Properties

Label 432.6.i.d.289.5
Level 432
Weight 6
Character 432.289
Analytic conductor 69.286
Analytic rank 0
Dimension 10
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(69.2858101592\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Defining polynomial: \(x^{10} + 175 x^{8} + 8800 x^{6} + 124623 x^{4} + 498609 x^{2} + 442368\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{16} \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.5
Root \(1.11227i\) of defining polynomial
Character \(\chi\) \(=\) 432.289
Dual form 432.6.i.d.145.5

$q$-expansion

\(f(q)\) \(=\) \(q+(55.1996 + 95.6086i) q^{5} +(50.8724 - 88.1135i) q^{7} +O(q^{10})\) \(q+(55.1996 + 95.6086i) q^{5} +(50.8724 - 88.1135i) q^{7} +(75.1560 - 130.174i) q^{11} +(-317.712 - 550.293i) q^{13} -1498.54 q^{17} -1437.69 q^{19} +(632.053 + 1094.75i) q^{23} +(-4531.50 + 7848.79i) q^{25} +(-1388.75 + 2405.38i) q^{29} +(-3484.34 - 6035.05i) q^{31} +11232.5 q^{35} -7950.71 q^{37} +(-1013.77 - 1755.90i) q^{41} +(-6261.65 + 10845.5i) q^{43} +(3241.17 - 5613.87i) q^{47} +(3227.51 + 5590.21i) q^{49} -9827.54 q^{53} +16594.3 q^{55} +(-23544.0 - 40779.3i) q^{59} +(-4168.92 + 7220.78i) q^{61} +(35075.2 - 60752.0i) q^{65} +(-3630.45 - 6288.12i) q^{67} +3582.33 q^{71} +58077.5 q^{73} +(-7646.73 - 13244.5i) q^{77} +(-31871.4 + 55202.9i) q^{79} +(-41423.3 + 71747.2i) q^{83} +(-82718.9 - 143273. i) q^{85} +3861.51 q^{89} -64651.0 q^{91} +(-79359.8 - 137455. i) q^{95} +(-34638.6 + 59995.8i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 21q^{5} - 29q^{7} + O(q^{10}) \) \( 10q + 21q^{5} - 29q^{7} + 177q^{11} - 181q^{13} - 2280q^{17} + 832q^{19} + 399q^{23} - 4778q^{25} + 6033q^{29} - 2759q^{31} + 37146q^{35} - 15172q^{37} + 18435q^{41} - 1469q^{43} - 25155q^{47} - 4056q^{49} - 116844q^{53} - 14778q^{55} - 90537q^{59} + 1403q^{61} + 148407q^{65} - 13907q^{67} + 229368q^{71} + 15200q^{73} + 211983q^{77} - 29993q^{79} - 228951q^{83} - 49662q^{85} - 598332q^{89} - 124930q^{91} - 394764q^{95} + 40541q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 55.1996 + 95.6086i 0.987441 + 1.71030i 0.630542 + 0.776155i \(0.282833\pi\)
0.356899 + 0.934143i \(0.383834\pi\)
\(6\) 0 0
\(7\) 50.8724 88.1135i 0.392407 0.679669i −0.600359 0.799730i \(-0.704976\pi\)
0.992766 + 0.120061i \(0.0383092\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 75.1560 130.174i 0.187276 0.324371i −0.757065 0.653339i \(-0.773367\pi\)
0.944341 + 0.328968i \(0.106701\pi\)
\(12\) 0 0
\(13\) −317.712 550.293i −0.521405 0.903100i −0.999690 0.0248953i \(-0.992075\pi\)
0.478285 0.878205i \(-0.341259\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1498.54 −1.25761 −0.628806 0.777562i \(-0.716456\pi\)
−0.628806 + 0.777562i \(0.716456\pi\)
\(18\) 0 0
\(19\) −1437.69 −0.913651 −0.456825 0.889556i \(-0.651014\pi\)
−0.456825 + 0.889556i \(0.651014\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 632.053 + 1094.75i 0.249134 + 0.431513i 0.963286 0.268478i \(-0.0865206\pi\)
−0.714151 + 0.699991i \(0.753187\pi\)
\(24\) 0 0
\(25\) −4531.50 + 7848.79i −1.45008 + 2.51161i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1388.75 + 2405.38i −0.306640 + 0.531116i −0.977625 0.210355i \(-0.932538\pi\)
0.670985 + 0.741471i \(0.265871\pi\)
\(30\) 0 0
\(31\) −3484.34 6035.05i −0.651203 1.12792i −0.982831 0.184506i \(-0.940931\pi\)
0.331628 0.943410i \(-0.392402\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 11232.5 1.54992
\(36\) 0 0
\(37\) −7950.71 −0.954776 −0.477388 0.878693i \(-0.658416\pi\)
−0.477388 + 0.878693i \(0.658416\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1013.77 1755.90i −0.0941843 0.163132i 0.815084 0.579343i \(-0.196691\pi\)
−0.909268 + 0.416211i \(0.863358\pi\)
\(42\) 0 0
\(43\) −6261.65 + 10845.5i −0.516438 + 0.894496i 0.483380 + 0.875410i \(0.339409\pi\)
