Properties

Label 432.6.i.d.145.1
Level 432
Weight 6
Character 432.145
Analytic conductor 69.286
Analytic rank 0
Dimension 10
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(69.2858101592\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Defining polynomial: \(x^{10} + 175 x^{8} + 8800 x^{6} + 124623 x^{4} + 498609 x^{2} + 442368\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{16} \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 145.1
Root \(3.71922i\) of defining polynomial
Character \(\chi\) \(=\) 432.145
Dual form 432.6.i.d.289.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-40.7270 + 70.5412i) q^{5} +(-89.6312 - 155.246i) q^{7} +O(q^{10})\) \(q+(-40.7270 + 70.5412i) q^{5} +(-89.6312 - 155.246i) q^{7} +(250.250 + 433.446i) q^{11} +(275.245 - 476.739i) q^{13} -753.636 q^{17} +2570.83 q^{19} +(1372.72 - 2377.63i) q^{23} +(-1754.87 - 3039.53i) q^{25} +(1954.86 + 3385.92i) q^{29} +(-1552.42 + 2688.87i) q^{31} +14601.6 q^{35} -9568.10 q^{37} +(1113.47 - 1928.59i) q^{41} +(7143.42 + 12372.8i) q^{43} +(3236.07 + 5605.04i) q^{47} +(-7664.00 + 13274.4i) q^{49} -13692.2 q^{53} -40767.8 q^{55} +(-2854.22 + 4943.65i) q^{59} +(5899.59 + 10218.4i) q^{61} +(22419.8 + 38832.3i) q^{65} +(-1771.66 + 3068.60i) q^{67} -58429.0 q^{71} -60181.3 q^{73} +(44860.5 - 77700.6i) q^{77} +(-27811.7 - 48171.3i) q^{79} +(-19990.3 - 34624.2i) q^{83} +(30693.3 - 53162.4i) q^{85} -103171. q^{89} -98682.3 q^{91} +(-104702. + 181349. i) q^{95} +(82996.9 + 143755. i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 21q^{5} - 29q^{7} + O(q^{10}) \) \( 10q + 21q^{5} - 29q^{7} + 177q^{11} - 181q^{13} - 2280q^{17} + 832q^{19} + 399q^{23} - 4778q^{25} + 6033q^{29} - 2759q^{31} + 37146q^{35} - 15172q^{37} + 18435q^{41} - 1469q^{43} - 25155q^{47} - 4056q^{49} - 116844q^{53} - 14778q^{55} - 90537q^{59} + 1403q^{61} + 148407q^{65} - 13907q^{67} + 229368q^{71} + 15200q^{73} + 211983q^{77} - 29993q^{79} - 228951q^{83} - 49662q^{85} - 598332q^{89} - 124930q^{91} - 394764q^{95} + 40541q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −40.7270 + 70.5412i −0.728546 + 1.26188i 0.228951 + 0.973438i \(0.426470\pi\)
−0.957498 + 0.288441i \(0.906863\pi\)
\(6\) 0 0
\(7\) −89.6312 155.246i −0.691376 1.19750i −0.971387 0.237501i \(-0.923672\pi\)
0.280012 0.959997i \(-0.409662\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 250.250 + 433.446i 0.623581 + 1.08007i 0.988813 + 0.149158i \(0.0476562\pi\)
−0.365232 + 0.930916i \(0.619010\pi\)
\(12\) 0 0
\(13\) 275.245 476.739i 0.451712 0.782388i −0.546780 0.837276i \(-0.684147\pi\)
0.998493 + 0.0548877i \(0.0174801\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −753.636 −0.632469 −0.316234 0.948681i \(-0.602419\pi\)
−0.316234 + 0.948681i \(0.602419\pi\)
\(18\) 0 0
\(19\) 2570.83 1.63376 0.816882 0.576805i \(-0.195701\pi\)
0.816882 + 0.576805i \(0.195701\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1372.72 2377.63i 0.541083 0.937183i −0.457759 0.889076i \(-0.651348\pi\)
0.998842 0.0481071i \(-0.0153189\pi\)
\(24\) 0 0
\(25\) −1754.87 3039.53i −0.561560 0.972650i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1954.86 + 3385.92i 0.431639 + 0.747621i 0.997015 0.0772128i \(-0.0246021\pi\)
−0.565376 + 0.824834i \(0.691269\pi\)
\(30\) 0 0
\(31\) −1552.42 + 2688.87i −0.290138 + 0.502534i −0.973842 0.227226i \(-0.927035\pi\)
0.683704 + 0.729759i \(0.260368\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 14601.6 2.01480
\(36\) 0 0
\(37\) −9568.10 −1.14900 −0.574502 0.818503i \(-0.694804\pi\)
−0.574502 + 0.818503i \(0.694804\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1113.47 1928.59i 0.103447 0.179176i −0.809656 0.586905i \(-0.800346\pi\)
0.913103 + 0.407730i \(0.133679\pi\)
\(42\) 0 0
\(43\) 7143.42 + 12372.8i 0.589162 + 1.02046i 0.994342 + 0.106222i \(0.0338754\pi\)
