Properties

Label 432.8.a.q
Level $432$
Weight $8$
Character orbit 432.a
Self dual yes
Analytic conductor $134.950$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,8,Mod(1,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 432.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(134.950331009\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{65}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 90) q^{5} + (45 \beta - 350) q^{7} + (20 \beta - 5445) q^{11} + (360 \beta - 2740) q^{13} + (1176 \beta + 8208) q^{17} + ( - 594 \beta - 8012) q^{19} + (2632 \beta - 12186) q^{23} + ( - 180 \beta - 69440) q^{25}+ \cdots + (523080 \beta + 2049335) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 180 q^{5} - 700 q^{7} - 10890 q^{11} - 5480 q^{13} + 16416 q^{17} - 16024 q^{19} - 24372 q^{23} - 138880 q^{25} - 143280 q^{29} + 38708 q^{31} - 115650 q^{35} + 455620 q^{37} + 731880 q^{41} + 1088840 q^{43}+ \cdots + 4098670 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.53113
−3.53113
0 0 0 65.8132 0 738.405 0 0 0
1.2 0 0 0 114.187 0 −1438.40 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 432.8.a.q 2
3.b odd 2 1 432.8.a.j 2
4.b odd 2 1 27.8.a.e yes 2
12.b even 2 1 27.8.a.b 2
36.f odd 6 2 81.8.c.d 4
36.h even 6 2 81.8.c.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.8.a.b 2 12.b even 2 1
27.8.a.e yes 2 4.b odd 2 1
81.8.c.d 4 36.f odd 6 2
81.8.c.h 4 36.h even 6 2
432.8.a.j 2 3.b odd 2 1
432.8.a.q 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(432))\):

\( T_{5}^{2} - 180T_{5} + 7515 \) Copy content Toggle raw display
\( T_{7}^{2} + 700T_{7} - 1062125 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 180T + 7515 \) Copy content Toggle raw display
$7$ \( T^{2} + 700 T - 1062125 \) Copy content Toggle raw display
$11$ \( T^{2} + 10890 T + 29414025 \) Copy content Toggle raw display
$13$ \( T^{2} + 5480 T - 68308400 \) Copy content Toggle raw display
$17$ \( T^{2} - 16416 T - 741669696 \) Copy content Toggle raw display
$19$ \( T^{2} + 16024 T - 142216916 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 3904044444 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 5122403100 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 28528424669 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 16337003900 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 83424185100 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 207456229900 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 410995953540 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 1583691044571 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 647792463600 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 17550467776 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 15698927500 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 3541802241600 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 3239699519975 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 19219527915904 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 1694562670359 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 6381093451500 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 155863647601775 \) Copy content Toggle raw display
show more
show less