Properties

Label 432.6.a.o.1.2
Level $432$
Weight $6$
Character 432.1
Self dual yes
Analytic conductor $69.286$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,6,Mod(1,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 432.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.2858101592\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 432.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+58.7878 q^{5} -167.000 q^{7} +764.241 q^{11} -235.000 q^{13} +176.363 q^{17} -1361.00 q^{19} +2410.30 q^{23} +331.000 q^{25} +470.302 q^{29} -3500.00 q^{31} -9817.55 q^{35} +13115.0 q^{37} +9406.04 q^{41} -104.000 q^{43} +20516.9 q^{47} +11082.0 q^{49} -1058.18 q^{53} +44928.0 q^{55} -30746.0 q^{59} -7393.00 q^{61} -13815.1 q^{65} -38861.0 q^{67} +2469.09 q^{71} +5465.00 q^{73} -127628. q^{77} +82903.0 q^{79} +13286.0 q^{83} +10368.0 q^{85} +89768.9 q^{89} +39245.0 q^{91} -80010.1 q^{95} -49603.0 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 334 q^{7} - 470 q^{13} - 2722 q^{19} + 662 q^{25} - 7000 q^{31} + 26230 q^{37} - 208 q^{43} + 22164 q^{49} + 89856 q^{55} - 14786 q^{61} - 77722 q^{67} + 10930 q^{73} + 165806 q^{79} + 20736 q^{85}+ \cdots - 99206 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 58.7878 1.05163 0.525814 0.850600i \(-0.323761\pi\)
0.525814 + 0.850600i \(0.323761\pi\)
\(6\) 0 0
\(7\) −167.000 −1.28816 −0.644082 0.764956i \(-0.722761\pi\)
−0.644082 + 0.764956i \(0.722761\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 764.241 1.90436 0.952179 0.305541i \(-0.0988374\pi\)
0.952179 + 0.305541i \(0.0988374\pi\)
\(12\) 0 0
\(13\) −235.000 −0.385664 −0.192832 0.981232i \(-0.561767\pi\)
−0.192832 + 0.981232i \(0.561767\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 176.363 0.148008 0.0740041 0.997258i \(-0.476422\pi\)
0.0740041 + 0.997258i \(0.476422\pi\)
\(18\) 0 0
\(19\) −1361.00 −0.864916 −0.432458 0.901654i \(-0.642354\pi\)
−0.432458 + 0.901654i \(0.642354\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2410.30 0.950060 0.475030 0.879970i \(-0.342437\pi\)
0.475030 + 0.879970i \(0.342437\pi\)
\(24\) 0 0
\(25\) 331.000 0.105920
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 470.302 0.103844 0.0519221 0.998651i \(-0.483465\pi\)
0.0519221 + 0.998651i \(0.483465\pi\)
\(30\) 0 0
\(31\) −3500.00 −0.654130 −0.327065 0.945002i \(-0.606060\pi\)
−0.327065 + 0.945002i \(0.606060\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −9817.55 −1.35467
\(36\) 0 0
\(37\) 13115.0 1.57494 0.787470 0.616353i \(-0.211391\pi\)
0.787470 + 0.616353i \(0.211391\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9406.04 0.873871 0.436935 0.899493i \(-0.356064\pi\)
0.436935 + 0.899493i \(0.356064\pi\)
\(42\) 0 0
\(43\) −104.000 −0.00857753 −0.00428876 0.999991i \(-0.501365\pi\)
−0.00428876 + 0.999991i \(0.501365\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 20516.9 1.35478 0.677388 0.735626i \(-0.263112\pi\)
0.677388 + 0.735626i \(0.263112\pi\)
\(48\) 0 0
\(49\) 11082.0 0.659368
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1058.18 −0.0517452 −0.0258726 0.999665i \(-0.508236\pi\)
−0.0258726 + 0.999665i \(0.508236\pi\)
\(54\) 0 0
\(55\) 44928.0 2.00267
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −30746.0 −1.14990 −0.574948 0.818190i \(-0.694978\pi\)
−0.574948 + 0.818190i \(0.694978\pi\)
\(60\) 0 0
\(61\) −7393.00 −0.254388 −0.127194 0.991878i \(-0.540597\pi\)
−0.127194 + 0.991878i \(0.540597\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −13815.1 −0.405575
\(66\) 0 0
\(67\) −38861.0 −1.05761 −0.528807 0.848742i \(-0.677360\pi\)
−0.528807 + 0.848742i \(0.677360\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2469.09 0.0581287 0.0290643 0.999578i \(-0.490747\pi\)
0.0290643 + 0.999578i \(0.490747\pi\)
\(72\) 0 0
\(73\) 5465.00 0.120028 0.0600141 0.998198i \(-0.480885\pi\)
0.0600141 + 0.998198i \(0.480885\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −127628. −2.45313
\(78\) 0 0
\(79\) 82903.0 1.49452 0.747261 0.664530i \(-0.231368\pi\)
