Properties

Label 432.6.i.c.145.2
Level $432$
Weight $6$
Character 432.145
Analytic conductor $69.286$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,6,Mod(145,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.145"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.2858101592\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 40x^{6} + 568x^{4} + 3363x^{2} + 7056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 145.2
Root \(2.56934i\) of defining polynomial
Character \(\chi\) \(=\) 432.145
Dual form 432.6.i.c.289.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-23.6560 + 40.9735i) q^{5} +(-1.01546 - 1.75882i) q^{7} +(-91.8836 - 159.147i) q^{11} +(-364.672 + 631.630i) q^{13} -1212.88 q^{17} +473.092 q^{19} +(1806.42 - 3128.81i) q^{23} +(443.283 + 767.788i) q^{25} +(-663.121 - 1148.56i) q^{29} +(-2590.41 + 4486.72i) q^{31} +96.0867 q^{35} -14715.2 q^{37} +(3159.83 - 5472.98i) q^{41} +(3067.89 + 5313.75i) q^{43} +(-1584.17 - 2743.86i) q^{47} +(8401.44 - 14551.7i) q^{49} +12265.0 q^{53} +8694.41 q^{55} +(14773.5 - 25588.5i) q^{59} +(20153.6 + 34907.1i) q^{61} +(-17253.4 - 29883.8i) q^{65} +(11748.9 - 20349.7i) q^{67} -123.786 q^{71} +35217.6 q^{73} +(-186.607 + 323.214i) q^{77} +(-24072.8 - 41695.3i) q^{79} +(-5167.97 - 8951.18i) q^{83} +(28692.0 - 49696.1i) q^{85} +42585.7 q^{89} +1481.23 q^{91} +(-11191.5 + 19384.2i) q^{95} +(-49347.3 - 85472.1i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 78 q^{5} - 28 q^{7} + 444 q^{11} - 182 q^{13} + 4356 q^{17} - 952 q^{19} + 8844 q^{23} - 1654 q^{25} - 12018 q^{29} - 1132 q^{31} - 16224 q^{35} - 15176 q^{37} - 1248 q^{41} + 6092 q^{43} - 60 q^{47}+ \cdots + 33976 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −23.6560 + 40.9735i −0.423172 + 0.732956i −0.996248 0.0865467i \(-0.972417\pi\)
0.573076 + 0.819503i \(0.305750\pi\)
\(6\) 0 0
\(7\) −1.01546 1.75882i −0.00783278 0.0135668i 0.862082 0.506768i \(-0.169160\pi\)
−0.869915 + 0.493201i \(0.835827\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −91.8836 159.147i −0.228958 0.396567i 0.728541 0.685002i \(-0.240199\pi\)
−0.957500 + 0.288435i \(0.906865\pi\)
\(12\) 0 0
\(13\) −364.672 + 631.630i −0.598472 + 1.03658i 0.394574 + 0.918864i \(0.370892\pi\)
−0.993047 + 0.117720i \(0.962441\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1212.88 −1.01788 −0.508940 0.860802i \(-0.669963\pi\)
−0.508940 + 0.860802i \(0.669963\pi\)
\(18\) 0 0
\(19\) 473.092 0.300650 0.150325 0.988637i \(-0.451968\pi\)
0.150325 + 0.988637i \(0.451968\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1806.42 3128.81i 0.712031 1.23327i −0.252063 0.967711i \(-0.581109\pi\)
0.964094 0.265563i \(-0.0855578\pi\)
\(24\) 0 0
\(25\) 443.283 + 767.788i 0.141850 + 0.245692i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −663.121 1148.56i −0.146419 0.253605i 0.783482 0.621414i \(-0.213441\pi\)
−0.929901 + 0.367809i \(0.880108\pi\)
\(30\) 0 0
\(31\) −2590.41 + 4486.72i −0.484133 + 0.838542i −0.999834 0.0182261i \(-0.994198\pi\)
0.515701 + 0.856769i \(0.327531\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 96.0867 0.0132585
\(36\) 0 0
\(37\) −14715.2 −1.76710 −0.883552 0.468334i \(-0.844854\pi\)
−0.883552 + 0.468334i \(0.844854\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3159.83 5472.98i 0.293564 0.508469i −0.681085 0.732204i \(-0.738492\pi\)
0.974650 + 0.223735i \(0.0718251\pi\)
\(42\) 0 0
\(43\) 3067.89 + 5313.75i 0.253028 + 0.438258i 0.964358 0.264600i \(-0.0852401\pi\)
−0.711330 + 0.702858i \(0.751907\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1584.17 2743.86i −0.104606 0.181183i 0.808971 0.587848i \(-0.200025\pi\)
−0.913577 + 0.406665i \(0.866692\pi\)
\(48\) 0 0
\(49\) 8401.44 14551.7i 0.499877 0.865813i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12265.0 0.599763 0.299881 0.953977i \(-0.403053\pi\)
0.299881 + 0.953977i \(0.403053\pi\)
\(54\) 0 0
\(55\) 8694.41 0.387555
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14773.5 25588.5i 0.552528 0.957006i −0.445563 0.895250i \(-0.646997\pi\)
0.998091 0.0617560i \(-0.0196701\pi\)
\(60\) 0 0
\(61\) 20153.6 + 34907.1i 0.693472 + 1.20113i 0.970693 + 0.240323i \(0.0772534\pi\)
−0.277221 + 0.960806i \(0.589413\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −17253.4 29883.8i −0.506514 0.877308i
\(66\) 0 0
\(67\) 11748.9 20349.7i 0.319750 0.553823i −0.660686 0.750662i \(-0.729734\pi\)
0.980436 + 0.196840i \(0.0630678\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −123.786 −0.00291425 −0.00145713 0.999999i \(-0.500464\pi\)
−0.00145713 + 0.999999i \(0.500464\pi\)
\(72\) 0 0
\(73\) 35217.6 0.773486 0.386743 0.922188i \(-0.373600\pi\)
0.386743 + 0.922188i \(0.373600\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −186.607 + 323.214i −0.00358676 + 0.00621245i