−0.405180 + 0.914237i \(0.632791\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3236.07 + 5605.04i 0.213685 + 0.370112i 0.952865 0.303395i \(-0.0981202\pi\)
−0.739180 + 0.673508i \(0.764787\pi\)
\(48\) 0 0
\(49\) −7664.00 + 13274.4i −0.456000 + 0.789816i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13692.2 −0.669553 −0.334777 0.942298i \(-0.608661\pi\)
−0.334777 + 0.942298i \(0.608661\pi\)
\(54\) 0 0
\(55\) −40767.8 −1.81723
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2854.22 + 4943.65i −0.106747 + 0.184892i −0.914451 0.404697i \(-0.867377\pi\)
0.807703 + 0.589589i \(0.200710\pi\)
\(60\) 0 0
\(61\) 5899.59 + 10218.4i 0.203000 + 0.351607i 0.949494 0.313786i \(-0.101597\pi\)
−0.746493 + 0.665393i \(0.768264\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 22419.8 + 38832.3i 0.658186 + 1.14001i
\(66\) 0 0
\(67\) −1771.66 + 3068.60i −0.0482162 + 0.0835129i −0.889126 0.457662i \(-0.848687\pi\)
0.840910 + 0.541175i \(0.182020\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −58429.0 −1.37557 −0.687785 0.725914i \(-0.741417\pi\)
−0.687785 + 0.725914i \(0.741417\pi\)
\(72\) 0 0
\(73\) −60181.3 −1.32176 −0.660882 0.750490i \(-0.729818\pi\)
−0.660882 + 0.750490i \(0.729818\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 44860.5 77700.6i 0.862258 1.49347i
\(78\) 0 0
\(79\) −27811.7 48171.3i −0.501372 0.868401i −0.999999 0.00158440i \(-0.999496\pi\)
0.498627 0.866817i \(-0.333838\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −19990.3 34624.2i −0.318511 0.551677i 0.661667 0.749798i \(-0.269849\pi\)
−0.980178 + 0.198121i \(0.936516\pi\)
\(84\) 0 0
\(85\) 30693.3 53162.4i 0.460783 0.798099i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −103171. −1.38065 −0.690327 0.723498i \(-0.742533\pi\)
−0.690327 + 0.723498i \(0.742533\pi\)
\(90\) 0 0
\(91\) −98682.3 −1.24921
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −104702. + 181349.i −1.19027 + 2.06161i
\(96\) 0 0
\(97\) 82996.9 + 143755.i 0.895638 + 1.55129i 0.833013 + 0.553254i \(0.186614\pi\)
0.0626259 + 0.998037i \(0.480053\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 82524.4 + 142936.i 0.804969 + 1.39425i 0.916312 + 0.400464i \(0.131151\pi\)
−0.111344 + 0.993782i \(0.535515\pi\)
\(102\) 0 0
\(103\) 36430.5 63099.4i 0.338354 0.586047i −0.645769 0.763533i \(-0.723463\pi\)
0.984123 + 0.177486i \(0.0567964\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 123024. 1.03880 0.519399 0.854532i \(-0.326156\pi\)
0.519399 + 0.854532i \(0.326156\pi\)
\(108\) 0 0
\(109\) 24274.5 0.195697 0.0978486 0.995201i \(-0.468804\pi\)
0.0978486 + 0.995201i \(0.468804\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −100686. + 174394.i −0.741778 + 1.28480i 0.209908 + 0.977721i \(0.432684\pi\)
−0.951685 + 0.307075i \(0.900650\pi\)
\(114\) 0 0
\(115\) 111814. + 193667.i 0.788408 + 1.36556i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 67549.3 + 116999.i 0.437274 + 0.757380i
\(120\) 0 0
\(121\) −44725.0 + 77465.9i −0.277707 + 0.481002i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 31339.2 0.179396
\(126\) 0 0
\(127\) 104163. 0.573067 0.286534 0.958070i \(-0.407497\pi\)
0.286534 + 0.958070i \(0.407497\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −89424.9 + 154888.i −0.455282 + 0.788571i −0.998704 0.0508883i \(-0.983795\pi\)
0.543423 + 0.839459i \(0.317128\pi\)
\(132\) 0 0
\(133\) −230426. 399110.i −1.12954 1.95643i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 67651.3 + 117176.i 0.307946 + 0.533378i 0.977913 0.209013i \(-0.0670250\pi\)
−0.669967 + 0.742391i \(0.733692\pi\)
\(138\) 0 0
\(139\) −113083. + 195866.i −0.496434 + 0.859848i −0.999992 0.00411320i \(-0.998691\pi\)
0.503558 + 0.863961i \(0.332024\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 275521. 1.12672
\(144\) 0 0
\(145\) −318462. −1.25788
