Defining parameters
| Level: | \( N \) | \(=\) | \( 432 = 2^{4} \cdot 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 432.i (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 6 \) | ||
| Sturm bound: | \(432\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(432, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 756 | 62 | 694 |
| Cusp forms | 684 | 58 | 626 |
| Eisenstein series | 72 | 4 | 68 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(432, [\chi])\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(432, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(432, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)