0.747261 + 0.664530i \(0.231368\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13286.0 0.211690 0.105845 0.994383i \(-0.466245\pi\)
0.105845 + 0.994383i \(0.466245\pi\)
\(84\) 0 0
\(85\) 10368.0 0.155649
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 89768.9 1.20130 0.600649 0.799513i \(-0.294909\pi\)
0.600649 + 0.799513i \(0.294909\pi\)
\(90\) 0 0
\(91\) 39245.0 0.496799
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −80010.1 −0.909570
\(96\) 0 0
\(97\) −49603.0 −0.535277 −0.267639 0.963519i \(-0.586243\pi\)
−0.267639 + 0.963519i \(0.586243\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 138739. 1.35330 0.676652 0.736303i \(-0.263430\pi\)
0.676652 + 0.736303i \(0.263430\pi\)
\(102\) 0 0
\(103\) 94933.0 0.881707 0.440853 0.897579i \(-0.354676\pi\)
0.440853 + 0.897579i \(0.354676\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 168780. 1.42515 0.712575 0.701596i \(-0.247529\pi\)
0.712575 + 0.701596i \(0.247529\pi\)
\(108\) 0 0
\(109\) 124850. 1.00652 0.503260 0.864135i \(-0.332134\pi\)
0.503260 + 0.864135i \(0.332134\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 172542. 1.27116 0.635578 0.772037i \(-0.280762\pi\)
0.635578 + 0.772037i \(0.280762\pi\)
\(114\) 0 0
\(115\) 141696. 0.999109
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −29452.7 −0.190659
\(120\) 0 0
\(121\) 423013. 2.62658
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −164253. −0.940239
\(126\) 0 0
\(127\) 70108.0 0.385708 0.192854 0.981227i \(-0.438226\pi\)
0.192854 + 0.981227i \(0.438226\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 139445. 0.709943 0.354971 0.934877i \(-0.384491\pi\)
0.354971 + 0.934877i \(0.384491\pi\)
\(132\) 0 0
\(133\) 227287. 1.11415
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9464.83 0.0430835 0.0215418 0.999768i \(-0.493143\pi\)
0.0215418 + 0.999768i \(0.493143\pi\)
\(138\) 0 0
\(139\) 150913. 0.662506 0.331253 0.943542i \(-0.392529\pi\)
0.331253 + 0.943542i \(0.392529\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −179597. −0.734443
\(144\) 0 0
\(145\) 27648.0 0.109205
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −230801. −0.851670 −0.425835 0.904801i \(-0.640020\pi\)
−0.425835 + 0.904801i \(0.640020\pi\)
\(150\) 0 0
\(151\) −129461. −0.462058 −0.231029 0.972947i \(-0.574209\pi\)
−0.231029 + 0.972947i \(0.574209\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −205757. −0.687901
\(156\) 0 0
\(157\) 257822. 0.834778 0.417389 0.908728i \(-0.362945\pi\)
0.417389 + 0.908728i \(0.362945\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −402520. −1.22383
\(162\) 0 0
\(163\) 131569. 0.387869 0.193934 0.981015i \(-0.437875\pi\)
0.193934 + 0.981015i \(0.437875\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 257079. 0.713305 0.356652 0.934237i \(-0.383918\pi\)
0.356652 + 0.934237i \(0.383918\pi\)
\(168\) 0 0
\(169\) −316068. −0.851263
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −167428. −0.425316 −0.212658 0.977127i \(-0.568212\pi\)
−0.212658 + 0.977127i \(0.568212\pi\)
\(174\) 0 0
\(175\) −55277.0 −0.136442
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −389057. −0.907572 −0.453786 0.891111i \(-0.649927\pi\)
−0.453786 + 0.891111i \(0.649927\pi\)
\(180\) 0 0
\(181\) 165305. 0.375050 0.187525 0.982260i \(-0.439953\pi\)
0.187525 + 0.982260i \(0.439953\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 771001. 1.65625
\(186\) 0 0
\(187\) 134784. 0.281861
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 343967. 0.682234 0.341117 0.940021i \(-0.389195\pi\)
0.341117 + 0.940021i \(0.389195\pi\)
\(192\) 0 0
\(193\) −251785. −0.486560 −0.243280 0.969956i \(-0.578223\pi\)
−0.243280 + 0.969956i \(0.578223\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 820971. 1.50717 0.753585 0.657350i \(-0.228323\pi\)
0.753585 + 0.657350i \(0.228323\pi\)
\(198\) 0 0
\(199\) 336157. 0.601741 0.300870 0.953665i \(-0.402723\pi\)
0.300870 + 0.953665i \(0.402723\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −78540.4 −0.133768
\(204\) 0 0
\(205\) 552960. 0.918986
