(600\) 0 0
\(601\) 1.35177e9 0.254005 0.127002 0.991902i \(-0.459464\pi\)
0.127002 + 0.991902i \(0.459464\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.37423e8 0.0619485
\(606\) 0 0
\(607\) −4.91297e9 −0.891627 −0.445814 0.895126i \(-0.647086\pi\)
−0.445814 + 0.895126i \(0.647086\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.31802e9 −1.29793
\(612\) 0 0
\(613\) −2.06110e9 −0.361399 −0.180700 0.983538i \(-0.557836\pi\)
−0.180700 + 0.983538i \(0.557836\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.72277e9 −0.638071 −0.319035 0.947743i \(-0.603359\pi\)
−0.319035 + 0.947743i \(0.603359\pi\)
\(618\) 0 0
\(619\) −3.30066e9 −0.559349 −0.279675 0.960095i \(-0.590227\pi\)
−0.279675 + 0.960095i \(0.590227\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.43224e9 0.568683
\(624\) 0 0
\(625\) 5.10711e9 0.836749
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.79236e10 2.87177
\(630\) 0 0
\(631\) −5.12709e9 −0.812397 −0.406199 0.913785i \(-0.633146\pi\)
−0.406199 + 0.913785i \(0.633146\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.36300e8 −0.0986174
\(636\) 0 0
\(637\) −1.66069e9 −0.254566
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −4.51842e9 −0.677615 −0.338808 0.940856i \(-0.610024\pi\)
−0.338808 + 0.940856i \(0.610024\pi\)
\(642\) 0 0
\(643\) 9.70600e9 1.43980 0.719900 0.694078i \(-0.244188\pi\)
0.719900 + 0.694078i \(0.244188\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.12536e9 0.889132 0.444566 0.895746i \(-0.353358\pi\)
0.444566 + 0.895746i \(0.353358\pi\)
\(648\) 0 0
\(649\) −1.56910e9 −0.225317
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.30103e10 1.82849 0.914243 0.405166i \(-0.132786\pi\)
0.914243 + 0.405166i \(0.132786\pi\)
\(654\) 0 0
\(655\) 2.78015e9 0.386566
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.23137e10 −1.67606 −0.838032 0.545621i \(-0.816294\pi\)
−0.838032 + 0.545621i \(0.816294\pi\)
\(660\) 0 0
\(661\) 6.97776e9 0.939746 0.469873 0.882734i \(-0.344300\pi\)
0.469873 + 0.882734i \(0.344300\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.08755e9 −0.143407
\(666\) 0 0
\(667\) −3.52572e9 −0.460053
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.47463e8 0.0188432
\(672\) 0 0
\(673\) −1.06462e10 −1.34630 −0.673152 0.739504i \(-0.735060\pi\)
−0.673152 + 0.739504i \(0.735060\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.33348e9 0.536756 0.268378 0.963314i \(-0.413512\pi\)
0.268378 + 0.963314i \(0.413512\pi\)
\(678\) 0 0
\(679\) 1.08553e10 1.33075
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.16980e9 0.740966 0.370483 0.928839i \(-0.379192\pi\)
0.370483 + 0.928839i \(0.379192\pi\)
\(684\) 0 0
\(685\) −5.27461e8 −0.0627008
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.72201e9 0.666471
\(690\) 0 0
\(691\) −7.57273e9 −0.873131 −0.436565 0.899672i \(-0.643805\pi\)
−0.436565 + 0.899672i \(0.643805\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.60939e8 −0.108580
\(696\) 0 0
\(697\) 2.16477e10 2.42158
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4.42696e9 −0.485391 −0.242696 0.970102i \(-0.578032\pi\)
−0.242696 + 0.970102i \(0.578032\pi\)
\(702\) 0 0
\(703\) −1.09439e10 −1.18803
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.85520e9 0.729545
\(708\) 0 0
\(709\) −1.13232e10 −1.19319 −0.596594 0.802544i \(-0.703480\pi\)
−0.596594 + 0.802544i \(0.703480\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.75474e9 −0.801224
\(714\) 0 0
\(715\) −1.94840e9 −0.199346
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.02156e10 1.02497 0.512487 0.858695i \(-0.328724\pi\)
0.512487 + 0.858695i \(0.328724\pi\)
\(720\) 0 0
\(721\) −3.03521e9 −0.301589
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.05455e9 0.492605
\(726\) 0 0
\(727\) 1.95355e10 1.88562 0.942811 0.333329i \(-0.108172\pi\)
0.942811 + 0.333329i \(0.108172\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.08842e10 2.92433
\(732\) 0 0
\(733\) −1.32745e10 −1.24496 −0.622478 0.782637i \(-0.713874\pi\)
−0.622478 + 0.782637i \(0.713874\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.45377e9 0.133770