\(78\) 0 0
\(79\) −24072.8 41695.3i −0.433969 0.751656i 0.563242 0.826292i \(-0.309554\pi\)
−0.997211 + 0.0746359i \(0.976221\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5167.97 8951.18i −0.0823426 0.142622i 0.821913 0.569613i \(-0.192907\pi\)
−0.904256 + 0.426991i \(0.859574\pi\)
\(84\) 0 0
\(85\) 28692.0 49696.1i 0.430739 0.746062i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 42585.7 0.569887 0.284944 0.958544i \(-0.408025\pi\)
0.284944 + 0.958544i \(0.408025\pi\)
\(90\) 0 0
\(91\) 1481.23 0.0187508
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −11191.5 + 19384.2i −0.127227 + 0.220363i
\(96\) 0 0
\(97\) −49347.3 85472.1i −0.532518 0.922348i −0.999279 0.0379646i \(-0.987913\pi\)
0.466761 0.884383i \(-0.345421\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −37818.9 65504.3i −0.368898 0.638949i 0.620496 0.784210i \(-0.286931\pi\)
−0.989393 + 0.145260i \(0.953598\pi\)
\(102\) 0 0
\(103\) 73869.1 127945.i 0.686072 1.18831i −0.287026 0.957923i \(-0.592667\pi\)
0.973099 0.230389i \(-0.0739999\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −209139. −1.76594 −0.882969 0.469430i \(-0.844459\pi\)
−0.882969 + 0.469430i \(0.844459\pi\)
\(108\) 0 0
\(109\) 115605. 0.931988 0.465994 0.884788i \(-0.345697\pi\)
0.465994 + 0.884788i \(0.345697\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 23415.8 40557.3i 0.172509 0.298795i −0.766787 0.641901i \(-0.778146\pi\)
0.939296 + 0.343107i \(0.111479\pi\)
\(114\) 0 0
\(115\) 85465.5 + 148031.i 0.602623 + 1.04377i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1231.63 + 2133.25i 0.00797283 + 0.0138094i
\(120\) 0 0
\(121\) 63640.3 110228.i 0.395156 0.684431i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −189796. −1.08645
\(126\) 0 0
\(127\) 93444.5 0.514096 0.257048 0.966399i \(-0.417250\pi\)
0.257048 + 0.966399i \(0.417250\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 183869. 318470.i 0.936115 1.62140i 0.163481 0.986546i \(-0.447728\pi\)
0.772634 0.634852i \(-0.218939\pi\)
\(132\) 0 0
\(133\) −480.404 832.083i −0.00235493 0.00407885i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −76809.2 133037.i −0.349632 0.605581i 0.636552 0.771234i \(-0.280360\pi\)
−0.986184 + 0.165653i \(0.947027\pi\)
\(138\) 0 0
\(139\) 122213. 211679.i 0.536513 0.929268i −0.462575 0.886580i \(-0.653075\pi\)
0.999088 0.0426878i \(-0.0135921\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 134029. 0.548101
\(144\) 0 0
\(145\) 62747.3 0.247842
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4924.61 + 8529.67i −0.0181721 + 0.0314751i −0.874968 0.484180i \(-0.839118\pi\)
0.856796 + 0.515655i \(0.172451\pi\)
\(150\) 0 0
\(151\) −109892. 190339.i −0.392216 0.679338i 0.600526 0.799606i \(-0.294958\pi\)
−0.992741 + 0.120268i \(0.961625\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −122558. 212276.i −0.409743 0.709696i
\(156\) 0 0
\(157\) −15290.5 + 26483.9i −0.0495077 + 0.0857498i −0.889717 0.456512i \(-0.849099\pi\)
0.840210 + 0.542262i \(0.182432\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7337.35 −0.0223087
\(162\) 0 0
\(163\) 272367. 0.802945 0.401472 0.915871i \(-0.368499\pi\)
0.401472 + 0.915871i \(0.368499\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 99337.8 172058.i 0.275628 0.477402i −0.694665 0.719333i \(-0.744448\pi\)
0.970293 + 0.241931i \(0.0777809\pi\)
\(168\) 0 0
\(169\) −80324.9 139127.i −0.216338 0.374709i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 33895.9 + 58709.5i 0.0861058 + 0.149140i 0.905862 0.423573i \(-0.139224\pi\)
−0.819756 + 0.572713i \(0.805891\pi\)
\(174\) 0 0
\(175\) 900.268 1559.31i 0.00222217 0.00384891i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21849.0 0.0509681 0.0254840 0.999675i \(-0.491887\pi\)
0.0254840 + 0.999675i \(0.491887\pi\)
\(180\) 0 0
\(181\) 188080. 0.426722 0.213361 0.976973i \(-0.431559\pi\)
0.213361 + 0.976973i \(0.431559\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 348104. 602933.i 0.747789 1.29521i
\(186\) 0 0
\(187\) 111444. + 193027.i 0.233052 + 0.403658i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 123200. + 213389.i 0.244359 + 0.423241i 0.961951 0.273222i \(-0.0880893\pi\)
−0.717592 + 0.696463i \(0.754756\pi\)
\(192\) 0 0
\(193\) 113565. 196701.i 0.219459 0.380114i −0.735184 0.677868i \(-0.762904\pi\)
0.954643 + 0.297754i \(0.0962375\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 503086. 0.923584 0.461792 0.886988i \(-0.347207\pi\)
0.461792 + 0.886988i \(0.347207\pi\)
\(198\) 0 0
\(199\) −4126.65 −0.00738694 −0.00369347 0.999993i \(-0.501176\pi\)
−0.00369347 + 0.999993i \(0.501176\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1346.74 + 2332.62i −0.00229374 + 0.00397287i