−0.999818 + 0.0190856i \(0.993924\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3241.17 5613.87i 0.214021 0.370696i −0.738948 0.673763i \(-0.764677\pi\)
0.952969 + 0.303066i \(0.0980104\pi\)
\(48\) 0 0
\(49\) 3227.51 + 5590.21i 0.192034 + 0.332612i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9827.54 −0.480568 −0.240284 0.970703i \(-0.577241\pi\)
−0.240284 + 0.970703i \(0.577241\pi\)
\(54\) 0 0
\(55\) 16594.3 0.739696
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −23544.0 40779.3i −0.880541 1.52514i −0.850741 0.525586i \(-0.823846\pi\)
−0.0298005 0.999556i \(-0.509487\pi\)
\(60\) 0 0
\(61\) −4168.92 + 7220.78i −0.143450 + 0.248462i −0.928793 0.370598i \(-0.879153\pi\)
0.785344 + 0.619060i \(0.212486\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 35075.2 60752.0i 1.02971 1.78352i
\(66\) 0 0
\(67\) −3630.45 6288.12i −0.0988036 0.171133i 0.812386 0.583120i \(-0.198168\pi\)
−0.911190 + 0.411987i \(0.864835\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3582.33 0.0843372 0.0421686 0.999111i \(-0.486573\pi\)
0.0421686 + 0.999111i \(0.486573\pi\)
\(72\) 0 0
\(73\) 58077.5 1.27556 0.637780 0.770218i \(-0.279853\pi\)
0.637780 + 0.770218i \(0.279853\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7646.73 13244.5i −0.146977 0.254571i
\(78\) 0 0
\(79\) −31871.4 + 55202.9i −0.574558 + 0.995163i 0.421532 + 0.906814i \(0.361493\pi\)
−0.996090 + 0.0883495i \(0.971841\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −41423.3 + 71747.2i −0.660008 + 1.14317i 0.320605 + 0.947213i \(0.396114\pi\)
−0.980613 + 0.195954i \(0.937220\pi\)
\(84\) 0 0
\(85\) −82718.9 143273.i −1.24182 2.15089i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3861.51 0.0516752 0.0258376 0.999666i \(-0.491775\pi\)
0.0258376 + 0.999666i \(0.491775\pi\)
\(90\) 0 0
\(91\) −64651.0 −0.818412
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −79359.8 137455.i −0.902176 1.56262i
\(96\) 0 0
\(97\) −34638.6 + 59995.8i −0.373793 + 0.647428i −0.990146 0.140042i \(-0.955276\pi\)
0.616353 + 0.787470i \(0.288610\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12722.8 + 22036.6i −0.124103 + 0.214952i −0.921382 0.388659i \(-0.872939\pi\)
0.797279 + 0.603611i \(0.206272\pi\)
\(102\) 0 0
\(103\) −31693.9 54895.4i −0.294363 0.509851i 0.680474 0.732772i \(-0.261774\pi\)
−0.974836 + 0.222922i \(0.928441\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −61158.9 −0.516417 −0.258208 0.966089i \(-0.583132\pi\)
−0.258208 + 0.966089i \(0.583132\pi\)
\(108\) 0 0
\(109\) −124036. −0.999957 −0.499979 0.866038i \(-0.666659\pi\)
−0.499979 + 0.866038i \(0.666659\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 58718.5 + 101703.i 0.432592 + 0.749272i 0.997096 0.0761589i \(-0.0242656\pi\)
−0.564503 + 0.825431i \(0.690932\pi\)
\(114\) 0 0
\(115\) −69778.2 + 120859.i −0.492011 + 0.852188i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −76234.3 + 132042.i −0.493495 + 0.854759i
\(120\) 0 0
\(121\) 69228.6 + 119908.i 0.429855 + 0.744531i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −655551. −3.75259
\(126\) 0 0
\(127\) 29838.6 0.164161 0.0820803 0.996626i \(-0.473844\pi\)
0.0820803 + 0.996626i \(0.473844\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 86028.8 + 149006.i 0.437992 + 0.758624i 0.997535 0.0701777i \(-0.0223566\pi\)
−0.559543 + 0.828801i \(0.689023\pi\)
\(132\) 0 0
\(133\) −73138.5 + 126680.i −0.358523 + 0.620980i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 95180.7 164858.i 0.433259 0.750426i −0.563893 0.825848i \(-0.690697\pi\)
0.997152 + 0.0754216i \(0.0240303\pi\)
\(138\) 0 0
\(139\) −168532. 291905.i −0.739852 1.28146i −0.952562 0.304345i \(-0.901562\pi\)
0.212710 0.977115i \(-0.431771\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −95511.9 −0.390586
\(144\) 0 0
\(145\) −306634. −1.21115