\(738\) 0 0
\(739\) −1.69495e9 −0.154490 −0.0772452 0.997012i \(-0.524612\pi\)
−0.0772452 + 0.997012i \(0.524612\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.34493e9 0.835824 0.417912 0.908487i \(-0.362762\pi\)
0.417912 + 0.908487i \(0.362762\pi\)
\(744\) 0 0
\(745\) 2.67917e9 0.237385
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.31385e10 1.14251
\(750\) 0 0
\(751\) 1.31194e10 1.13025 0.565124 0.825006i \(-0.308828\pi\)
0.565124 + 0.825006i \(0.308828\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.48770e9 0.294934
\(756\) 0 0
\(757\) 5.72593e9 0.479745 0.239873 0.970804i \(-0.422894\pi\)
0.239873 + 0.970804i \(0.422894\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.47621e10 −1.21423 −0.607115 0.794614i \(-0.707673\pi\)
−0.607115 + 0.794614i \(0.707673\pi\)
\(762\) 0 0
\(763\) −1.27186e10 −1.03658
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.88726e9 0.151024
\(768\) 0 0
\(769\) 5.63551e9 0.446880 0.223440 0.974718i \(-0.428271\pi\)
0.223440 + 0.974718i \(0.428271\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.65338e9 0.362360 0.181180 0.983450i \(-0.442008\pi\)
0.181180 + 0.983450i \(0.442008\pi\)
\(774\) 0 0
\(775\) 1.11174e10 0.857918
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.32178e10 −1.00179
\(780\) 0 0
\(781\) 3.54501e9 0.266280
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.70275e9 0.199417
\(786\) 0 0
\(787\) 1.23587e10 0.903780 0.451890 0.892074i \(-0.350750\pi\)
0.451890 + 0.892074i \(0.350750\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.60050e9 −0.114984
\(792\) 0 0
\(793\) −1.77364e8 −0.0126302
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.70444e10 1.19256 0.596278 0.802778i \(-0.296646\pi\)
0.596278 + 0.802778i \(0.296646\pi\)
\(798\) 0 0
\(799\) −4.49484e10 −3.11746
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.96602e10 1.33993
\(804\) 0 0
\(805\) 2.50145e9 0.169008
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.00497e10 0.667315 0.333658 0.942694i \(-0.391717\pi\)
0.333658 + 0.942694i \(0.391717\pi\)
\(810\) 0 0
\(811\) −5.26821e9 −0.346809 −0.173404 0.984851i \(-0.555477\pi\)
−0.173404 + 0.984851i \(0.555477\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.85480e9 0.184724
\(816\) 0 0
\(817\) −1.88575e10 −1.20978
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.82202e10 1.14909 0.574543 0.818474i \(-0.305180\pi\)
0.574543 + 0.818474i \(0.305180\pi\)
\(822\) 0 0
\(823\) 1.35868e9 0.0849603 0.0424802 0.999097i \(-0.486474\pi\)
0.0424802 + 0.999097i \(0.486474\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.90171e9 −0.547273 −0.273637 0.961833i \(-0.588227\pi\)
−0.273637 + 0.961833i \(0.588227\pi\)
\(828\) 0 0
\(829\) 6.14205e9 0.374432 0.187216 0.982319i \(-0.440054\pi\)
0.187216 + 0.982319i \(0.440054\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.02002e10 −0.611436
\(834\) 0 0
\(835\) −2.54595e9 −0.151338
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.05464e10 −0.616504 −0.308252 0.951305i \(-0.599744\pi\)
−0.308252 + 0.951305i \(0.599744\pi\)
\(840\) 0 0
\(841\) −1.25582e10 −0.728018
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.78621e9 −0.101844
\(846\) 0 0
\(847\) 3.78578e9 0.214074
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.51720e10 1.40012
\(852\) 0 0
\(853\) 3.41878e9 0.188604 0.0943018 0.995544i \(-0.469938\pi\)
0.0943018 + 0.995544i \(0.469938\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.17037e10 −1.17788 −0.588941 0.808176i \(-0.700455\pi\)
−0.588941 + 0.808176i \(0.700455\pi\)
\(858\) 0 0
\(859\) 2.19211e10 1.18001 0.590005 0.807400i \(-0.299126\pi\)
0.590005 + 0.807400i \(0.299126\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.35347e10 0.716822 0.358411 0.933564i \(-0.383319\pi\)
0.358411 + 0.933564i \(0.383319\pi\)
\(864\) 0 0
\(865\) 3.49170e9 0.183434
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.25919e10 0.650912
\(870\) 0 0
\(871\) −1.74855e9 −0.0896631
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7.38276e9 −0.372555
\(876\) 0 0
\(877\) 2.45197e10 1.22749 0.613743 0.789506i \(-0.289663\pi\)