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.04013e6 −1.64711
\(210\) 0 0
\(211\) 821557. 1.27037 0.635187 0.772358i \(-0.280923\pi\)
0.635187 + 0.772358i \(0.280923\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6113.93 −0.00902036
\(216\) 0 0
\(217\) 584500. 0.842627
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −41445.4 −0.0570815
\(222\) 0 0
\(223\) −670388. −0.902743 −0.451371 0.892336i \(-0.649065\pi\)
−0.451371 + 0.892336i \(0.649065\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −860065. −1.10781 −0.553907 0.832579i \(-0.686864\pi\)
−0.553907 + 0.832579i \(0.686864\pi\)
\(228\) 0 0
\(229\) −1.43277e6 −1.80546 −0.902732 0.430203i \(-0.858442\pi\)
−0.902732 + 0.430203i \(0.858442\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 407046. 0.491195 0.245598 0.969372i \(-0.421016\pi\)
0.245598 + 0.969372i \(0.421016\pi\)
\(234\) 0 0
\(235\) 1.20614e6 1.42472
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −115577. −0.130881 −0.0654404 0.997856i \(-0.520845\pi\)
−0.0654404 + 0.997856i \(0.520845\pi\)
\(240\) 0 0
\(241\) −1.55192e6 −1.72118 −0.860590 0.509298i \(-0.829905\pi\)
−0.860590 + 0.509298i \(0.829905\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 651486. 0.693410
\(246\) 0 0
\(247\) 319835. 0.333567
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.70226e6 1.70546 0.852729 0.522353i \(-0.174946\pi\)
0.852729 + 0.522353i \(0.174946\pi\)
\(252\) 0 0
\(253\) 1.84205e6 1.80925
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.38210e6 −1.30529 −0.652645 0.757664i \(-0.726340\pi\)
−0.652645 + 0.757664i \(0.726340\pi\)
\(258\) 0 0
\(259\) −2.19020e6 −2.02878
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.61678e6 1.44132 0.720662 0.693286i \(-0.243838\pi\)
0.720662 + 0.693286i \(0.243838\pi\)
\(264\) 0 0
\(265\) −62208.0 −0.0544166
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −406870. −0.342827 −0.171413 0.985199i \(-0.554833\pi\)
−0.171413 + 0.985199i \(0.554833\pi\)
\(270\) 0 0
\(271\) −246053. −0.203519 −0.101760 0.994809i \(-0.532447\pi\)
−0.101760 + 0.994809i \(0.532447\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 252964. 0.201710
\(276\) 0 0
\(277\) −347350. −0.271999 −0.136000 0.990709i \(-0.543425\pi\)
−0.136000 + 0.990709i \(0.543425\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 611393. 0.461907 0.230953 0.972965i \(-0.425815\pi\)
0.230953 + 0.972965i \(0.425815\pi\)
\(282\) 0 0
\(283\) −2.05827e6 −1.52770 −0.763848 0.645397i \(-0.776692\pi\)
−0.763848 + 0.645397i \(0.776692\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.57081e6 −1.12569
\(288\) 0 0
\(289\) −1.38875e6 −0.978094
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.26844e6 1.54369 0.771843 0.635813i \(-0.219335\pi\)
0.771843 + 0.635813i \(0.219335\pi\)
\(294\) 0 0
\(295\) −1.80749e6 −1.20926
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −566420. −0.366404
\(300\) 0 0
\(301\) 17368.0 0.0110493
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −434618. −0.267521
\(306\) 0 0
\(307\) −902576. −0.546560 −0.273280 0.961935i \(-0.588109\pi\)
−0.273280 + 0.961935i \(0.588109\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.45964e6 −0.855746 −0.427873 0.903839i \(-0.640737\pi\)
−0.427873 + 0.903839i \(0.640737\pi\)
\(312\) 0 0
\(313\) −2.75992e6 −1.59234 −0.796169 0.605075i \(-0.793143\pi\)
−0.796169 + 0.605075i \(0.793143\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17048.4 0.00952877 0.00476438 0.999989i \(-0.498483\pi\)
0.00476438 + 0.999989i \(0.498483\pi\)
\(318\) 0 0
\(319\) 359424. 0.197756
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −240030. −0.128015
\(324\) 0 0
\(325\) −77785.0 −0.0408496
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.42633e6 −1.74518
\(330\) 0 0
\(331\) −3.37236e6 −1.69186 −0.845929 0.533296i \(-0.820953\pi\)
−0.845929 + 0.533296i \(0.820953\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.28455e6 −1.11222
\(336\) 0 0
\(337\) −360523. −0.172925 −0.0864626 0.996255i \(-0.527556\pi\)