\(204\) 0 0
\(205\) 149498. + 258938.i 0.248457 + 0.430340i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −43469.3 75291.1i −0.0688363 0.119228i
\(210\) 0 0
\(211\) −494954. + 857285.i −0.765347 + 1.32562i 0.174716 + 0.984619i \(0.444099\pi\)
−0.940063 + 0.341001i \(0.889234\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −290297. −0.428298
\(216\) 0 0
\(217\) 10521.8 0.0151684
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 442305. 766094.i 0.609173 1.05512i
\(222\) 0 0
\(223\) −523910. 907438.i −0.705496 1.22195i −0.966512 0.256620i \(-0.917391\pi\)
0.261017 0.965334i \(-0.415942\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −355537. 615808.i −0.457952 0.793196i 0.540900 0.841087i \(-0.318084\pi\)
−0.998853 + 0.0478902i \(0.984750\pi\)
\(228\) 0 0
\(229\) −147071. + 254734.i −0.185327 + 0.320995i −0.943687 0.330841i \(-0.892668\pi\)
0.758360 + 0.651836i \(0.226001\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.56670e6 −1.89059 −0.945294 0.326218i \(-0.894226\pi\)
−0.945294 + 0.326218i \(0.894226\pi\)
\(234\) 0 0
\(235\) 149901. 0.177066
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −260961. + 451998.i −0.295516 + 0.511849i −0.975105 0.221744i \(-0.928825\pi\)
0.679589 + 0.733593i \(0.262158\pi\)
\(240\) 0 0
\(241\) 213855. + 370407.i 0.237179 + 0.410806i 0.959904 0.280330i \(-0.0904439\pi\)
−0.722725 + 0.691136i \(0.757111\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 397490. + 688472.i 0.423068 + 0.732776i
\(246\) 0 0
\(247\) −172523. + 298819.i −0.179931 + 0.311649i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −231914. −0.232350 −0.116175 0.993229i \(-0.537063\pi\)
−0.116175 + 0.993229i \(0.537063\pi\)
\(252\) 0 0
\(253\) −663921. −0.652101
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −707127. + 1.22478e6i −0.667828 + 1.15671i 0.310682 + 0.950514i \(0.399443\pi\)
−0.978510 + 0.206199i \(0.933891\pi\)
\(258\) 0 0
\(259\) 14942.6 + 25881.4i 0.0138413 + 0.0239739i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 615838. + 1.06666e6i 0.549006 + 0.950907i 0.998343 + 0.0575445i \(0.0183271\pi\)
−0.449336 + 0.893363i \(0.648340\pi\)
\(264\) 0 0
\(265\) −290143. + 502542.i −0.253803 + 0.439600i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −119245. −0.100475 −0.0502377 0.998737i \(-0.515998\pi\)
−0.0502377 + 0.998737i \(0.515998\pi\)
\(270\) 0 0
\(271\) −50141.4 −0.0414738 −0.0207369 0.999785i \(-0.506601\pi\)
−0.0207369 + 0.999785i \(0.506601\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 81460.8 141094.i 0.0649557 0.112506i
\(276\) 0 0
\(277\) −235820. 408452.i −0.184663 0.319846i 0.758800 0.651324i \(-0.225786\pi\)
−0.943463 + 0.331478i \(0.892453\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.03652e6 + 1.79530e6i 0.783087 + 1.35635i 0.930135 + 0.367217i \(0.119689\pi\)
−0.147048 + 0.989129i \(0.546977\pi\)
\(282\) 0 0
\(283\) 758046. 1.31297e6i 0.562639 0.974519i −0.434626 0.900611i \(-0.643120\pi\)
0.997265 0.0739079i \(-0.0235471\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12834.7 −0.00919770
\(288\) 0 0
\(289\) 51229.6 0.0360808
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 385100. 667013.i 0.262062 0.453905i −0.704727 0.709478i \(-0.748931\pi\)
0.966790 + 0.255573i \(0.0822641\pi\)
\(294\) 0 0
\(295\) 698967. + 1.21065e6i 0.467629 + 0.809957i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.31750e6 + 2.28198e6i 0.852262 + 1.47616i
\(300\) 0 0
\(301\) 6230.62 10791.8i 0.00396383 0.00686556i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.90702e6 −1.17383
\(306\) 0 0
\(307\) −2.13559e6 −1.29322 −0.646610 0.762821i \(-0.723814\pi\)
−0.646610 + 0.762821i \(0.723814\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 301713. 522582.i 0.176886 0.306375i −0.763927 0.645303i \(-0.776731\pi\)
0.940812 + 0.338928i \(0.110064\pi\)
\(312\) 0 0
\(313\) −1.08619e6 1.88133e6i −0.626677 1.08544i −0.988214 0.153079i \(-0.951081\pi\)
0.361537 0.932358i \(-0.382252\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.60049e6 + 2.77213e6i 0.894550 + 1.54941i 0.834361 + 0.551218i \(0.185837\pi\)
0.0601886 + 0.998187i \(0.480830\pi\)
\(318\) 0 0
\(319\) −121860. + 211067.i −0.0670477 + 0.116130i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −573805. −0.306026
\(324\) 0 0
\(325\) −646611. −0.339574
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3217.31 + 5572.54i −0.00163871 + 0.00283834i
\(330\) 0 0
\(331\) 1.30413e6 + 2.25883e6i 0.654263 + 1.13322i 0.982078 + 0.188475i \(0.0603545\pi\)
−0.327815 + 0.944742i \(0.606312\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 555865. + 962787.i 0.270618 + 0.468725i
\(336\) 0 0
\(337\) 414934. 718687.i 0.199024 0.344719i −0.749189 0.662357i \(-0.769556\pi\)