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −27549.4 47716.9i −0.101659 0.176079i 0.810709 0.585449i \(-0.199082\pi\)
−0.912368 + 0.409370i \(0.865748\pi\)
\(150\) 0 0
\(151\) 167032. 289308.i 0.596152 1.03257i −0.397231 0.917719i \(-0.630029\pi\)
0.993383 0.114847i \(-0.0366378\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 384669. 666266.i 1.28605 2.22750i
\(156\) 0 0
\(157\) 60053.4 + 104015.i 0.194441 + 0.336782i 0.946717 0.322066i \(-0.104377\pi\)
−0.752276 + 0.658848i \(0.771044\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 128616. 0.391048
\(162\) 0 0
\(163\) −367083. −1.08217 −0.541085 0.840968i \(-0.681986\pi\)
−0.541085 + 0.840968i \(0.681986\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −294724. 510477.i −0.817758 1.41640i −0.907331 0.420418i \(-0.861884\pi\)
0.0895730 0.995980i \(-0.471450\pi\)
\(168\) 0 0
\(169\) −16235.3 + 28120.4i −0.0437264 + 0.0757363i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 218229. 377983.i 0.554366 0.960190i −0.443587 0.896231i \(-0.646294\pi\)
0.997953 0.0639583i \(-0.0203725\pi\)
\(174\) 0 0
\(175\) 461056. + 798572.i 1.13804 + 1.97115i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 241064. 0.562341 0.281171 0.959658i \(-0.409277\pi\)
0.281171 + 0.959658i \(0.409277\pi\)
\(180\) 0 0
\(181\) 27128.8 0.0615510 0.0307755 0.999526i \(-0.490202\pi\)
0.0307755 + 0.999526i \(0.490202\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −438876. 760156.i −0.942785 1.63295i
\(186\) 0 0
\(187\) −112624. + 195071.i −0.235520 + 0.407933i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 28036.3 48560.2i 0.0556079 0.0963157i −0.836881 0.547384i \(-0.815624\pi\)
0.892489 + 0.451068i \(0.148957\pi\)
\(192\) 0 0
\(193\) −177242. 306992.i −0.342510 0.593244i 0.642388 0.766379i \(-0.277944\pi\)
−0.984898 + 0.173135i \(0.944610\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 816895. 1.49969 0.749844 0.661615i \(-0.230129\pi\)
0.749844 + 0.661615i \(0.230129\pi\)
\(198\) 0 0
\(199\) −860396. −1.54016 −0.770079 0.637948i \(-0.779783\pi\)
−0.770079 + 0.637948i \(0.779783\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 141298. + 244735.i 0.240655 + 0.416827i
\(204\) 0 0
\(205\) 111919. 193850.i 0.186003 0.322166i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −108051. + 187149.i −0.171105 + 0.296362i
\(210\) 0 0
\(211\) −193586. 335300.i −0.299341 0.518475i 0.676644 0.736310i \(-0.263434\pi\)
−0.975985 + 0.217836i \(0.930100\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.38256e6 −2.03981
\(216\) 0 0
\(217\) −709026. −1.02215
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 476105. + 824637.i 0.655725 + 1.13575i
\(222\) 0 0
\(223\) −147497. + 255472.i −0.198619 + 0.344018i −0.948081 0.318029i \(-0.896979\pi\)
0.749462 + 0.662047i \(0.230312\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −343990. + 595808.i −0.443079 + 0.767435i −0.997916 0.0645238i \(-0.979447\pi\)
0.554837 + 0.831959i \(0.312780\pi\)
\(228\) 0 0
\(229\) 543233. + 940908.i 0.684538 + 1.18565i 0.973582 + 0.228339i \(0.0733294\pi\)
−0.289044 + 0.957316i \(0.593337\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −168058. −0.202801 −0.101400 0.994846i \(-0.532332\pi\)
−0.101400 + 0.994846i \(0.532332\pi\)
\(234\) 0 0
\(235\) 715646. 0.845334
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 773138. + 1.33911e6i 0.875512 + 1.51643i 0.856217 + 0.516617i \(0.172809\pi\)
0.0192952 + 0.999814i \(0.493858\pi\)
\(240\) 0 0
\(241\) 576865. 999160.i 0.639782 1.10813i −0.345699 0.938346i \(-0.612358\pi\)
0.985480 0.169789i \(-0.0543086\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −356314. + 617155.i −0.379244 + 0.656869i
\(246\) 0 0
\(247\) 456770. + 791149.i 0.476382 + 0.825118i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −586711. −0.587814 −0.293907 0.955834i \(-0.594956\pi\)
−0.293907 + 0.955834i \(0.594956\pi\)
\(252\) 0 0