0.613743 + 0.789506i \(0.289663\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.13536e10 −1.05210 −0.526048 0.850455i \(-0.676327\pi\)
−0.526048 + 0.850455i \(0.676327\pi\)
\(882\) 0 0
\(883\) 1.64504e9 0.0804109 0.0402054 0.999191i \(-0.487199\pi\)
0.0402054 + 0.999191i \(0.487199\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9.65301e9 −0.464441 −0.232220 0.972663i \(-0.574599\pi\)
−0.232220 + 0.972663i \(0.574599\pi\)
\(888\) 0 0
\(889\) −7.13909e9 −0.340790
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.74448e10 1.28967
\(894\) 0 0
\(895\) 8.82767e9 0.411591
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.03192e10 0.473683
\(900\) 0 0
\(901\) 3.51454e10 1.60078
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.17983e8 0.0187451
\(906\) 0 0
\(907\) 8.05417e9 0.358423 0.179211 0.983811i \(-0.442645\pi\)
0.179211 + 0.983811i \(0.442645\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.73799e9 −0.251446 −0.125723 0.992065i \(-0.540125\pi\)
−0.125723 + 0.992065i \(0.540125\pi\)
\(912\) 0 0
\(913\) 8.25114e9 0.358811
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.11925e10 1.33585
\(918\) 0 0
\(919\) −3.67326e10 −1.56116 −0.780579 0.625057i \(-0.785076\pi\)
−0.780579 + 0.625057i \(0.785076\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.26381e9 −0.178481
\(924\) 0 0
\(925\) −3.60871e10 −1.49919
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.50768e9 −0.143537 −0.0717687 0.997421i \(-0.522864\pi\)
−0.0717687 + 0.997421i \(0.522864\pi\)
\(930\) 0 0
\(931\) 6.22809e9 0.252948
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.19674e10 −0.478805
\(936\) 0 0
\(937\) −1.68124e10 −0.667638 −0.333819 0.942637i \(-0.608337\pi\)
−0.333819 + 0.942637i \(0.608337\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.51454e10 1.37501 0.687503 0.726182i \(-0.258707\pi\)
0.687503 + 0.726182i \(0.258707\pi\)
\(942\) 0 0
\(943\) 3.04021e10 1.18063
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.30590e10 −1.26493 −0.632463 0.774591i \(-0.717956\pi\)
−0.632463 + 0.774591i \(0.717956\pi\)
\(948\) 0 0
\(949\) −2.36466e10 −0.898124
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.24805e9 0.233840 0.116920 0.993141i \(-0.462698\pi\)
0.116920 + 0.993141i \(0.462698\pi\)
\(954\) 0 0
\(955\) 7.62401e9 0.283251
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.91795e9 −0.216674
\(960\) 0 0
\(961\) −4.81574e9 −0.175037
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.77673e9 0.135291
\(966\) 0 0
\(967\) −2.21264e10 −0.786899 −0.393449 0.919346i \(-0.628718\pi\)
−0.393449 + 0.919346i \(0.628718\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.45446e9 −0.191199 −0.0955993 0.995420i \(-0.530477\pi\)
−0.0955993 + 0.995420i \(0.530477\pi\)
\(972\) 0 0
\(973\) −1.07815e10 −0.375217
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.95373e10 −1.69942 −0.849711 0.527248i \(-0.823224\pi\)
−0.849711 + 0.527248i \(0.823224\pi\)
\(978\) 0 0
\(979\) −2.30609e10 −0.785482
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.72042e9 0.292820 0.146410 0.989224i \(-0.453228\pi\)
0.146410 + 0.989224i \(0.453228\pi\)
\(984\) 0 0
\(985\) 6.90027e9 0.230059
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.33739e10 1.42574
\(990\) 0 0
\(991\) −1.64359e10 −0.536458 −0.268229 0.963355i \(-0.586438\pi\)
−0.268229 + 0.963355i \(0.586438\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.38618e10 0.446106
\(996\) 0 0
\(997\) −3.18717e10 −1.01853 −0.509264 0.860611i \(-0.670082\pi\)
−0.509264 + 0.860611i \(0.670082\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.8.a.q.1.1 2
3.2 odd 2 432.8.a.j.1.2 2
4.3 odd 2 27.8.a.e.1.1 yes 2
12.11 even 2 27.8.a.b.1.2 2
36.7 odd 6 81.8.c.d.28.2 4
36.11 even 6 81.8.c.h.28.1 4
36.23 even 6 81.8.c.h.55.1 4
36.31 odd 6 81.8.c.d.55.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.8.a.b.1.2 2 12.11 even 2
27.8.a.e.1.1 yes 2 4.3 odd 2
81.8.c.d.28.2 4 36.7 odd 6
81.8.c.d.55.2 4 36.31 odd 6
81.8.c.h.28.1 4 36.11 even 6
81.8.c.h.55.1 4 36.23 even 6
432.8.a.j.1.2 2 3.2 odd 2
432.8.a.q.1.1 2 1.1 even 1 trivial