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −171449. + 296958.i −0.632657 + 1.09579i 0.354350 + 0.935113i \(0.384702\pi\)
−0.987006 + 0.160680i \(0.948631\pi\)
\(150\) 0 0
\(151\) −121970. 211258.i −0.435322 0.754000i 0.562000 0.827137i \(-0.310032\pi\)
−0.997322 + 0.0731373i \(0.976699\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −126451. 219019.i −0.422758 0.732238i
\(156\) 0 0
\(157\) −174438. + 302136.i −0.564797 + 0.978257i 0.432272 + 0.901743i \(0.357712\pi\)
−0.997069 + 0.0765136i \(0.975621\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −492156. −1.49637
\(162\) 0 0
\(163\) −303629. −0.895107 −0.447553 0.894257i \(-0.647705\pi\)
−0.447553 + 0.894257i \(0.647705\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16387.7 28384.4i 0.0454703 0.0787568i −0.842395 0.538861i \(-0.818855\pi\)
0.887865 + 0.460104i \(0.152188\pi\)
\(168\) 0 0
\(169\) 34126.4 + 59108.7i 0.0919123 + 0.159197i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −177651. 307701.i −0.451287 0.781652i 0.547179 0.837015i \(-0.315702\pi\)
−0.998466 + 0.0553636i \(0.982368\pi\)
\(174\) 0 0
\(175\) −314583. + 544873.i −0.776497 + 1.34493i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −459272. −1.07137 −0.535683 0.844419i \(-0.679946\pi\)
−0.535683 + 0.844419i \(0.679946\pi\)
\(180\) 0 0
\(181\) −190088. −0.431279 −0.215640 0.976473i \(-0.569184\pi\)
−0.215640 + 0.976473i \(0.569184\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 389680. 674945.i 0.837103 1.44990i
\(186\) 0 0
\(187\) −188598. 326661.i −0.394396 0.683113i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 344280. + 596310.i 0.682854 + 1.18274i 0.974106 + 0.226092i \(0.0725948\pi\)
−0.291252 + 0.956646i \(0.594072\pi\)
\(192\) 0 0
\(193\) −172138. + 298152.i −0.332648 + 0.576163i −0.983030 0.183444i \(-0.941275\pi\)
0.650382 + 0.759607i \(0.274609\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 596238. 1.09460 0.547298 0.836938i \(-0.315656\pi\)
0.547298 + 0.836938i \(0.315656\pi\)
\(198\) 0 0
\(199\) 49436.6 0.0884945 0.0442473 0.999021i \(-0.485911\pi\)
0.0442473 + 0.999021i \(0.485911\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 350433. 606968.i 0.596849 1.03377i
\(204\) 0 0
\(205\) 90696.5 + 157091.i 0.150732 + 0.261076i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 643351. + 1.11432e6i 1.01878 + 1.76459i
\(210\) 0 0
\(211\) −75999.1 + 131634.i −0.117518 + 0.203546i −0.918783 0.394762i \(-0.870827\pi\)
0.801266 + 0.598309i \(0.204160\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.16372e6 −1.71693
\(216\) 0 0
\(217\) 556580. 0.802377
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −207435. + 359288.i −0.285694 + 0.494836i
\(222\) 0 0
\(223\) −281057. 486805.i −0.378471 0.655531i 0.612369 0.790572i \(-0.290217\pi\)
−0.990840 + 0.135041i \(0.956883\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 630493. + 1.09205e6i 0.812111 + 1.40662i 0.911384 + 0.411558i \(0.135015\pi\)
−0.0992724 + 0.995060i \(0.531652\pi\)
\(228\) 0 0
\(229\) −69803.7 + 120904.i −0.0879609 + 0.152353i −0.906649 0.421886i \(-0.861368\pi\)
0.818688 + 0.574238i \(0.194702\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.18799e6 1.43358 0.716790 0.697289i \(-0.245610\pi\)
0.716790 + 0.697289i \(0.245610\pi\)
\(234\) 0 0
\(235\) −527181. −0.622716
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 164952. 285705.i 0.186794 0.323536i −0.757386 0.652968i \(-0.773524\pi\)
0.944179 + 0.329432i \(0.106857\pi\)
\(240\) 0 0
\(241\) −84372.3 146137.i −0.0935745 0.162076i 0.815438 0.578844i \(-0.196496\pi\)
−0.909013 + 0.416768i \(0.863163\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −624263. 1.08126e6i −0.664435 1.15083i
\(246\) 0 0
\(247\) 707609. 1.22561e6i 0.737991 1.27824i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −224796. −0.225218 −0.112609 0.993639i \(-0.535921\pi\)