\(253\) 190010. 0.186628
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 54171.0 + 93826.9i 0.0511604 + 0.0886124i 0.890471 0.455039i \(-0.150375\pi\)
−0.839311 + 0.543651i \(0.817041\pi\)
\(258\) 0 0
\(259\) −404471. + 700565.i −0.374661 + 0.648931i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 868353. 1.50403e6i 0.774117 1.34081i −0.161172 0.986926i \(-0.551527\pi\)
0.935289 0.353884i \(-0.115139\pi\)
\(264\) 0 0
\(265\) −542476. 939597.i −0.474533 0.821915i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18297.3 −0.0154172 −0.00770860 0.999970i \(-0.502454\pi\)
−0.00770860 + 0.999970i \(0.502454\pi\)
\(270\) 0 0
\(271\) −7105.09 −0.00587688 −0.00293844 0.999996i \(-0.500935\pi\)
−0.00293844 + 0.999996i \(0.500935\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 681139. + 1.17977e6i 0.543130 + 0.940729i
\(276\) 0 0
\(277\) −355202. + 615227.i −0.278148 + 0.481766i −0.970924 0.239386i \(-0.923054\pi\)
0.692777 + 0.721152i \(0.256387\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −514224. + 890661.i −0.388496 + 0.672894i −0.992247 0.124278i \(-0.960338\pi\)
0.603752 + 0.797172i \(0.293672\pi\)
\(282\) 0 0
\(283\) −922317. 1.59750e6i −0.684564 1.18570i −0.973574 0.228374i \(-0.926659\pi\)
0.289010 0.957326i \(-0.406674\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −206291. −0.147834
\(288\) 0 0
\(289\) 825769. 0.581586
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 470486. + 814906.i 0.320168 + 0.554547i 0.980522 0.196407i \(-0.0629274\pi\)
−0.660355 + 0.750954i \(0.729594\pi\)
\(294\) 0 0
\(295\) 2.59924e6 4.50201e6i 1.73896 3.01198i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 401621. 695629.i 0.259800 0.449987i
\(300\) 0 0
\(301\) 637090. + 1.10347e6i 0.405307 + 0.702013i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −920492. −0.566592
\(306\) 0 0
\(307\) 2.93094e6 1.77485 0.887425 0.460952i \(-0.152492\pi\)
0.887425 + 0.460952i \(0.152492\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.14126e6 + 1.97671e6i 0.669086 + 1.15889i 0.978160 + 0.207853i \(0.0666477\pi\)
−0.309074 + 0.951038i \(0.600019\pi\)
\(312\) 0 0
\(313\) −401324. + 695114.i −0.231544 + 0.401047i −0.958263 0.285889i \(-0.907711\pi\)
0.726718 + 0.686936i \(0.241045\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 555982. 962990.i 0.310751 0.538237i −0.667774 0.744364i \(-0.732753\pi\)
0.978525 + 0.206127i \(0.0660861\pi\)
\(318\) 0 0
\(319\) 208746. + 361558.i 0.114853 + 0.198930i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.15443e6 1.14902
\(324\) 0 0
\(325\) 5.75885e6 3.02432
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −329772. 571182.i −0.167967 0.290927i
\(330\) 0 0
\(331\) −613290. + 1.06225e6i −0.307678 + 0.532913i −0.977854 0.209289i \(-0.932885\pi\)
0.670176 + 0.742202i \(0.266218\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 400799. 694203.i 0.195126 0.337967i
\(336\) 0 0
\(337\) −1.15064e6 1.99297e6i −0.551907 0.955930i −0.998137 0.0610122i \(-0.980567\pi\)
0.446230 0.894918i \(-0.352766\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.04748e6 −0.487818
\(342\) 0 0
\(343\) 2.36679e6 1.08624
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −809651. 1.40236e6i −0.360973 0.625223i 0.627149 0.778900i \(-0.284222\pi\)
−0.988121 + 0.153677i \(0.950889\pi\)
\(348\) 0 0
\(349\) 139307. 241287.i 0.0612223 0.106040i −0.833790 0.552082i \(-0.813833\pi\)
0.895012 + 0.446042i \(0.147167\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.68496e6 2.91844e6i 0.719704 1.24656i −0.241413 0.970422i \(-0.577611\pi\)
0.961117 0.276142i \(-0.0890559\pi\)
\(354\) 0 0
\(355\) 197743. + 342501.i 0.0832781 + 0.144242i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 272571. 0.111621 0.0558103 0.998441i \(-0.482226\pi\)
0.0558103 + 0.998441i \(0.482226\pi\)
\(360\) 0 0
