Properties

Label 432.8.a.n
Level $432$
Weight $8$
Character orbit 432.a
Self dual yes
Analytic conductor $134.950$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,8,Mod(1,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 432.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(134.950331009\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 12\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 17 \beta q^{5} + 559 q^{7} + 227 \beta q^{11} - 8671 q^{13} - 1209 \beta q^{17} + 32461 q^{19} - 3965 \beta q^{23} + 46723 q^{25} - 7592 \beta q^{29} - 229892 q^{31} + 9503 \beta q^{35} - 541177 q^{37} + \cdots - 2979379 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 1118 q^{7} - 17342 q^{13} + 64922 q^{19} + 93446 q^{25} - 459784 q^{31} - 1082354 q^{37} + 930224 q^{43} - 1022124 q^{49} + 3334176 q^{55} - 275546 q^{61} + 628082 q^{67} + 5339074 q^{73} - 2203630 q^{79}+ \cdots - 5958758 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −353.338 0 559.000 0 0 0
1.2 0 0 0 353.338 0 559.000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 432.8.a.n 2
3.b odd 2 1 inner 432.8.a.n 2
4.b odd 2 1 27.8.a.c 2
12.b even 2 1 27.8.a.c 2
36.f odd 6 2 81.8.c.g 4
36.h even 6 2 81.8.c.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.8.a.c 2 4.b odd 2 1
27.8.a.c 2 12.b even 2 1
81.8.c.g 4 36.f odd 6 2
81.8.c.g 4 36.h even 6 2
432.8.a.n 2 1.a even 1 1 trivial
432.8.a.n 2 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(432))\):

\( T_{5}^{2} - 124848 \) Copy content Toggle raw display
\( T_{7} - 559 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 124848 \) Copy content Toggle raw display
$7$ \( (T - 559)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 22260528 \) Copy content Toggle raw display
$13$ \( (T + 8671)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 631446192 \) Copy content Toggle raw display
$19$ \( (T - 32461)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 6791569200 \) Copy content Toggle raw display
$29$ \( T^{2} - 24899816448 \) Copy content Toggle raw display
$31$ \( (T + 229892)^{2} \) Copy content Toggle raw display
$37$ \( (T + 541177)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 124965531648 \) Copy content Toggle raw display
$43$ \( (T - 465112)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 689852817072 \) Copy content Toggle raw display
$53$ \( T^{2} - 1053126090432 \) Copy content Toggle raw display
$59$ \( T^{2} - 616638511152 \) Copy content Toggle raw display
$61$ \( (T + 137773)^{2} \) Copy content Toggle raw display
$67$ \( (T - 314041)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 7894909985472 \) Copy content Toggle raw display
$73$ \( (T - 2669537)^{2} \) Copy content Toggle raw display
$79$ \( (T + 1101815)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 36954740369088 \) Copy content Toggle raw display
$89$ \( T^{2} - 10800152593200 \) Copy content Toggle raw display
$97$ \( (T + 2979379)^{2} \) Copy content Toggle raw display
show more
show less