0.948212 + 0.317638i \(0.102890\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 952065. 0.443385
\(342\) 0 0
\(343\) −68258.7 −0.0313273
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.15930e6 + 2.00796e6i −0.516858 + 0.895224i 0.482951 + 0.875648i \(0.339565\pi\)
−0.999808 + 0.0195761i \(0.993768\pi\)
\(348\) 0 0
\(349\) 1.56680e6 + 2.71377e6i 0.688572 + 1.19264i 0.972300 + 0.233737i \(0.0750955\pi\)
−0.283728 + 0.958905i \(0.591571\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.33508e6 2.31243e6i −0.570259 0.987717i −0.996539 0.0831261i \(-0.973510\pi\)
0.426280 0.904591i \(-0.359824\pi\)
\(354\) 0 0
\(355\) 2928.30 5071.96i 0.00123323 0.00213602i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.05907e6 −0.843210 −0.421605 0.906780i \(-0.638533\pi\)
−0.421605 + 0.906780i \(0.638533\pi\)
\(360\) 0 0
\(361\) −2.25228e6 −0.909610
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −833109. + 1.44299e6i −0.327318 + 0.566931i
\(366\) 0 0
\(367\) −509190. 881943.i −0.197340 0.341803i 0.750325 0.661069i \(-0.229897\pi\)
−0.947665 + 0.319266i \(0.896564\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12454.6 21572.0i −0.00469781 0.00813685i
\(372\) 0 0
\(373\) −2.61768e6 + 4.53395e6i −0.974191 + 1.68735i −0.291612 + 0.956537i \(0.594192\pi\)
−0.682579 + 0.730812i \(0.739142\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 967286. 0.350511
\(378\) 0 0
\(379\) −2.73883e6 −0.979417 −0.489708 0.871886i \(-0.662897\pi\)
−0.489708 + 0.871886i \(0.662897\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.17454e6 3.76641e6i 0.757478 1.31199i −0.186655 0.982425i \(-0.559765\pi\)
0.944133 0.329564i \(-0.106902\pi\)
\(384\) 0 0
\(385\) −8828.79 15291.9i −0.00303563 0.00525787i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.50378e6 + 2.60462e6i 0.503860 + 0.872712i 0.999990 + 0.00446327i \(0.00142071\pi\)
−0.496130 + 0.868248i \(0.665246\pi\)
\(390\) 0 0
\(391\) −2.19098e6 + 3.79488e6i −0.724762 + 1.25533i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.27787e6 0.734574
\(396\) 0 0
\(397\) 2.16602e6 0.689740 0.344870 0.938650i \(-0.387923\pi\)
0.344870 + 0.938650i \(0.387923\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.76996e6 3.06566e6i 0.549670 0.952057i −0.448626 0.893719i \(-0.648087\pi\)
0.998297 0.0583377i \(-0.0185800\pi\)
\(402\) 0 0
\(403\) −1.88930e6 3.27236e6i −0.579480 1.00369i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.35209e6 + 2.34188e6i 0.404593 + 0.700775i
\(408\) 0 0
\(409\) 783644. 1.35731e6i 0.231638 0.401210i −0.726652 0.687006i \(-0.758925\pi\)
0.958290 + 0.285796i \(0.0922580\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −60007.5 −0.0173113
\(414\) 0 0
\(415\) 489015. 0.139380
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.18321e6 2.04937e6i 0.329250 0.570277i −0.653114 0.757260i \(-0.726538\pi\)
0.982363 + 0.186983i \(0.0598709\pi\)
\(420\) 0 0
\(421\) 1.84288e6 + 3.19196e6i 0.506747 + 0.877712i 0.999970 + 0.00780885i \(0.00248566\pi\)
−0.493222 + 0.869903i \(0.664181\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −537650. 931238.i −0.144387 0.250085i
\(426\) 0 0
\(427\) 40930.3 70893.3i 0.0108636 0.0188164i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.78152e6 −1.75847 −0.879233 0.476391i \(-0.841945\pi\)
−0.879233 + 0.476391i \(0.841945\pi\)
\(432\) 0 0
\(433\) −3.20434e6 −0.821332 −0.410666 0.911786i \(-0.634704\pi\)
−0.410666 + 0.911786i \(0.634704\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 854601. 1.48021e6i 0.214072 0.370784i
\(438\) 0 0
\(439\) 698435. + 1.20972e6i 0.172967 + 0.299588i 0.939456 0.342670i \(-0.111331\pi\)
−0.766489 + 0.642258i \(0.777998\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.48597e6 + 4.30583e6i 0.601847 + 1.04243i 0.992541 + 0.121910i \(0.0389018\pi\)
−0.390694 + 0.920521i \(0.627765\pi\)
\(444\) 0 0
\(445\) −1.00741e6 + 1.74488e6i −0.241160 + 0.417702i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.85114e6 −1.13561 −0.567804 0.823164i \(-0.692207\pi\)
−0.567804 + 0.823164i \(0.692207\pi\)
\(450\) 0 0
\(451\) −1.16134e6 −0.268856
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −35040.1 + 60691.3i −0.00793482 + 0.0137435i
\(456\) 0 0
\(457\) −2.14244e6 3.71081e6i −0.479864 0.831149i 0.519869 0.854246i \(-0.325981\pi\)
−0.999733 + 0.0230972i \(0.992647\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11973.0 + 20737.8i 0.00262392 + 0.00454476i 0.867334 0.497726i \(-0.165831\pi\)
−0.864710 + 0.502271i \(0.832498\pi\)
\(462\) 0 0
\(463\) −1.76420e6 + 3.05569e6i −0.382469 + 0.662456i −0.991415 0.130756i \(-0.958259\pi\)
0.608945 + 0.793212i \(0.291593\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.66263e6 −0.989324 −0.494662 0.869086i \(-0.664708\pi\)