\(361\) −409156. −0.165242
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.20586e6 + 5.55271e6i 1.25954 + 2.18159i
\(366\) 0 0
\(367\) −1.97882e6 + 3.42743e6i −0.766906 + 1.32832i 0.172327 + 0.985040i \(0.444871\pi\)
−0.939233 + 0.343281i \(0.888462\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −499950. + 865939.i −0.188578 + 0.326627i
\(372\) 0 0
\(373\) 961939. + 1.66613e6i 0.357994 + 0.620063i 0.987626 0.156830i \(-0.0501276\pi\)
−0.629632 + 0.776894i \(0.716794\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.76489e6 0.639534
\(378\) 0 0
\(379\) 3.11015e6 1.11220 0.556101 0.831115i \(-0.312297\pi\)
0.556101 + 0.831115i \(0.312297\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.41711e6 + 2.45450e6i 0.493634 + 0.855000i 0.999973 0.00733479i \(-0.00233476\pi\)
−0.506339 + 0.862335i \(0.669001\pi\)
\(384\) 0 0
\(385\) 844193. 1.46218e6i 0.290262 0.502748i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.02692e6 + 1.77867e6i −0.344081 + 0.595966i −0.985186 0.171487i \(-0.945143\pi\)
0.641105 + 0.767453i \(0.278476\pi\)
\(390\) 0 0
\(391\) −947157. 1.64052e6i −0.313314 0.542676i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.03716e6 −2.26937
\(396\) 0 0
\(397\) −3.82167e6 −1.21696 −0.608480 0.793569i \(-0.708220\pi\)
−0.608480 + 0.793569i \(0.708220\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.65864e6 + 4.60491e6i 0.825656 + 1.43008i 0.901417 + 0.432953i \(0.142528\pi\)
−0.0757604 + 0.997126i \(0.524138\pi\)
\(402\) 0 0
\(403\) −2.21403e6 + 3.83482e6i −0.679081 + 1.17620i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −597543. + 1.03498e6i −0.178807 + 0.309702i
\(408\) 0 0
\(409\) −1.57922e6 2.73528e6i −0.466803 0.808526i 0.532478 0.846444i \(-0.321261\pi\)
−0.999281 + 0.0379179i \(0.987927\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.79095e6 −1.38212
\(414\) 0 0
\(415\) −9.14620e6 −2.60688
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.80782e6 + 3.13124e6i 0.503060 + 0.871326i 0.999994 + 0.00353739i \(0.00112599\pi\)
−0.496933 + 0.867789i \(0.665541\pi\)
\(420\) 0 0
\(421\) −514445. + 891044.i −0.141460 + 0.245016i −0.928047 0.372464i \(-0.878513\pi\)
0.786587 + 0.617480i \(0.211846\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.79064e6 1.17617e7i 1.82364 3.15863i
\(426\) 0 0
\(427\) 424166. + 734677.i 0.112581 + 0.194996i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.21668e6 1.61200 0.806001 0.591914i \(-0.201628\pi\)
0.806001 + 0.591914i \(0.201628\pi\)
\(432\) 0 0
\(433\) −598070. −0.153297 −0.0766483 0.997058i \(-0.524422\pi\)
−0.0766483 + 0.997058i \(0.524422\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −908694. 1.57390e6i −0.227622 0.394253i
\(438\) 0 0
\(439\) −246548. + 427034.i −0.0610577 + 0.105755i −0.894938 0.446190i \(-0.852781\pi\)
0.833881 + 0.551945i \(0.186114\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 97755.8 169318.i 0.0236665 0.0409915i −0.853950 0.520356i \(-0.825799\pi\)
0.877616 + 0.479364i \(0.159133\pi\)
\(444\) 0 0
\(445\) 213154. + 369194.i 0.0510263 + 0.0883801i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.51225e6 0.354004 0.177002 0.984210i \(-0.443360\pi\)
0.177002 + 0.984210i \(0.443360\pi\)
\(450\) 0 0
\(451\) −304763. −0.0705538
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.56871e6 6.18119e6i −0.808133 1.39973i
\(456\) 0 0
\(457\) −1.28236e6 + 2.22111e6i −0.287223 + 0.497484i −0.973146 0.230190i \(-0.926065\pi\)
0.685923 + 0.727674i \(0.259399\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.68336e6 + 4.64772e6i −0.588067 + 1.01856i 0.406418 + 0.913687i \(0.366778\pi\)
−0.994485 + 0.104875i \(0.966556\pi\)
\(462\) 0 0
\(463\) 2.75107e6 + 4.76500e6i 0.596417 + 1.03302i 0.993345 + 0.115175i \(0.0367428\pi\)
−0.396928 + 0.917850i \(0.629924\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 964114. 0.204567 0.102284 0.994755i \(-0.467385\pi\)