−0.112609 + 0.993639i \(0.535921\pi\)
\(252\) 0 0
\(253\) 1.37410e6 1.34964
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 347968. 602698.i 0.328629 0.569203i −0.653611 0.756831i \(-0.726747\pi\)
0.982240 + 0.187628i \(0.0600799\pi\)
\(258\) 0 0
\(259\) 857600. + 1.48541e6i 0.794393 + 1.37593i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 241366. + 418057.i 0.215172 + 0.372689i 0.953326 0.301944i \(-0.0976354\pi\)
−0.738154 + 0.674633i \(0.764302\pi\)
\(264\) 0 0
\(265\) 557644. 965867.i 0.487800 0.844895i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.23733e6 −1.88516 −0.942581 0.333978i \(-0.891609\pi\)
−0.942581 + 0.333978i \(0.891609\pi\)
\(270\) 0 0
\(271\) 1.74480e6 1.44318 0.721592 0.692318i \(-0.243411\pi\)
0.721592 + 0.692318i \(0.243411\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 878315. 1.52129e6i 0.700356 1.21305i
\(276\) 0 0
\(277\) 378971. + 656397.i 0.296761 + 0.514005i 0.975393 0.220474i \(-0.0707603\pi\)
−0.678632 + 0.734478i \(0.737427\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 215216. + 372764.i 0.162595 + 0.281623i 0.935799 0.352535i \(-0.114680\pi\)
−0.773203 + 0.634158i \(0.781347\pi\)
\(282\) 0 0
\(283\) 478649. 829044.i 0.355264 0.615335i −0.631899 0.775051i \(-0.717724\pi\)
0.987163 + 0.159716i \(0.0510577\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −399206. −0.286083
\(288\) 0 0
\(289\) −851890. −0.599983
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −283147. + 490425.i −0.192683 + 0.333737i −0.946138 0.323762i \(-0.895052\pi\)
0.753456 + 0.657499i \(0.228386\pi\)
\(294\) 0 0
\(295\) −232487. 402680.i −0.155541 0.269404i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −755673. 1.30886e6i −0.488828 0.846674i
\(300\) 0 0
\(301\) 1.28055e6 2.21797e6i 0.814665 1.41104i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −961090. −0.591581
\(306\) 0 0
\(307\) 2.00565e6 1.21453 0.607265 0.794499i \(-0.292267\pi\)
0.607265 + 0.794499i \(0.292267\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.05835e6 1.83312e6i 0.620481 1.07471i −0.368915 0.929463i \(-0.620271\pi\)
0.989396 0.145242i \(-0.0463961\pi\)
\(312\) 0 0
\(313\) −606669. 1.05078e6i −0.350018 0.606249i 0.636234 0.771496i \(-0.280491\pi\)
−0.986252 + 0.165247i \(0.947158\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.28378e6 2.22357e6i −0.717533 1.24280i −0.961974 0.273140i \(-0.911938\pi\)
0.244441 0.969664i \(-0.421396\pi\)
\(318\) 0 0
\(319\) −978409. + 1.69465e6i −0.538324 + 0.932404i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.93747e6 −1.03330
\(324\) 0 0
\(325\) −1.93208e6 −1.01465
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 580105. 1.00477e6i 0.295473 0.511773i
\(330\) 0 0
\(331\) 721129. + 1.24903e6i 0.361778 + 0.626619i 0.988254 0.152823i \(-0.0488363\pi\)
−0.626475 + 0.779441i \(0.715503\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −144309. 249950.i −0.0702555 0.121686i
\(336\) 0 0
\(337\) −790934. + 1.36994e6i −0.379372 + 0.657092i −0.990971 0.134076i \(-0.957193\pi\)
0.611599 + 0.791168i \(0.290527\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.55397e6 −0.723698
\(342\) 0 0
\(343\) −265129. −0.121681
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 824985. 1.42892e6i 0.367809 0.637064i −0.621414 0.783483i \(-0.713441\pi\)
0.989223 + 0.146419i \(0.0467747\pi\)
\(348\) 0 0
\(349\) −325183. 563234.i −0.142911 0.247528i 0.785681 0.618632i \(-0.212313\pi\)
−0.928591 + 0.371104i \(0.878979\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 590817. + 1.02333e6i 0.252358 + 0.437096i 0.964174 0.265269i \(-0.0854607\pi\)
−0.711817 + 0.702365i \(0.752127\pi\)
\(354\) 0 0
\(355\) 2.37964e6 4.12165e6i 1.00217 1.73580i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 985030. 0.403379 0.201690 0.979449i \(-0.435357\pi\)
0.201690 + 0.979449i \(0.435357\pi\)
\(360\) 0 0