−0.494662 + 0.869086i \(0.664708\pi\)
\(468\) 0 0
\(469\) −47722.0 −0.0100181
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 563778. 976492.i 0.115866 0.200686i
\(474\) 0 0
\(475\) 209713. + 363234.i 0.0426473 + 0.0738673i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.27492e6 5.67232e6i −0.652171 1.12959i −0.982595 0.185760i \(-0.940525\pi\)
0.330424 0.943832i \(-0.392808\pi\)
\(480\) 0 0
\(481\) 5.36622e6 9.29457e6i 1.05756 1.83175i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.66945e6 0.901387
\(486\) 0 0
\(487\) 9.23457e6 1.76439 0.882194 0.470886i \(-0.156066\pi\)
0.882194 + 0.470886i \(0.156066\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.62130e6 4.54023e6i 0.490697 0.849912i −0.509246 0.860621i \(-0.670075\pi\)
0.999943 + 0.0107089i \(0.00340882\pi\)
\(492\) 0 0
\(493\) 804288. + 1.39307e6i 0.149037 + 0.258140i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 125.700 + 217.718i 2.28267e−5 + 3.95370e-5i
\(498\) 0 0
\(499\) 3.23974e6 5.61140e6i 0.582451 1.00883i −0.412737 0.910850i \(-0.635427\pi\)
0.995188 0.0979844i \(-0.0312395\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.42908e6 0.780538 0.390269 0.920701i \(-0.372382\pi\)
0.390269 + 0.920701i \(0.372382\pi\)
\(504\) 0 0
\(505\) 3.57859e6 0.624429
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.14026e6 3.70704e6i 0.366162 0.634210i −0.622800 0.782381i \(-0.714005\pi\)
0.988962 + 0.148170i \(0.0473384\pi\)
\(510\) 0 0
\(511\) −35761.9 61941.4i −0.00605855 0.0104937i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.49490e6 + 6.05335e6i 0.580653 + 1.00572i
\(516\) 0 0
\(517\) −291118. + 504232.i −0.0479009 + 0.0829667i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8.64335e6 −1.39504 −0.697522 0.716564i \(-0.745714\pi\)
−0.697522 + 0.716564i \(0.745714\pi\)
\(522\) 0 0
\(523\) 9.11201e6 1.45667 0.728333 0.685224i \(-0.240296\pi\)
0.728333 + 0.685224i \(0.240296\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.14187e6 5.44187e6i 0.492789 0.853536i
\(528\) 0 0
\(529\) −3.30813e6 5.72984e6i −0.513976 0.890233i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.30460e6 + 3.99168e6i 0.351380 + 0.608609i
\(534\) 0 0
\(535\) 4.94740e6 8.56915e6i 0.747296 1.29436i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.08782e6 −0.457804
\(540\) 0 0
\(541\) 5.76360e6 0.846643 0.423322 0.905979i \(-0.360864\pi\)
0.423322 + 0.905979i \(0.360864\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.73476e6 + 4.73674e6i −0.394391 + 0.683106i
\(546\) 0 0
\(547\) −2.80744e6 4.86263e6i −0.401183 0.694869i 0.592686 0.805434i \(-0.298067\pi\)
−0.993869 + 0.110564i \(0.964734\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −313717. 543374.i −0.0440209 0.0762464i
\(552\) 0 0
\(553\) −48889.7 + 84679.4i −0.00679837 + 0.0117751i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.18422e6 −0.298303 −0.149152 0.988814i \(-0.547654\pi\)
−0.149152 + 0.988814i \(0.547654\pi\)
\(558\) 0 0
\(559\) −4.47510e6 −0.605722
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −339673. + 588330.i −0.0451637 + 0.0782258i −0.887724 0.460377i \(-0.847714\pi\)
0.842560 + 0.538603i \(0.181048\pi\)
\(564\) 0 0
\(565\) 1.10785e6 + 1.91885e6i 0.146002 + 0.252883i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.28195e6 5.68451e6i −0.424964 0.736059i 0.571453 0.820635i \(-0.306380\pi\)
−0.996417 + 0.0845759i \(0.973046\pi\)
\(570\) 0 0
\(571\) −952119. + 1.64912e6i −0.122208 + 0.211671i −0.920638 0.390417i \(-0.872331\pi\)
0.798430 + 0.602088i \(0.205664\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.20302e6 0.404008
\(576\) 0 0
\(577\) 1.13367e7 1.41758 0.708792 0.705417i \(-0.249240\pi\)
0.708792 + 0.705417i \(0.249240\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10495.7 + 18179.1i −0.00128994 + 0.00223425i
\(582\) 0 0
\(583\) −1.12696e6 1.95195e6i −0.137321 0.237846i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.88666e6 1.19280e7i −0.824923 1.42881i −0.901978 0.431781i \(-0.857885\pi\)
0.0770557 0.997027i \(-0.475448\pi\)
\(588\) 0 0
\(589\) −1.22550e6 + 2.12263e6i −0.145554 + 0.252108i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.94674e6 −1.16157 −0.580783 0.814058i \(-0.697254\pi\)
−0.580783 + 0.814058i \(0.697254\pi\)
\(594\) 0 0
\(595\) −116542. −0.0134955
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.77125e6 + 4.79995e6i −0.315579 + 0.546600i −0.979561 0.201150i \(-0.935532\pi\)
0.663981 + 0.747749i \(0.268866\pi\)
\(600\) 0 0
\(601\) −6.63325e6 1.14891e7i −0.749101 1.29748i −0.948254 0.317513i \(-0.897152\pi\)
0.199153 0.979968i \(-0.436181\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.01096e6 + 5.21513e6i 0.334438 + 0.579264i
\(606\) 0 0