−0.0864626 + 0.996255i \(0.527556\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.67484e6 −1.24570
\(342\) 0 0
\(343\) 956075. 0.438790
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.44206e6 0.642926 0.321463 0.946922i \(-0.395825\pi\)
0.321463 + 0.946922i \(0.395825\pi\)
\(348\) 0 0
\(349\) 677579. 0.297781 0.148890 0.988854i \(-0.452430\pi\)
0.148890 + 0.988854i \(0.452430\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.84484e6 1.64226 0.821129 0.570743i \(-0.193345\pi\)
0.821129 + 0.570743i \(0.193345\pi\)
\(354\) 0 0
\(355\) 145152. 0.0611297
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.36699e6 −0.559796 −0.279898 0.960030i \(-0.590301\pi\)
−0.279898 + 0.960030i \(0.590301\pi\)
\(360\) 0 0
\(361\) −623778. −0.251920
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 321275. 0.126225
\(366\) 0 0
\(367\) 1.16951e6 0.453251 0.226625 0.973982i \(-0.427231\pi\)
0.226625 + 0.973982i \(0.427231\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 176716. 0.0666563
\(372\) 0 0
\(373\) 2.52666e6 0.940318 0.470159 0.882582i \(-0.344197\pi\)
0.470159 + 0.882582i \(0.344197\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −110521. −0.0400490
\(378\) 0 0
\(379\) −219269. −0.0784114 −0.0392057 0.999231i \(-0.512483\pi\)
−0.0392057 + 0.999231i \(0.512483\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 59728.4 0.0208058 0.0104029 0.999946i \(-0.496689\pi\)
0.0104029 + 0.999946i \(0.496689\pi\)
\(384\) 0 0
\(385\) −7.50298e6 −2.57977
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.70653e6 −0.906857 −0.453428 0.891293i \(-0.649799\pi\)
−0.453428 + 0.891293i \(0.649799\pi\)
\(390\) 0 0
\(391\) 425088. 0.140617
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.87368e6 1.57168
\(396\) 0 0
\(397\) 4.43128e6 1.41108 0.705542 0.708668i \(-0.250704\pi\)
0.705542 + 0.708668i \(0.250704\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.37585e6 0.737832 0.368916 0.929463i \(-0.379729\pi\)
0.368916 + 0.929463i \(0.379729\pi\)
\(402\) 0 0
\(403\) 822500. 0.252274
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.00230e7 2.99925
\(408\) 0 0
\(409\) −1.71805e6 −0.507840 −0.253920 0.967225i \(-0.581720\pi\)
−0.253920 + 0.967225i \(0.581720\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.13458e6 1.48126
\(414\) 0 0
\(415\) 781056. 0.222619
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.34633e6 −1.48772 −0.743860 0.668336i \(-0.767007\pi\)
−0.743860 + 0.668336i \(0.767007\pi\)
\(420\) 0 0
\(421\) −5.68202e6 −1.56242 −0.781209 0.624269i \(-0.785397\pi\)
−0.781209 + 0.624269i \(0.785397\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 58376.2 0.0156770
\(426\) 0 0
\(427\) 1.23463e6 0.327693
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.29890e6 0.596109 0.298055 0.954549i \(-0.403662\pi\)
0.298055 + 0.954549i \(0.403662\pi\)
\(432\) 0 0
\(433\) −4.72608e6 −1.21138 −0.605691 0.795700i \(-0.707103\pi\)
−0.605691 + 0.795700i \(0.707103\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.28042e6 −0.821723
\(438\) 0 0
\(439\) −6.12223e6 −1.51617 −0.758086 0.652155i \(-0.773865\pi\)
−0.758086 + 0.652155i \(0.773865\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.68429e6 −1.61825 −0.809125 0.587636i \(-0.800059\pi\)
−0.809125 + 0.587636i \(0.800059\pi\)
\(444\) 0 0
\(445\) 5.27731e6 1.26332
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.01701e6 1.17443 0.587217 0.809429i \(-0.300223\pi\)
0.587217 + 0.809429i \(0.300223\pi\)
\(450\) 0 0
\(451\) 7.18848e6 1.66416
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.30713e6 0.522448
\(456\) 0 0
\(457\) 683222. 0.153028 0.0765141 0.997069i \(-0.475621\pi\)
0.0765141 + 0.997069i \(0.475621\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.04123e6 −1.10480 −0.552400 0.833579i \(-0.686288\pi\)
−0.552400 + 0.833579i \(0.686288\pi\)
\(462\) 0 0
\(463\) −5.04086e6 −1.09283 −0.546415 0.837515i \(-0.684008\pi\)
−0.546415 + 0.837515i \(0.684008\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.12347e6 −1.72365 −0.861825 0.507205i \(-0.830679\pi\)