0.102284 + 0.994755i \(0.467385\pi\)
\(468\) 0 0
\(469\) −738757. −0.155085
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 941202. + 1.63021e6i 0.193433 + 0.335035i
\(474\) 0 0
\(475\) 6.51488e6 1.12841e7i 1.32487 2.29474i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 281267. 487168.i 0.0560118 0.0970153i −0.836660 0.547723i \(-0.815495\pi\)
0.892672 + 0.450707i \(0.148828\pi\)
\(480\) 0 0
\(481\) 2.52603e6 + 4.37522e6i 0.497825 + 0.862258i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.64815e6 −1.47639
\(486\) 0 0
\(487\) −3.14185e6 −0.600292 −0.300146 0.953893i \(-0.597035\pi\)
−0.300146 + 0.953893i \(0.597035\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.86681e6 4.96545e6i −0.536654 0.929512i −0.999081 0.0428549i \(-0.986355\pi\)
0.462427 0.886657i \(-0.346979\pi\)
\(492\) 0 0
\(493\) 2.08110e6 3.60457e6i 0.385634 0.667937i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 182241. 315651.i 0.0330945 0.0573214i
\(498\) 0 0
\(499\) 857810. + 1.48577e6i 0.154220 + 0.267116i 0.932775 0.360460i \(-0.117380\pi\)
−0.778555 + 0.627576i \(0.784047\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.15229e6 −0.907989 −0.453995 0.891004i \(-0.650001\pi\)
−0.453995 + 0.891004i \(0.650001\pi\)
\(504\) 0 0
\(505\) −2.80919e6 −0.490176
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −521280. 902884.i −0.0891819 0.154468i 0.817984 0.575242i \(-0.195092\pi\)
−0.907166 + 0.420774i \(0.861759\pi\)
\(510\) 0 0
\(511\) 2.95454e6 5.11742e6i 0.500539 0.866959i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.49898e6 6.06041e6i 0.581331 1.00690i
\(516\) 0 0
\(517\) −487187. 843833.i −0.0801621 0.138845i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.52239e6 −1.53692 −0.768461 0.639897i \(-0.778977\pi\)
−0.768461 + 0.639897i \(0.778977\pi\)
\(522\) 0 0
\(523\) 2.97573e6 0.475706 0.237853 0.971301i \(-0.423556\pi\)
0.237853 + 0.971301i \(0.423556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.22143e6 + 9.04378e6i 0.818960 + 1.41848i
\(528\) 0 0
\(529\) 2.41919e6 4.19016e6i 0.375864 0.651016i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −644172. + 1.11574e6i −0.0982163 + 0.170116i
\(534\) 0 0
\(535\) −3.37595e6 5.84731e6i −0.509931 0.883226i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 970266. 0.143853
\(540\) 0 0
\(541\) 1.80579e6 0.265261 0.132631 0.991166i \(-0.457658\pi\)
0.132631 + 0.991166i \(0.457658\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.84674e6 1.18589e7i −0.987399 1.71023i
\(546\) 0 0
\(547\) −4.68486e6 + 8.11442e6i −0.669466 + 1.15955i 0.308587 + 0.951196i \(0.400144\pi\)
−0.978054 + 0.208353i \(0.933190\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.99658e6 3.45819e6i 0.280162 0.485254i
\(552\) 0 0
\(553\) 3.24275e6 + 5.61660e6i 0.450921 + 0.781018i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.53733e6 −0.483101 −0.241550 0.970388i \(-0.577656\pi\)
−0.241550 + 0.970388i \(0.577656\pi\)
\(558\) 0 0
\(559\) 7.95761e6 1.07709
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.39030e6 2.40807e6i −0.184858 0.320183i 0.758671 0.651474i \(-0.225849\pi\)
−0.943529 + 0.331291i \(0.892516\pi\)
\(564\) 0 0
\(565\) −6.48248e6 + 1.12280e7i −0.854319 + 1.47972i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.67647e6 6.36782e6i 0.476047 0.824537i −0.523576 0.851979i \(-0.675403\pi\)
0.999623 + 0.0274412i \(0.00873590\pi\)
\(570\) 0 0
\(571\) −2.87585e6 4.98112e6i −0.369128 0.639348i 0.620302 0.784363i \(-0.287010\pi\)
−0.989429 + 0.145016i \(0.953677\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.14566e7 −1.44506
\(576\) 0 0
\(577\) −1.30488e7 −1.63167 −0.815835 0.578285i \(-0.803722\pi\)
−0.815835 + 0.578285i \(0.803722\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.21460e6 + 7.29990e6i 0.517983 + 0.897173i