\(607\) 3.04326e6 5.27108e6i 0.335249 0.580668i −0.648284 0.761399i \(-0.724513\pi\)
0.983533 + 0.180731i \(0.0578462\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.31081e6 0.250416
\(612\) 0 0
\(613\) −4.59806e6 −0.494223 −0.247112 0.968987i \(-0.579481\pi\)
−0.247112 + 0.968987i \(0.579481\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.01311e6 1.38791e7i 0.847399 1.46774i −0.0361221 0.999347i \(-0.511501\pi\)
0.883521 0.468391i \(-0.155166\pi\)
\(618\) 0 0
\(619\) 1.19878e6 + 2.07634e6i 0.125751 + 0.217807i 0.922026 0.387127i \(-0.126533\pi\)
−0.796275 + 0.604934i \(0.793199\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −43243.9 74900.6i −0.00446380 0.00773153i
\(624\) 0 0
\(625\) 3.10456e6 5.37725e6i 0.317906 0.550630i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.78478e7 1.79870
\(630\) 0 0
\(631\) −6.25228e6 −0.625122 −0.312561 0.949898i \(-0.601187\pi\)
−0.312561 + 0.949898i \(0.601187\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.21053e6 + 3.82875e6i −0.217551 + 0.376810i
\(636\) 0 0
\(637\) 6.12754e6 + 1.06132e7i 0.598325 + 1.03633i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.48142e6 1.64223e7i −0.911440 1.57866i −0.812031 0.583614i \(-0.801638\pi\)
−0.0994090 0.995047i \(-0.531695\pi\)
\(642\) 0 0
\(643\) −1.64962e6 + 2.85722e6i −0.157346 + 0.272532i −0.933911 0.357506i \(-0.883627\pi\)
0.776565 + 0.630038i \(0.216961\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.56481e7 −1.46961 −0.734805 0.678278i \(-0.762726\pi\)
−0.734805 + 0.678278i \(0.762726\pi\)
\(648\) 0 0
\(649\) −5.42978e6 −0.506023
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.78514e6 1.34843e7i 0.714469 1.23750i −0.248695 0.968582i \(-0.580002\pi\)
0.963164 0.268915i \(-0.0866650\pi\)
\(654\) 0 0
\(655\) 8.69921e6 + 1.50675e7i 0.792276 + 1.37226i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.40513e6 1.10940e7i −0.574532 0.995119i −0.996092 0.0883184i \(-0.971851\pi\)
0.421560 0.906800i \(-0.361483\pi\)
\(660\) 0 0
\(661\) −230248. + 398801.i −0.0204971 + 0.0355020i −0.876092 0.482144i \(-0.839858\pi\)
0.855595 + 0.517646i \(0.173192\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 45457.8 0.00398616
\(666\) 0 0
\(667\) −4.79150e6 −0.417020
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.70358e6 6.41479e6i 0.317552 0.550017i
\(672\) 0 0
\(673\) 4.03608e6 + 6.99069e6i 0.343496 + 0.594952i 0.985079 0.172101i \(-0.0550555\pi\)
−0.641583 + 0.767053i \(0.721722\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.82149e6 + 3.15491e6i 0.152741 + 0.264554i 0.932234 0.361856i \(-0.117857\pi\)
−0.779493 + 0.626410i \(0.784523\pi\)
\(678\) 0 0
\(679\) −100220. + 173586.i −0.00834219 + 0.0144491i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.57475e6 0.785373 0.392686 0.919672i \(-0.371546\pi\)
0.392686 + 0.919672i \(0.371546\pi\)
\(684\) 0 0
\(685\) 7.26801e6 0.591819
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.47272e6 + 7.74698e6i −0.358941 + 0.621705i
\(690\) 0 0
\(691\) 3.01871e6 + 5.22857e6i 0.240506 + 0.416569i 0.960859 0.277039i \(-0.0893531\pi\)
−0.720352 + 0.693608i \(0.756020\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.78215e6 + 1.00150e7i 0.454075 + 0.786481i
\(696\) 0 0
\(697\) −3.83250e6 + 6.63809e6i −0.298814 + 0.517560i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.37603e7 −1.05763 −0.528813 0.848739i \(-0.677363\pi\)
−0.528813 + 0.848739i \(0.677363\pi\)
\(702\) 0 0
\(703\) −6.96164e6 −0.531279
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −76806.9 + 133033.i −0.00577899 + 0.0100095i
\(708\) 0 0
\(709\) 809892. + 1.40277e6i 0.0605078 + 0.104803i 0.894693 0.446683i \(-0.147395\pi\)
−0.834185 + 0.551485i \(0.814061\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.35873e6 + 1.62098e7i 0.689435 + 1.19414i
\(714\) 0 0
\(715\) −3.17061e6 + 5.49165e6i −0.231941 + 0.401734i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.42931e7 1.03111 0.515555 0.856856i \(-0.327586\pi\)
0.515555 + 0.856856i \(0.327586\pi\)
\(720\) 0 0
\(721\) −300043. −0.0214954
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 587900. 1.01827e6i 0.0415392 0.0719481i
\(726\) 0 0
\(727\) −1.37208e7 2.37652e7i −0.962818 1.66765i −0.715367 0.698749i \(-0.753741\pi\)
−0.247450 0.968901i \(-0.579593\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.72100e6 6.44496e6i −0.257553 0.446094i
\(732\) 0 0
\(733\) 2.55310e6 4.42209e6i 0.175512 0.303996i −0.764826 0.644237i \(-0.777175\pi\)
0.940338 + 0.340241i \(0.110509\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.31812e6 −0.292837
\(738\) 0 0
\(739\) 1.34356e7 0.904997 0.452498 0.891765i \(-0.350533\pi\)
0.452498 + 0.891765i \(0.350533\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 343246. 594519.i 0.0228104 0.0395088i −0.854395 0.519624i \(-0.826072\pi\)
