Properties

Label 432.6.a.k
Level $432$
Weight $6$
Character orbit 432.a
Self dual yes
Analytic conductor $69.286$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,6,Mod(1,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 432.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.2858101592\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 5 \beta - 36) q^{5} + ( - 9 \beta + 4) q^{7} + (16 \beta + 261) q^{11} + (36 \beta - 352) q^{13} + (84 \beta - 108) q^{17} + (54 \beta + 1420) q^{19} + (20 \beta - 18) q^{23} + (360 \beta + 1996) q^{25}+ \cdots + (6840 \beta + 84983) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 72 q^{5} + 8 q^{7} + 522 q^{11} - 704 q^{13} - 216 q^{17} + 2840 q^{19} - 36 q^{23} + 3992 q^{25} - 12240 q^{29} + 1064 q^{31} + 13482 q^{35} + 9004 q^{37} - 5688 q^{41} - 784 q^{43} + 1116 q^{47}+ \cdots + 169966 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0 0 0 −97.8466 0 −107.324 0 0 0
1.2 0 0 0 25.8466 0 115.324 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 432.6.a.k 2
3.b odd 2 1 432.6.a.v 2
4.b odd 2 1 27.6.a.b 2
12.b even 2 1 27.6.a.d yes 2
20.d odd 2 1 675.6.a.n 2
36.f odd 6 2 81.6.c.h 4
36.h even 6 2 81.6.c.d 4
60.h even 2 1 675.6.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.6.a.b 2 4.b odd 2 1
27.6.a.d yes 2 12.b even 2 1
81.6.c.d 4 36.h even 6 2
81.6.c.h 4 36.f odd 6 2
432.6.a.k 2 1.a even 1 1 trivial
432.6.a.v 2 3.b odd 2 1
675.6.a.f 2 60.h even 2 1
675.6.a.n 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(432))\):

\( T_{5}^{2} + 72T_{5} - 2529 \) Copy content Toggle raw display
\( T_{7}^{2} - 8T_{7} - 12377 \) Copy content Toggle raw display
\( T_{11}^{2} - 522T_{11} + 28953 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 72T - 2529 \) Copy content Toggle raw display
$7$ \( T^{2} - 8T - 12377 \) Copy content Toggle raw display
$11$ \( T^{2} - 522T + 28953 \) Copy content Toggle raw display
$13$ \( T^{2} + 704T - 74384 \) Copy content Toggle raw display
$17$ \( T^{2} + 216 T - 1067904 \) Copy content Toggle raw display
$19$ \( T^{2} - 2840 T + 1570252 \) Copy content Toggle raw display
$23$ \( T^{2} + 36T - 60876 \) Copy content Toggle raw display
$29$ \( T^{2} + 12240 T + 36322812 \) Copy content Toggle raw display
$31$ \( T^{2} - 1064 T - 10139489 \) Copy content Toggle raw display
$37$ \( T^{2} - 9004 T - 24346796 \) Copy content Toggle raw display
$41$ \( T^{2} + 5688 T - 155492532 \) Copy content Toggle raw display
$43$ \( T^{2} + 784 T - 91504964 \) Copy content Toggle raw display
$47$ \( T^{2} - 1116 T - 387461628 \) Copy content Toggle raw display
$53$ \( T^{2} + 4536 T - 176302089 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1089039312 \) Copy content Toggle raw display
$61$ \( T^{2} + 49904 T + 419555392 \) Copy content Toggle raw display
$67$ \( T^{2} - 42176 T - 655844228 \) Copy content Toggle raw display
$71$ \( T^{2} + 43848 T - 374378112 \) Copy content Toggle raw display
$73$ \( T^{2} - 47218 T + 300403633 \) Copy content Toggle raw display
$79$ \( T^{2} - 49616 T + 612264256 \) Copy content Toggle raw display
$83$ \( T^{2} + 102294 T + 969980409 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 3686257188 \) Copy content Toggle raw display
$97$ \( T^{2} - 169966 T + 63913489 \) Copy content Toggle raw display
show more
show less