−0.861825 + 0.507205i \(0.830679\pi\)
\(468\) 0 0
\(469\) 6.48979e6 1.36238
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −79481.0 −0.0163347
\(474\) 0 0
\(475\) −450491. −0.0916119
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.60739e6 −1.31580 −0.657902 0.753104i \(-0.728556\pi\)
−0.657902 + 0.753104i \(0.728556\pi\)
\(480\) 0 0
\(481\) −3.08202e6 −0.607398
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.91605e6 −0.562912
\(486\) 0 0
\(487\) 2.49806e6 0.477289 0.238644 0.971107i \(-0.423297\pi\)
0.238644 + 0.971107i \(0.423297\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.70141e6 1.06728 0.533640 0.845711i \(-0.320824\pi\)
0.533640 + 0.845711i \(0.320824\pi\)
\(492\) 0 0
\(493\) 82944.0 0.0153698
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −412337. −0.0748793
\(498\) 0 0
\(499\) −4.19754e6 −0.754646 −0.377323 0.926082i \(-0.623155\pi\)
−0.377323 + 0.926082i \(0.623155\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.37784e6 −0.947738 −0.473869 0.880595i \(-0.657143\pi\)
−0.473869 + 0.880595i \(0.657143\pi\)
\(504\) 0 0
\(505\) 8.15616e6 1.42317
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.35623e6 0.745275 0.372637 0.927977i \(-0.378454\pi\)
0.372637 + 0.927977i \(0.378454\pi\)
\(510\) 0 0
\(511\) −912655. −0.154616
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.58090e6 0.927227
\(516\) 0 0
\(517\) 1.56799e7 2.57998
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.29639e6 −0.693440 −0.346720 0.937969i \(-0.612705\pi\)
−0.346720 + 0.937969i \(0.612705\pi\)
\(522\) 0 0
\(523\) 1.07625e7 1.72052 0.860261 0.509854i \(-0.170301\pi\)
0.860261 + 0.509854i \(0.170301\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −617271. −0.0968166
\(528\) 0 0
\(529\) −626807. −0.0973856
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.21042e6 −0.337021
\(534\) 0 0
\(535\) 9.92218e6 1.49873
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8.46932e6 1.25567
\(540\) 0 0
\(541\) 7.49825e6 1.10146 0.550728 0.834685i \(-0.314350\pi\)
0.550728 + 0.834685i \(0.314350\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.33965e6 1.05848
\(546\) 0 0
\(547\) 3.63295e6 0.519148 0.259574 0.965723i \(-0.416418\pi\)
0.259574 + 0.965723i \(0.416418\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −640081. −0.0898165
\(552\) 0 0
\(553\) −1.38448e7 −1.92519
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.12137e6 −0.972581 −0.486290 0.873797i \(-0.661650\pi\)
−0.486290 + 0.873797i \(0.661650\pi\)
\(558\) 0 0
\(559\) 24440.0 0.00330805
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.41768e6 0.454424 0.227212 0.973845i \(-0.427039\pi\)
0.227212 + 0.973845i \(0.427039\pi\)
\(564\) 0 0
\(565\) 1.01434e7 1.33678
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.43699e6 −0.704008 −0.352004 0.935999i \(-0.614500\pi\)
−0.352004 + 0.935999i \(0.614500\pi\)
\(570\) 0 0
\(571\) 3.92190e6 0.503391 0.251696 0.967806i \(-0.419012\pi\)
0.251696 + 0.967806i \(0.419012\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 797809. 0.100630
\(576\) 0 0
\(577\) 1.07034e7 1.33839 0.669193 0.743088i \(-0.266640\pi\)
0.669193 + 0.743088i \(0.266640\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.21877e6 −0.272691
\(582\) 0 0
\(583\) −808704. −0.0985413
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.99424e6 −0.358667 −0.179333 0.983788i \(-0.557394\pi\)
−0.179333 + 0.983788i \(0.557394\pi\)
\(588\) 0 0
\(589\) 4.76350e6 0.565767
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −5.85279e6 −0.683481 −0.341740 0.939794i \(-0.611016\pi\)
−0.341740 + 0.939794i \(0.611016\pi\)
\(594\) 0 0
\(595\) −1.73146e6 −0.200502
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.93059e6 0.219848 0.109924 0.993940i \(-0.464939\pi\)
0.109924 + 0.993940i \(0.464939\pi\)
\(600\) 0 0
\(601\) −6.64461e6 −0.750384 −0.375192 0.926947i \(-0.622423\pi\)
−0.375192 + 0.926947i \(0.622423\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.48680e7 2.76218
\(606\) 0 0
\(607\) 6.72545e6 0.740883 0.370441 0.928856i \(-0.379206\pi\)