\(361\) 4.13306e6 1.66918
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.45100e6 4.24526e6i 0.962967 1.66791i
\(366\) 0 0
\(367\) −598436. 1.03652e6i −0.231928 0.401711i 0.726448 0.687222i \(-0.241170\pi\)
−0.958375 + 0.285511i \(0.907837\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.22725e6 + 2.12566e6i 0.462913 + 0.801788i
\(372\) 0 0
\(373\) 1.23230e6 2.13441e6i 0.458611 0.794337i −0.540277 0.841487i \(-0.681681\pi\)
0.998888 + 0.0471500i \(0.0150139\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.15227e6 0.779906
\(378\) 0 0
\(379\) −5.33540e6 −1.90796 −0.953979 0.299875i \(-0.903055\pi\)
−0.953979 + 0.299875i \(0.903055\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −826117. + 1.43088e6i −0.287770 + 0.498432i −0.973277 0.229634i \(-0.926247\pi\)
0.685507 + 0.728066i \(0.259580\pi\)
\(384\) 0 0
\(385\) 3.65406e6 + 6.32902e6i 1.25639 + 2.17613i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.83443e6 + 4.90938e6i 0.949712 + 1.64495i 0.746029 + 0.665913i \(0.231958\pi\)
0.203683 + 0.979037i \(0.434709\pi\)
\(390\) 0 0
\(391\) −1.03453e6 + 1.79187e6i −0.342218 + 0.592739i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.53074e6 1.46109
\(396\) 0 0
\(397\) 418875. 0.133385 0.0666927 0.997774i \(-0.478755\pi\)
0.0666927 + 0.997774i \(0.478755\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.43256e6 2.48126e6i 0.444889 0.770570i −0.553156 0.833078i \(-0.686577\pi\)
0.998044 + 0.0625082i \(0.0199100\pi\)
\(402\) 0 0
\(403\) 854592. + 1.48020e6i 0.262118 + 0.454001i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.39442e6 4.14726e6i −0.716497 1.24101i
\(408\) 0 0
\(409\) −2.65238e6 + 4.59406e6i −0.784021 + 1.35796i 0.145561 + 0.989349i \(0.453501\pi\)
−0.929582 + 0.368615i \(0.879832\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.02331e6 0.295210
\(414\) 0 0
\(415\) 3.25658e6 0.928200
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.42136e6 + 4.19393e6i −0.673791 + 1.16704i 0.303030 + 0.952981i \(0.402002\pi\)
−0.976821 + 0.214059i \(0.931332\pi\)
\(420\) 0 0
\(421\) −2.28969e6 3.96586e6i −0.629610 1.09052i −0.987630 0.156803i \(-0.949881\pi\)
0.358019 0.933714i \(-0.383452\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.32254e6 + 2.29070e6i 0.355169 + 0.615171i
\(426\) 0 0
\(427\) 1.05757e6 1.83177e6i 0.280699 0.486185i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.09717e6 −0.803105 −0.401552 0.915836i \(-0.631529\pi\)
−0.401552 + 0.915836i \(0.631529\pi\)
\(432\) 0 0
\(433\) −992453. −0.254384 −0.127192 0.991878i \(-0.540596\pi\)
−0.127192 + 0.991878i \(0.540596\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.52904e6 6.11248e6i 0.884002 1.53114i
\(438\) 0 0
\(439\) −442686. 766755.i −0.109631 0.189887i 0.805990 0.591930i \(-0.201634\pi\)
−0.915621 + 0.402043i \(0.868300\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 270389. + 468327.i 0.0654605 + 0.113381i 0.896898 0.442237i \(-0.145815\pi\)
−0.831438 + 0.555618i \(0.812482\pi\)
\(444\) 0 0
\(445\) 4.20186e6 7.27784e6i 1.00587 1.74222i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.22193e6 −0.520132 −0.260066 0.965591i \(-0.583744\pi\)
−0.260066 + 0.965591i \(0.583744\pi\)
\(450\) 0 0
\(451\) 1.11458e6 0.258031
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.01903e6 6.96117e6i 0.910108 1.57635i
\(456\) 0 0
\(457\) 288892. + 500376.i 0.0647061 + 0.112074i 0.896564 0.442915i \(-0.146056\pi\)
−0.831857 + 0.554989i \(0.812722\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.70719e6 2.95694e6i −0.374137 0.648023i 0.616061 0.787699i \(-0.288728\pi\)
−0.990197 + 0.139675i \(0.955394\pi\)
\(462\) 0 0
\(463\) −927775. + 1.60695e6i −0.201136 + 0.348378i −0.948895 0.315593i \(-0.897797\pi\)
0.747759 + 0.663971i \(0.231130\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.73338e6 −0.792154 −0.396077 0.918217i \(-0.629629\pi\)