0.877205 + 0.480116i \(0.159405\pi\)
\(744\) 0 0
\(745\) −232994. 403557.i −0.0153799 0.0266387i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 212371. + 367838.i 0.0138322 + 0.0239581i
\(750\) 0 0
\(751\) 5.46542e6 9.46639e6i 0.353610 0.612470i −0.633269 0.773931i \(-0.718288\pi\)
0.986879 + 0.161462i \(0.0516208\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.03985e7 0.663900
\(756\) 0 0
\(757\) −2.31128e7 −1.46593 −0.732966 0.680265i \(-0.761865\pi\)
−0.732966 + 0.680265i \(0.761865\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.94528e6 + 1.02975e7i −0.372144 + 0.644572i −0.989895 0.141801i \(-0.954711\pi\)
0.617751 + 0.786374i \(0.288044\pi\)
\(762\) 0 0
\(763\) −117392. 203328.i −0.00730005 0.0126441i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.07750e7 + 1.86628e7i 0.661345 + 1.14548i
\(768\) 0 0
\(769\) −1.32545e6 + 2.29575e6i −0.0808253 + 0.139994i −0.903605 0.428367i \(-0.859089\pi\)
0.822779 + 0.568361i \(0.192422\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.12893e7 1.28148 0.640742 0.767757i \(-0.278627\pi\)
0.640742 + 0.767757i \(0.278627\pi\)
\(774\) 0 0
\(775\) −4.59314e6 −0.274698
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.49489e6 2.58922e6i 0.0882601 0.152871i
\(780\) 0 0
\(781\) 11373.9 + 19700.3i 0.000667242 + 0.00115570i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −723426. 1.25301e6i −0.0419006 0.0725739i
\(786\) 0 0
\(787\) −1.14439e7 + 1.98214e7i −0.658623 + 1.14077i 0.322349 + 0.946621i \(0.395528\pi\)
−0.980972 + 0.194148i \(0.937806\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −95110.7 −0.00540491
\(792\) 0 0
\(793\) −2.93979e7 −1.66010
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.28424e7 + 2.22437e7i −0.716146 + 1.24040i 0.246370 + 0.969176i \(0.420762\pi\)
−0.962516 + 0.271225i \(0.912571\pi\)
\(798\) 0 0
\(799\) 1.92141e6 + 3.32799e6i 0.106477 + 0.184423i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.23592e6 5.60478e6i −0.177096 0.306739i
\(804\) 0 0
\(805\) 173573. 300637.i 0.00944043 0.0163513i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.88061e6 0.315901 0.157951 0.987447i \(-0.449511\pi\)
0.157951 + 0.987447i \(0.449511\pi\)
\(810\) 0 0
\(811\) 2.04938e7 1.09414 0.547068 0.837088i \(-0.315744\pi\)
0.547068 + 0.837088i \(0.315744\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.44313e6 + 1.11598e7i −0.339784 + 0.588523i
\(816\) 0 0
\(817\) 1.45139e6 + 2.51389e6i 0.0760730 + 0.131762i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.81711e6 3.14732e6i −0.0940855 0.162961i 0.815141 0.579263i \(-0.196659\pi\)
−0.909227 + 0.416302i \(0.863326\pi\)
\(822\) 0 0
\(823\) −7.90337e6 + 1.36890e7i −0.406736 + 0.704488i −0.994522 0.104529i \(-0.966666\pi\)
0.587786 + 0.809017i \(0.300000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.98096e6 −0.100719 −0.0503597 0.998731i \(-0.516037\pi\)
−0.0503597 + 0.998731i \(0.516037\pi\)
\(828\) 0 0
\(829\) 2.56811e7 1.29786 0.648929 0.760849i \(-0.275217\pi\)
0.648929 + 0.760849i \(0.275217\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.01900e7 + 1.76495e7i −0.508815 + 0.881294i
\(834\) 0 0
\(835\) 4.69988e6 + 8.14043e6i 0.233276 + 0.404046i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.27342e6 3.93767e6i −0.111500 0.193123i 0.804875 0.593444i \(-0.202232\pi\)
−0.916375 + 0.400321i \(0.868899\pi\)
\(840\) 0 0
\(841\) 9.37612e6 1.62399e7i 0.457123 0.791760i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.60068e6 0.366193
\(846\) 0 0
\(847\) −258496. −0.0123807
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.65818e7 + 4.60411e7i −1.25823 + 2.17932i
\(852\) 0 0
\(853\) −708511. 1.22718e6i −0.0333407 0.0577477i 0.848874 0.528596i \(-0.177281\pi\)
−0.882214 + 0.470848i \(0.843948\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.07200e6 7.05290e6i −0.189389 0.328032i 0.755658 0.654967i \(-0.227317\pi\)
−0.945047 + 0.326935i \(0.893984\pi\)
\(858\) 0 0
\(859\) 5.33500e6 9.24050e6i 0.246690 0.427280i −0.715915 0.698187i \(-0.753990\pi\)
0.962605 + 0.270907i \(0.0873237\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.21144e7 −0.553701 −0.276851 0.960913i \(-0.589291\pi\)
−0.276851 + 0.960913i \(0.589291\pi\)
\(864\) 0 0
\(865\) −3.20737e6 −0.145750
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.42379e6 + 7.66222e6i −0.198721 + 0.344196i
\(870\) 0 0
\(871\) 8.56899e6 + 1.48419e7i 0.382723 + 0.662895i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 192729. + 333816.i 0.00850995 + 0.0147397i
\(876\) 0 0
\(877\) −1.65673e7 + 2.86954e7i −0.727366 + 1.25983i 0.230627 + 0.973042i \(0.425922\pi\)