0.370441 + 0.928856i \(0.379206\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.82148e6 −0.522489
\(612\) 0 0
\(613\) 3.03643e6 0.326372 0.163186 0.986595i \(-0.447823\pi\)
0.163186 + 0.986595i \(0.447823\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.93504e6 0.627640 0.313820 0.949483i \(-0.398391\pi\)
0.313820 + 0.949483i \(0.398391\pi\)
\(618\) 0 0
\(619\) −1.21004e7 −1.26932 −0.634661 0.772791i \(-0.718860\pi\)
−0.634661 + 0.772791i \(0.718860\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.49914e7 −1.54747
\(624\) 0 0
\(625\) −1.06904e7 −1.09470
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.31300e6 0.233104
\(630\) 0 0
\(631\) 6.17037e6 0.616933 0.308466 0.951235i \(-0.400184\pi\)
0.308466 + 0.951235i \(0.400184\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.12149e6 0.405621
\(636\) 0 0
\(637\) −2.60427e6 −0.254295
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.13478e7 −1.09085 −0.545427 0.838158i \(-0.683632\pi\)
−0.545427 + 0.838158i \(0.683632\pi\)
\(642\) 0 0
\(643\) 1.00778e7 0.961257 0.480629 0.876924i \(-0.340408\pi\)
0.480629 + 0.876924i \(0.340408\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.07287e6 0.664255 0.332128 0.943234i \(-0.392233\pi\)
0.332128 + 0.943234i \(0.392233\pi\)
\(648\) 0 0
\(649\) −2.34973e7 −2.18981
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.84773e7 −1.69573 −0.847865 0.530213i \(-0.822112\pi\)
−0.847865 + 0.530213i \(0.822112\pi\)
\(654\) 0 0
\(655\) 8.19763e6 0.746595
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.53893e7 1.38040 0.690202 0.723616i \(-0.257521\pi\)
0.690202 + 0.723616i \(0.257521\pi\)
\(660\) 0 0
\(661\) 5.21093e6 0.463886 0.231943 0.972729i \(-0.425492\pi\)
0.231943 + 0.972729i \(0.425492\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.33617e7 1.17168
\(666\) 0 0
\(667\) 1.13357e6 0.0986582
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.65003e6 −0.484445
\(672\) 0 0
\(673\) 1.60404e7 1.36514 0.682569 0.730821i \(-0.260863\pi\)
0.682569 + 0.730821i \(0.260863\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.48811e7 1.24785 0.623927 0.781482i \(-0.285536\pi\)
0.623927 + 0.781482i \(0.285536\pi\)
\(678\) 0 0
\(679\) 8.28370e6 0.689525
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5.62881e6 −0.461705 −0.230853 0.972989i \(-0.574152\pi\)
−0.230853 + 0.972989i \(0.574152\pi\)
\(684\) 0 0
\(685\) 556416. 0.0453078
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 248672. 0.0199563
\(690\) 0 0
\(691\) 1.01916e7 0.811987 0.405993 0.913876i \(-0.366926\pi\)
0.405993 + 0.913876i \(0.366926\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.87184e6 0.696709
\(696\) 0 0
\(697\) 1.65888e6 0.129340
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.39524e7 1.84100 0.920501 0.390739i \(-0.127781\pi\)
0.920501 + 0.390739i \(0.127781\pi\)
\(702\) 0 0
\(703\) −1.78495e7 −1.36219
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.31694e7 −1.74328
\(708\) 0 0
\(709\) 1.49472e7 1.11672 0.558360 0.829599i \(-0.311431\pi\)
0.558360 + 0.829599i \(0.311431\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.43604e6 −0.621463
\(714\) 0 0
\(715\) −1.05581e7 −0.772360
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.61670e7 1.88770 0.943848 0.330380i \(-0.107177\pi\)
0.943848 + 0.330380i \(0.107177\pi\)
\(720\) 0 0
\(721\) −1.58538e7 −1.13578
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 155670. 0.0109992
\(726\) 0 0
\(727\) 2.91140e6 0.204299 0.102149 0.994769i \(-0.467428\pi\)
0.102149 + 0.994769i \(0.467428\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18341.8 −0.00126954
\(732\) 0 0
\(733\) 6.78250e6 0.466262 0.233131 0.972445i \(-0.425103\pi\)
0.233131 + 0.972445i \(0.425103\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.96992e7 −2.01407
\(738\) 0 0
\(739\) −1.52588e7 −1.02780 −0.513901 0.857850i \(-0.671800\pi\)
−0.513901 + 0.857850i \(0.671800\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.96863e6 −0.130825 −0.0654125 0.997858i \(-0.520836\pi\)