−0.396077 + 0.918217i \(0.629629\pi\)
\(468\) 0 0
\(469\) 635184. 0.133342
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.57528e6 + 6.19258e6i −0.734781 + 1.27268i
\(474\) 0 0
\(475\) −4.51148e6 7.81411e6i −0.917455 1.58908i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.99246e6 + 3.45105e6i 0.396782 + 0.687246i 0.993327 0.115334i \(-0.0367937\pi\)
−0.596545 + 0.802579i \(0.703460\pi\)
\(480\) 0 0
\(481\) −2.63358e6 + 4.56149e6i −0.519019 + 0.898967i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.35209e7 −2.61006
\(486\) 0 0
\(487\) −4.19007e6 −0.800570 −0.400285 0.916391i \(-0.631089\pi\)
−0.400285 + 0.916391i \(0.631089\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.09606e6 + 3.63049e6i −0.392374 + 0.679612i −0.992762 0.120097i \(-0.961680\pi\)
0.600388 + 0.799709i \(0.295013\pi\)
\(492\) 0 0
\(493\) −1.47325e6 2.55175e6i −0.272998 0.472847i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.23706e6 + 9.07086e6i 0.951036 + 1.64724i
\(498\) 0 0
\(499\) −1.85169e6 + 3.20722e6i −0.332903 + 0.576604i −0.983080 0.183178i \(-0.941361\pi\)
0.650177 + 0.759783i \(0.274695\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.03820e6 0.711653 0.355827 0.934552i \(-0.384199\pi\)
0.355827 + 0.934552i \(0.384199\pi\)
\(504\) 0 0
\(505\) −1.34439e7 −2.34583
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 83980.3 145458.i 0.0143676 0.0248853i −0.858752 0.512391i \(-0.828760\pi\)
0.873120 + 0.487506i \(0.162093\pi\)
\(510\) 0 0
\(511\) 5.39412e6 + 9.34289e6i 0.913836 + 1.58281i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.96741e6 + 5.13970e6i 0.493014 + 0.853925i
\(516\) 0 0
\(517\) −1.61965e6 + 2.80532e6i −0.266499 + 0.461590i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.98731e6 −0.643555 −0.321777 0.946815i \(-0.604280\pi\)
−0.321777 + 0.946815i \(0.604280\pi\)
\(522\) 0 0
\(523\) 4.41694e6 0.706102 0.353051 0.935604i \(-0.385144\pi\)
0.353051 + 0.935604i \(0.385144\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.16996e6 2.02643e6i 0.183503 0.317837i
\(528\) 0 0
\(529\) −550576. 953626.i −0.0855418 0.148163i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −612955. 1.06167e6i −0.0934567 0.161872i
\(534\) 0 0
\(535\) −5.01040e6 + 8.67827e6i −0.756812 + 1.31084i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.67167e6 −1.13741
\(540\) 0 0
\(541\) 9.24640e6 1.35825 0.679125 0.734023i \(-0.262360\pi\)
0.679125 + 0.734023i \(0.262360\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −988628. + 1.71235e6i −0.142574 + 0.246946i
\(546\) 0 0
\(547\) 762888. + 1.32136e6i 0.109017 + 0.188822i 0.915372 0.402609i \(-0.131897\pi\)
−0.806356 + 0.591431i \(0.798563\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.02561e6 + 8.70461e6i 0.705196 + 1.22144i
\(552\) 0 0
\(553\) −4.98559e6 + 8.63529e6i −0.693272 + 1.20078i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.86988e6 −0.801662 −0.400831 0.916152i \(-0.631279\pi\)
−0.400831 + 0.916152i \(0.631279\pi\)
\(558\) 0 0
\(559\) 7.86477e6 1.06453
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 106686. 184785.i 0.0141852 0.0245695i −0.858846 0.512234i \(-0.828818\pi\)
0.873031 + 0.487665i \(0.162151\pi\)
\(564\) 0 0
\(565\) −8.20129e6 1.42050e7i −1.08084 1.87207i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.64514e6 + 9.77767e6i 0.730961 + 1.26606i 0.956473 + 0.291821i \(0.0942612\pi\)
−0.225512 + 0.974240i \(0.572405\pi\)
\(570\) 0 0
\(571\) −232342. + 402427.i −0.0298220 + 0.0516532i −0.880551 0.473951i \(-0.842827\pi\)
0.850729 + 0.525604i \(0.176161\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9.63583e6 −1.21540
\(576\) 0 0
\(577\) 8.78227e6 1.09816 0.549082 0.835769i \(-0.314978\pi\)
0.549082 + 0.835769i \(0.314978\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.58351e6 + 6.20682e6i −0.440421 + 0.762832i