−0.957993 + 0.286792i \(0.907411\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −49573.7 −0.00215185 −0.00107592 0.999999i \(-0.500342\pi\)
−0.00107592 + 0.999999i \(0.500342\pi\)
\(882\) 0 0
\(883\) −4.21109e7 −1.81758 −0.908788 0.417259i \(-0.862991\pi\)
−0.908788 + 0.417259i \(0.862991\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −550680. + 953806.i −0.0235012 + 0.0407053i −0.877537 0.479509i \(-0.840815\pi\)
0.854036 + 0.520215i \(0.174148\pi\)
\(888\) 0 0
\(889\) −94888.8 164352.i −0.00402680 0.00697463i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −749458. 1.29810e6i −0.0314498 0.0544727i
\(894\) 0 0
\(895\) −516860. + 895228.i −0.0215683 + 0.0373574i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.87102e6 0.283545
\(900\) 0 0
\(901\) −1.48761e7 −0.610487
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.44922e6 + 7.70627e6i −0.180577 + 0.312769i
\(906\) 0 0
\(907\) −3.72157e6 6.44595e6i −0.150213 0.260177i 0.781093 0.624415i \(-0.214663\pi\)
−0.931306 + 0.364238i \(0.881329\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.61672e7 + 2.80024e7i 0.645414 + 1.11789i 0.984206 + 0.177028i \(0.0566483\pi\)
−0.338792 + 0.940861i \(0.610018\pi\)
\(912\) 0 0
\(913\) −949703. + 1.64493e6i −0.0377060 + 0.0653087i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −746841. −0.0293295
\(918\) 0 0
\(919\) −3.18905e7 −1.24558 −0.622792 0.782388i \(-0.714002\pi\)
−0.622792 + 0.782388i \(0.714002\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 45141.5 78187.3i 0.00174410 0.00302087i
\(924\) 0 0
\(925\) −6.52299e6 1.12982e7i −0.250664 0.434163i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −7.20450e6 1.24786e7i −0.273883 0.474379i 0.695970 0.718071i \(-0.254975\pi\)
−0.969853 + 0.243692i \(0.921641\pi\)
\(930\) 0 0
\(931\) 3.97465e6 6.88429e6i 0.150288 0.260307i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.05453e7 −0.394485
\(936\) 0 0
\(937\) 2.33199e7 0.867718 0.433859 0.900981i \(-0.357152\pi\)
0.433859 + 0.900981i \(0.357152\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.35788e7 + 4.08396e7i −0.868054 + 1.50351i −0.00407185 + 0.999992i \(0.501296\pi\)
−0.863982 + 0.503522i \(0.832037\pi\)
\(942\) 0 0
\(943\) −1.14159e7 1.97730e7i −0.418054 0.724091i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.21868e7 2.11081e7i −0.441585 0.764847i 0.556223 0.831033i \(-0.312250\pi\)
−0.997807 + 0.0661864i \(0.978917\pi\)
\(948\) 0 0
\(949\) −1.28429e7 + 2.22445e7i −0.462910 + 0.801784i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4.33987e7 1.54790 0.773952 0.633244i \(-0.218277\pi\)
0.773952 + 0.633244i \(0.218277\pi\)
\(954\) 0 0
\(955\) −1.16577e7 −0.413623
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −155993. + 270187.i −0.00547719 + 0.00948677i
\(960\) 0 0
\(961\) 894119. + 1.54866e6i 0.0312311 + 0.0540938i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.37302e6 + 9.30634e6i 0.185738 + 0.321707i
\(966\) 0 0
\(967\) 137300. 237810.i 0.00472176 0.00817832i −0.863655 0.504084i \(-0.831830\pi\)
0.868377 + 0.495905i \(0.165164\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.36920e7 1.14678 0.573388 0.819284i \(-0.305629\pi\)
0.573388 + 0.819284i \(0.305629\pi\)
\(972\) 0 0
\(973\) −496407. −0.0168096
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.93084e6 1.20046e7i 0.232300 0.402356i −0.726184 0.687500i \(-0.758708\pi\)
0.958485 + 0.285144i \(0.0920415\pi\)
\(978\) 0 0
\(979\) −3.91293e6 6.77739e6i −0.130480 0.225999i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.34952e6 + 7.53359e6i 0.143568 + 0.248667i 0.928838 0.370487i \(-0.120809\pi\)
−0.785270 + 0.619154i \(0.787476\pi\)
\(984\) 0 0
\(985\) −1.19010e7 + 2.06132e7i −0.390835 + 0.676947i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.21676e7 0.720656
\(990\) 0 0
\(991\) 4.44501e7 1.43777 0.718884 0.695130i \(-0.244653\pi\)
0.718884 + 0.695130i \(0.244653\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 97620.2 169083.i 0.00312595 0.00541430i
\(996\) 0 0
\(997\) 8.21072e6 + 1.42214e7i 0.261603 + 0.453110i 0.966668 0.256033i \(-0.0824154\pi\)
−0.705065 + 0.709143i \(0.749082\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.6.i.c.145.2 8
3.2 odd 2 144.6.i.c.49.3 8
4.3 odd 2 27.6.c.a.10.1 8
9.2 odd 6 144.6.i.c.97.3 8
9.7 even 3 inner 432.6.i.c.289.2 8
12.11 even 2 9.6.c.a.4.4 8
36.7 odd 6 27.6.c.a.19.1 8
36.11 even 6 9.6.c.a.7.4 yes 8
36.23 even 6 81.6.a.c.1.1 4
36.31 odd 6 81.6.a.d.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.6.c.a.4.4 8 12.11 even 2
9.6.c.a.7.4 yes 8 36.11 even 6
27.6.c.a.10.1 8 4.3 odd 2
27.6.c.a.19.1 8 36.7 odd 6
81.6.a.c.1.1 4 36.23 even 6
81.6.a.d.1.4 4 36.31 odd 6
144.6.i.c.49.3 8 3.2 odd 2
144.6.i.c.97.3 8 9.2 odd 6
432.6.i.c.145.2 8 1.1 even 1 trivial
432.6.i.c.289.2 8 9.7 even 3 inner