−0.0654125 + 0.997858i \(0.520836\pi\)
\(744\) 0 0
\(745\) −1.35683e7 −0.895640
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.81862e7 −1.83583
\(750\) 0 0
\(751\) 1.62379e7 1.05058 0.525290 0.850924i \(-0.323957\pi\)
0.525290 + 0.850924i \(0.323957\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.61072e6 −0.485913
\(756\) 0 0
\(757\) 9.17096e6 0.581668 0.290834 0.956774i \(-0.406067\pi\)
0.290834 + 0.956774i \(0.406067\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.31222e7 −1.44733 −0.723666 0.690151i \(-0.757544\pi\)
−0.723666 + 0.690151i \(0.757544\pi\)
\(762\) 0 0
\(763\) −2.08500e7 −1.29656
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.22531e6 0.443474
\(768\) 0 0
\(769\) 9.38318e6 0.572182 0.286091 0.958202i \(-0.407644\pi\)
0.286091 + 0.958202i \(0.407644\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −89239.8 −0.00537168 −0.00268584 0.999996i \(-0.500855\pi\)
−0.00268584 + 0.999996i \(0.500855\pi\)
\(774\) 0 0
\(775\) −1.15850e6 −0.0692854
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.28016e7 −0.755825
\(780\) 0 0
\(781\) 1.88698e6 0.110698
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.51568e7 0.877875
\(786\) 0 0
\(787\) −3.04100e7 −1.75017 −0.875084 0.483971i \(-0.839194\pi\)
−0.875084 + 0.483971i \(0.839194\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.88145e7 −1.63746
\(792\) 0 0
\(793\) 1.73736e6 0.0981083
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.44534e6 0.136362 0.0681809 0.997673i \(-0.478281\pi\)
0.0681809 + 0.997673i \(0.478281\pi\)
\(798\) 0 0
\(799\) 3.61843e6 0.200518
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.17658e6 0.228576
\(804\) 0 0
\(805\) −2.36632e7 −1.28702
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.11075e7 1.13388 0.566938 0.823760i \(-0.308128\pi\)
0.566938 + 0.823760i \(0.308128\pi\)
\(810\) 0 0
\(811\) 1.56012e7 0.832925 0.416462 0.909153i \(-0.363270\pi\)
0.416462 + 0.909153i \(0.363270\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.73465e6 0.407893
\(816\) 0 0
\(817\) 141544. 0.00741885
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.04677e6 0.209532 0.104766 0.994497i \(-0.466591\pi\)
0.104766 + 0.994497i \(0.466591\pi\)
\(822\) 0 0
\(823\) −2.21529e7 −1.14007 −0.570035 0.821620i \(-0.693071\pi\)
−0.570035 + 0.821620i \(0.693071\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.72252e7 −0.875792 −0.437896 0.899026i \(-0.644276\pi\)
−0.437896 + 0.899026i \(0.644276\pi\)
\(828\) 0 0
\(829\) −2.31834e7 −1.17163 −0.585816 0.810444i \(-0.699226\pi\)
−0.585816 + 0.810444i \(0.699226\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.95446e6 0.0975919
\(834\) 0 0
\(835\) 1.51131e7 0.750131
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.07272e7 −0.526118 −0.263059 0.964780i \(-0.584731\pi\)
−0.263059 + 0.964780i \(0.584731\pi\)
\(840\) 0 0
\(841\) −2.02900e7 −0.989216
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.85809e7 −0.895211
\(846\) 0 0
\(847\) −7.06432e7 −3.38346
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.16111e7 1.49629
\(852\) 0 0
\(853\) −421069. −0.0198144 −0.00990719 0.999951i \(-0.503154\pi\)
−0.00990719 + 0.999951i \(0.503154\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.71932e7 1.26476 0.632381 0.774658i \(-0.282078\pi\)
0.632381 + 0.774658i \(0.282078\pi\)
\(858\) 0 0
\(859\) −2.01529e7 −0.931869 −0.465934 0.884819i \(-0.654282\pi\)
−0.465934 + 0.884819i \(0.654282\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.88086e7 0.859666 0.429833 0.902908i \(-0.358572\pi\)
0.429833 + 0.902908i \(0.358572\pi\)
\(864\) 0 0
\(865\) −9.84269e6 −0.447274
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.33579e7 2.84611
\(870\) 0 0
\(871\) 9.13234e6 0.407884
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.74302e7 1.21118
\(876\) 0 0
\(877\) −2.21143e7 −0.970898 −0.485449 0.874265i \(-0.661344\pi\)
−0.485449 + 0.874265i \(0.661344\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.00370e7 0.435677 0.217838 0.975985i \(-0.430099\pi\)