\(582\) 0 0
\(583\) −3.42649e6 5.93485e6i −0.417521 0.723167i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.02083e6 8.69633e6i −0.601423 1.04170i −0.992606 0.121382i \(-0.961267\pi\)
0.391183 0.920313i \(-0.372066\pi\)
\(588\) 0 0
\(589\) −3.99100e6 + 6.91262e6i −0.474017 + 0.821021i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.15945e7 1.35399 0.676995 0.735988i \(-0.263282\pi\)
0.676995 + 0.735988i \(0.263282\pi\)
\(594\) 0 0
\(595\) −1.10043e7 −1.27430
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 744422. 1.28938e6i 0.0847720 0.146829i −0.820522 0.571615i \(-0.806317\pi\)
0.905294 + 0.424786i \(0.139650\pi\)
\(600\) 0 0
\(601\) 4.75503e6 + 8.23596e6i 0.536992 + 0.930097i 0.999064 + 0.0432545i \(0.0137726\pi\)
−0.462073 + 0.886842i \(0.652894\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.64303e6 6.30991e6i −0.404645 0.700865i
\(606\) 0 0
\(607\) 3.70203e6 6.41210e6i 0.407819 0.706364i −0.586826 0.809713i \(-0.699623\pi\)
0.994645 + 0.103349i \(0.0329560\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.56285e6 0.386096
\(612\) 0 0
\(613\) −7.14368e6 −0.767840 −0.383920 0.923366i \(-0.625426\pi\)
−0.383920 + 0.923366i \(0.625426\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −502021. + 869525.i −0.0530895 + 0.0919537i −0.891349 0.453318i \(-0.850240\pi\)
0.838259 + 0.545272i \(0.183574\pi\)
\(618\) 0 0
\(619\) −3.74328e6 6.48355e6i −0.392668 0.680121i 0.600132 0.799901i \(-0.295115\pi\)
−0.992801 + 0.119779i \(0.961781\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.24738e6 + 1.60169e7i 0.954550 + 1.65333i
\(624\) 0 0
\(625\) 4.20763e6 7.28783e6i 0.430861 0.746274i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.21086e6 0.726709
\(630\) 0 0
\(631\) −1.34648e7 −1.34626 −0.673128 0.739526i \(-0.735050\pi\)
−0.673128 + 0.739526i \(0.735050\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.24226e6 + 7.34781e6i −0.417506 + 0.723142i
\(636\) 0 0
\(637\) 4.21896e6 + 7.30746e6i 0.411962 + 0.713539i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.13083e6 1.40830e7i −0.781610 1.35379i −0.931004 0.365010i \(-0.881065\pi\)
0.149394 0.988778i \(-0.452268\pi\)
\(642\) 0 0
\(643\) −5.68437e6 + 9.84561e6i −0.542194 + 0.939108i 0.456584 + 0.889680i \(0.349073\pi\)
−0.998778 + 0.0494272i \(0.984260\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.18311e7 −1.11113 −0.555563 0.831474i \(-0.687497\pi\)
−0.555563 + 0.831474i \(0.687497\pi\)
\(648\) 0 0
\(649\) −2.85707e6 −0.266262
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.67300e6 + 4.62977e6i −0.245310 + 0.424890i −0.962219 0.272278i \(-0.912223\pi\)
0.716909 + 0.697167i \(0.245556\pi\)
\(654\) 0 0
\(655\) −7.28401e6 1.26163e7i −0.663387 1.14902i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.18681e6 + 1.07159e7i 0.554949 + 0.961200i 0.997907 + 0.0646581i \(0.0205957\pi\)
−0.442958 + 0.896542i \(0.646071\pi\)
\(660\) 0 0
\(661\) 1.04915e7 1.81718e7i 0.933974 1.61769i 0.157520 0.987516i \(-0.449650\pi\)
0.776454 0.630174i \(-0.217016\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.75383e7 3.29170
\(666\) 0 0
\(667\) 1.07339e7 0.934210
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.95275e6 + 5.11431e6i −0.253175 + 0.438511i
\(672\) 0 0
\(673\) 6.30874e6 + 1.09271e7i 0.536915 + 0.929963i 0.999068 + 0.0431633i \(0.0137436\pi\)
−0.462154 + 0.886800i \(0.652923\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.99728e6 + 6.92349e6i 0.335192 + 0.580569i 0.983522 0.180791i \(-0.0578656\pi\)
−0.648330 + 0.761359i \(0.724532\pi\)
\(678\) 0 0
\(679\) 1.48782e7 2.57698e7i 1.23845 2.14505i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.23985e7 1.01699 0.508496 0.861064i \(-0.330202\pi\)
0.508496 + 0.861064i \(0.330202\pi\)
\(684\) 0 0
\(685\) −1.10209e7 −0.897412