\(582\) 0 0
\(583\) −738598. + 1.27929e6i −0.0899989 + 0.155883i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −623618. + 1.08014e6i −0.0747005 + 0.129385i −0.900956 0.433910i \(-0.857133\pi\)
0.826255 + 0.563296i \(0.190467\pi\)
\(588\) 0 0
\(589\) 5.00939e6 + 8.67652e6i 0.594972 + 1.03052i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.32769e7 1.55045 0.775226 0.631684i \(-0.217636\pi\)
0.775226 + 0.631684i \(0.217636\pi\)
\(594\) 0 0
\(595\) −1.68324e7 −1.94919
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.02457e6 3.50666e6i −0.230551 0.399325i 0.727420 0.686193i \(-0.240719\pi\)
−0.957970 + 0.286868i \(0.907386\pi\)
\(600\) 0 0
\(601\) 3.41857e6 5.92113e6i 0.386063 0.668681i −0.605853 0.795577i \(-0.707168\pi\)
0.991916 + 0.126896i \(0.0405014\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.64279e6 + 1.32377e7i −0.848914 + 1.47036i
\(606\) 0 0
\(607\) 348100. + 602927.i 0.0383471 + 0.0664191i 0.884562 0.466423i \(-0.154457\pi\)
−0.846215 + 0.532842i \(0.821124\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.11904e6 −0.446367
\(612\) 0 0
\(613\) −1.42785e6 −0.153473 −0.0767363 0.997051i \(-0.524450\pi\)
−0.0767363 + 0.997051i \(0.524450\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.51675e6 1.30194e7i −0.794908 1.37682i −0.922897 0.385046i \(-0.874186\pi\)
0.127989 0.991776i \(-0.459148\pi\)
\(618\) 0 0
\(619\) −3.58151e6 + 6.20336e6i −0.375699 + 0.650730i −0.990431 0.138006i \(-0.955931\pi\)
0.614732 + 0.788736i \(0.289264\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 196444. 340251.i 0.0202777 0.0351221i
\(624\) 0 0
\(625\) −2.20252e7 3.81488e7i −2.25538 3.90644i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.19145e7 1.20074
\(630\) 0 0
\(631\) −1.38021e7 −1.37998 −0.689989 0.723820i \(-0.742385\pi\)
−0.689989 + 0.723820i \(0.742385\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.64708e6 + 2.85283e6i 0.162099 + 0.280764i
\(636\) 0 0
\(637\) 2.05084e6 3.55215e6i 0.200254 0.346851i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.02329e6 + 3.50445e6i −0.194497 + 0.336879i −0.946736 0.322012i \(-0.895641\pi\)
0.752238 + 0.658891i \(0.228974\pi\)
\(642\) 0 0
\(643\) 5.44381e6 + 9.42896e6i 0.519249 + 0.899366i 0.999750 + 0.0223713i \(0.00712159\pi\)
−0.480501 + 0.876994i \(0.659545\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.45797e6 −0.794339 −0.397169 0.917745i \(-0.630007\pi\)
−0.397169 + 0.917745i \(0.630007\pi\)
\(648\) 0 0
\(649\) −7.07788e6 −0.659617
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.47774e6 + 4.29157e6i 0.227391 + 0.393853i 0.957034 0.289975i \(-0.0936472\pi\)
−0.729643 + 0.683828i \(0.760314\pi\)
\(654\) 0 0
\(655\) −9.49752e6 + 1.64502e7i −0.864982 + 1.49819i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.37152e6 + 1.44999e7i −0.750915 + 1.30062i 0.196464 + 0.980511i \(0.437054\pi\)
−0.947380 + 0.320113i \(0.896279\pi\)
\(660\) 0 0
\(661\) 7.53992e6 + 1.30595e7i 0.671217 + 1.16258i 0.977559 + 0.210661i \(0.0675617\pi\)
−0.306342 + 0.951922i \(0.599105\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.61489e7 −1.41608
\(666\) 0 0
\(667\) −3.51105e6 −0.305578
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 626639. + 1.08537e6i 0.0537293 + 0.0930619i
\(672\) 0 0
\(673\) −7.07096e6 + 1.22473e7i −0.601784 + 1.04232i 0.390767 + 0.920490i \(0.372210\pi\)
−0.992551 + 0.121831i \(0.961123\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.29397e6 1.26335e7i 0.611635 1.05938i −0.379330 0.925262i \(-0.623845\pi\)
0.990965 0.134122i \(-0.0428213\pi\)
\(678\) 0 0
\(679\) 3.52429e6 + 6.10425e6i 0.293358 + 0.508110i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.10096e7 −0.903065 −0.451532 0.892255i \(-0.649122\pi\)
−0.451532 + 0.892255i \(0.649122\pi\)
\(684\) 0 0
\(685\) 2.10158e7 1.71127