0.217838 + 0.975985i \(0.430099\pi\)
\(882\) 0 0
\(883\) 2.12042e7 0.915207 0.457604 0.889156i \(-0.348708\pi\)
0.457604 + 0.889156i \(0.348708\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.73507e7 0.740472 0.370236 0.928938i \(-0.379277\pi\)
0.370236 + 0.928938i \(0.379277\pi\)
\(888\) 0 0
\(889\) −1.17080e7 −0.496855
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.79235e7 −1.17177
\(894\) 0 0
\(895\) −2.28718e7 −0.954427
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.64606e6 −0.0679275
\(900\) 0 0
\(901\) −186624. −0.00765871
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.71791e6 0.394413
\(906\) 0 0
\(907\) 1.02757e7 0.414756 0.207378 0.978261i \(-0.433507\pi\)
0.207378 + 0.978261i \(0.433507\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.94713e7 −1.57574 −0.787871 0.615840i \(-0.788817\pi\)
−0.787871 + 0.615840i \(0.788817\pi\)
\(912\) 0 0
\(913\) 1.01537e7 0.403133
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.32872e7 −0.914523
\(918\) 0 0
\(919\) 1.65850e6 0.0647779 0.0323889 0.999475i \(-0.489688\pi\)
0.0323889 + 0.999475i \(0.489688\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −580235. −0.0224181
\(924\) 0 0
\(925\) 4.34106e6 0.166818
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.65517e6 −0.176969 −0.0884843 0.996078i \(-0.528202\pi\)
−0.0884843 + 0.996078i \(0.528202\pi\)
\(930\) 0 0
\(931\) −1.50826e7 −0.570298
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.92365e6 0.296412
\(936\) 0 0
\(937\) −3.86106e7 −1.43667 −0.718337 0.695696i \(-0.755096\pi\)
−0.718337 + 0.695696i \(0.755096\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.14452e7 −1.15766 −0.578828 0.815449i \(-0.696490\pi\)
−0.578828 + 0.815449i \(0.696490\pi\)
\(942\) 0 0
\(943\) 2.26714e7 0.830230
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.34273e6 0.338531 0.169266 0.985570i \(-0.445860\pi\)
0.169266 + 0.985570i \(0.445860\pi\)
\(948\) 0 0
\(949\) −1.28428e6 −0.0462906
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −4.89849e6 −0.174715 −0.0873574 0.996177i \(-0.527842\pi\)
−0.0873574 + 0.996177i \(0.527842\pi\)
\(954\) 0 0
\(955\) 2.02211e7 0.717456
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.58063e6 −0.0554987
\(960\) 0 0
\(961\) −1.63792e7 −0.572114
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.48019e7 −0.511680
\(966\) 0 0
\(967\) 1.13925e7 0.391791 0.195896 0.980625i \(-0.437239\pi\)
0.195896 + 0.980625i \(0.437239\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.48394e7 0.505089 0.252544 0.967585i \(-0.418733\pi\)
0.252544 + 0.967585i \(0.418733\pi\)
\(972\) 0 0
\(973\) −2.52025e7 −0.853416
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.53280e7 −0.848915 −0.424458 0.905448i \(-0.639535\pi\)
−0.424458 + 0.905448i \(0.639535\pi\)
\(978\) 0 0
\(979\) 6.86051e7 2.28770
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.48906e7 −1.15166 −0.575830 0.817569i \(-0.695321\pi\)
−0.575830 + 0.817569i \(0.695321\pi\)
\(984\) 0 0
\(985\) 4.82630e7 1.58498
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −250671. −0.00814917
\(990\) 0 0
\(991\) −2.38192e7 −0.770447 −0.385224 0.922823i \(-0.625876\pi\)
−0.385224 + 0.922823i \(0.625876\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.97619e7 0.632807
\(996\) 0 0
\(997\) 3.78624e7 1.20634 0.603171 0.797612i \(-0.293904\pi\)
0.603171 + 0.797612i \(0.293904\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.6.a.o.1.2 2
3.2 odd 2 inner 432.6.a.o.1.1 2
4.3 odd 2 27.6.a.c.1.2 yes 2
12.11 even 2 27.6.a.c.1.1 2
20.19 odd 2 675.6.a.j.1.1 2
36.7 odd 6 81.6.c.f.28.1 4
36.11 even 6 81.6.c.f.28.2 4
36.23 even 6 81.6.c.f.55.2 4
36.31 odd 6 81.6.c.f.55.1 4
60.59 even 2 675.6.a.j.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.6.a.c.1.1 2 12.11 even 2
27.6.a.c.1.2 yes 2 4.3 odd 2
81.6.c.f.28.1 4 36.7 odd 6
81.6.c.f.28.2 4 36.11 even 6
81.6.c.f.55.1 4 36.31 odd 6
81.6.c.f.55.2 4 36.23 even 6
432.6.a.o.1.1 2 3.2 odd 2 inner
432.6.a.o.1.2 2 1.1 even 1 trivial
675.6.a.j.1.1 2 20.19 odd 2
675.6.a.j.1.2 2 60.59 even 2