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.76873e6 + 6.52763e6i −0.302445 + 0.523851i
\(690\) 0 0
\(691\) 1.03172e7 + 1.78699e7i 0.821990 + 1.42373i 0.904198 + 0.427113i \(0.140470\pi\)
−0.0822079 + 0.996615i \(0.526197\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.21108e6 1.59541e7i −0.723350 1.25288i
\(696\) 0 0
\(697\) −839150. + 1.45345e6i −0.0654271 + 0.113323i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.28362e7 −1.75521 −0.877603 0.479388i \(-0.840859\pi\)
−0.877603 + 0.479388i \(0.840859\pi\)
\(702\) 0 0
\(703\) −2.45980e7 −1.87720
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.47935e7 2.56231e7i 1.11307 1.92790i
\(708\) 0 0
\(709\) 8.91237e6 + 1.54367e7i 0.665852 + 1.15329i 0.979054 + 0.203603i \(0.0652651\pi\)
−0.313202 + 0.949687i \(0.601402\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.26209e6 + 7.38215e6i 0.313978 + 0.543825i
\(714\) 0 0
\(715\) −1.12211e7 + 1.94356e7i −0.820865 + 1.42178i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.10161e7 −0.794702 −0.397351 0.917667i \(-0.630071\pi\)
−0.397351 + 0.917667i \(0.630071\pi\)
\(720\) 0 0
\(721\) −1.30612e7 −0.935720
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.86107e6 1.18837e7i 0.484782 0.839667i
\(726\) 0 0
\(727\) 1.30016e7 + 2.25195e7i 0.912351 + 1.58024i 0.810734 + 0.585414i \(0.199068\pi\)
0.101616 + 0.994824i \(0.467599\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.38353e6 9.32456e6i −0.372627 0.645409i
\(732\) 0 0
\(733\) −1.33355e7 + 2.30978e7i −0.916750 + 1.58786i −0.112431 + 0.993660i \(0.535864\pi\)
−0.804319 + 0.594198i \(0.797470\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.77343e6 −0.120267
\(738\) 0 0
\(739\) −1.31065e6 −0.0882829 −0.0441414 0.999025i \(-0.514055\pi\)
−0.0441414 + 0.999025i \(0.514055\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.02502e7 + 1.77539e7i −0.681178 + 1.17983i 0.293444 + 0.955976i \(0.405199\pi\)
−0.974622 + 0.223858i \(0.928135\pi\)
\(744\) 0 0
\(745\) −1.39652e7 2.41884e7i −0.921839 1.59667i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.10268e7 1.90990e7i −0.718199 1.24396i
\(750\) 0 0
\(751\) −6.78701e6 + 1.17554e7i −0.439115 + 0.760570i −0.997621 0.0689306i \(-0.978041\pi\)
0.558506 + 0.829500i \(0.311375\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.98699e7 1.26861
\(756\) 0 0
\(757\) −470115. −0.0298171 −0.0149085 0.999889i \(-0.504746\pi\)
−0.0149085 + 0.999889i \(0.504746\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.02690e6 + 1.77865e6i −0.0642789 + 0.111334i −0.896374 0.443299i \(-0.853808\pi\)
0.832095 + 0.554633i \(0.187141\pi\)
\(762\) 0 0
\(763\) −2.17575e6 3.76852e6i −0.135300 0.234347i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.57122e6 + 2.72143e6i 0.0964381 + 0.167036i
\(768\) 0 0
\(769\) −1.25600e6 + 2.17546e6i −0.0765905 + 0.132659i −0.901777 0.432202i \(-0.857737\pi\)
0.825186 + 0.564861i \(0.191070\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.03339e6 0.483560 0.241780 0.970331i \(-0.422269\pi\)
0.241780 + 0.970331i \(0.422269\pi\)
\(774\) 0 0
\(775\) 1.08972e7 0.651719
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.86254e6 4.95806e6i 0.169008 0.292731i
\(780\) 0 0
\(781\) −1.46219e7 2.53258e7i −0.857780 1.48572i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.42087e7 2.46102e7i −0.822962 1.42541i
\(786\) 0 0
\(787\) 1.57883e7 2.73461e7i 0.908653 1.57383i 0.0927148 0.995693i \(-0.470446\pi\)
0.815938 0.578140i \(-0.196221\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.60985e7 2.05139
\(792\) 0 0
\(793\) 6.49534e6 0.366791
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.33523e7 + 2.31268e7i −0.744577 + 1.28965i 0.205815 + 0.978591i \(0.434016\pi\)
−0.950392 + 0.311055i \(0.899318\pi\)
\(798\) 0 0
\(799\) −2.43882e6 4.22416e6i −0.135149 0.234085i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.50604e7 2.60853e7i