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.12233e6 + 5.40803e6i 0.250571 + 0.434001i
\(690\) 0 0
\(691\) 5.51793e6 9.55733e6i 0.439623 0.761450i −0.558037 0.829816i \(-0.688445\pi\)
0.997660 + 0.0683661i \(0.0217786\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.86058e7 3.22261e7i 1.46112 2.53073i
\(696\) 0 0
\(697\) 1.51917e6 + 2.63128e6i 0.118447 + 0.205157i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.51294e7 1.93146 0.965732 0.259542i \(-0.0835717\pi\)
0.965732 + 0.259542i \(0.0835717\pi\)
\(702\) 0 0
\(703\) 1.14306e7 0.872332
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.29448e6 + 2.24211e6i 0.0973974 + 0.168697i
\(708\) 0 0
\(709\) −6.26506e6 + 1.08514e7i −0.468068 + 0.810718i −0.999334 0.0364869i \(-0.988383\pi\)
0.531266 + 0.847205i \(0.321717\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.40457e6 7.62894e6i 0.324474 0.562006i
\(714\) 0 0
\(715\) −5.27222e6 9.13175e6i −0.385681 0.668019i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.72246e6 −0.124258 −0.0621292 0.998068i \(-0.519789\pi\)
−0.0621292 + 0.998068i \(0.519789\pi\)
\(720\) 0 0
\(721\) −6.44937e6 −0.462040
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.25862e7 2.18000e7i −0.889304 1.54032i
\(726\) 0 0
\(727\) 3.49425e6 6.05221e6i 0.245198 0.424696i −0.716989 0.697084i \(-0.754480\pi\)
0.962187 + 0.272389i \(0.0878136\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.38335e6 1.62524e7i 0.649478 1.12493i
\(732\) 0 0
\(733\) 2.96305e6 + 5.13214e6i 0.203694 + 0.352808i 0.949716 0.313113i \(-0.101372\pi\)
−0.746022 + 0.665922i \(0.768039\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.09140e6 −0.0740142
\(738\) 0 0
\(739\) 1.06632e7 0.718254 0.359127 0.933289i \(-0.383075\pi\)
0.359127 + 0.933289i \(0.383075\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.24932e6 + 1.60203e7i 0.614664 + 1.06463i 0.990443 + 0.137920i \(0.0440417\pi\)
−0.375779 + 0.926709i \(0.622625\pi\)
\(744\) 0 0
\(745\) 3.04143e6 5.26791e6i 0.200765 0.347734i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.11130e6 + 5.38892e6i −0.202645 + 0.350992i
\(750\) 0 0
\(751\) −1.30624e7 2.26247e7i −0.845127 1.46380i −0.885511 0.464618i \(-0.846192\pi\)
0.0403845 0.999184i \(-0.487142\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.68804e7 2.35466
\(756\) 0 0
\(757\) 2.49174e7 1.58039 0.790193 0.612858i \(-0.209980\pi\)
0.790193 + 0.612858i \(0.209980\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.62194e6 + 9.73748e6i 0.351904 + 0.609516i 0.986583 0.163260i \(-0.0522010\pi\)
−0.634679 + 0.772776i \(0.718868\pi\)
\(762\) 0 0
\(763\) −6.31000e6 + 1.09292e7i −0.392390 + 0.679640i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.49604e7 + 2.59122e7i −0.918237 + 1.59043i
\(768\) 0 0
\(769\) −4.33731e6 7.51244e6i −0.264487 0.458105i 0.702942 0.711247i \(-0.251869\pi\)
−0.967429 + 0.253142i \(0.918536\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.17066e7 −1.30660 −0.653300 0.757099i \(-0.726616\pi\)
−0.653300 + 0.757099i \(0.726616\pi\)
\(774\) 0 0
\(775\) 6.31571e7 3.77718
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.45748e6 + 2.52443e6i 0.0860516 + 0.149046i
\(780\) 0 0
\(781\) 269233. 466326.i 0.0157943 0.0273566i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.62985e6 + 1.14832e7i −0.383998 + 0.665105i
\(786\) 0 0
\(787\) 3.93215e6 + 6.81068e6i 0.226304 + 0.391971i 0.956710 0.291043i \(-0.0940023\pi\)
−0.730406 + 0.683014i \(0.760669\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.19486e7 0.679009
\(792\) 0 0
\(793\) 5.29807e6 0.299181
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.48089e6 + 1.64214e7i 0.528693 + 0.915723i 0.999440 + 0.0334547i \(0.0106509\pi\)
−0.470747 + 0.882268i \(0.656016\pi\)
\(798\) 0 0
\(799\) −4.85703e6 + 8.41262e6i −0.269156 + 0.466192i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.36488e6 7.56019e6i