Properties

Label 432.5.q.a.305.1
Level $432$
Weight $5$
Character 432.305
Analytic conductor $44.656$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,5,Mod(17,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.17");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 432.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6558240522\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.39400128.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.1
Root \(-1.28901 - 2.23263i\) of defining polynomial
Character \(\chi\) \(=\) 432.305
Dual form 432.5.q.a.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-13.8760 + 8.01130i) q^{5} +(36.2418 - 62.7727i) q^{7} +(83.2749 + 48.0788i) q^{11} +(-76.9530 - 133.286i) q^{13} +72.7905i q^{17} +190.660 q^{19} +(-12.5186 + 7.22762i) q^{23} +(-184.138 + 318.937i) q^{25} +(-620.301 - 358.131i) q^{29} +(-151.284 - 262.031i) q^{31} +1161.38i q^{35} +826.277 q^{37} +(-481.613 + 278.059i) q^{41} +(446.340 - 773.084i) q^{43} +(-3425.50 - 1977.72i) q^{47} +(-1426.44 - 2470.67i) q^{49} -1966.96i q^{53} -1540.69 q^{55} +(4689.48 - 2707.47i) q^{59} +(856.210 - 1483.00i) q^{61} +(2135.60 + 1232.99i) q^{65} +(-2317.24 - 4013.58i) q^{67} -6697.12i q^{71} -4823.86 q^{73} +(6036.07 - 3484.93i) q^{77} +(-2864.40 + 4961.28i) q^{79} +(2452.78 + 1416.12i) q^{83} +(-583.147 - 1010.04i) q^{85} -14277.7i q^{89} -11155.7 q^{91} +(-2645.60 + 1527.44i) q^{95} +(-3582.65 + 6205.34i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{5} - 12 q^{7} + 483 q^{11} - 6 q^{13} + 258 q^{19} - 282 q^{23} - 273 q^{25} + 1056 q^{29} - 1290 q^{31} + 12 q^{37} - 7629 q^{41} + 285 q^{43} - 9642 q^{47} - 1863 q^{49} - 2016 q^{55} + 6225 q^{59}+ \cdots - 28959 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −13.8760 + 8.01130i −0.555039 + 0.320452i −0.751152 0.660129i \(-0.770501\pi\)
0.196113 + 0.980581i \(0.437168\pi\)
\(6\) 0 0
\(7\) 36.2418 62.7727i 0.739630 1.28108i −0.213033 0.977045i \(-0.568334\pi\)
0.952662 0.304031i \(-0.0983326\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 83.2749 + 48.0788i 0.688222 + 0.397345i 0.802946 0.596052i \(-0.203265\pi\)
−0.114723 + 0.993397i \(0.536598\pi\)
\(12\) 0 0
\(13\) −76.9530 133.286i −0.455343 0.788677i 0.543365 0.839497i \(-0.317150\pi\)
−0.998708 + 0.0508193i \(0.983817\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 72.7905i 0.251870i 0.992038 + 0.125935i \(0.0401931\pi\)
−0.992038 + 0.125935i \(0.959807\pi\)
\(18\) 0 0
\(19\) 190.660 0.528145 0.264072 0.964503i \(-0.414934\pi\)
0.264072 + 0.964503i \(0.414934\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −12.5186 + 7.22762i −0.0236647 + 0.0136628i −0.511786 0.859113i \(-0.671016\pi\)
0.488121 + 0.872776i \(0.337682\pi\)
\(24\) 0 0
\(25\) −184.138 + 318.937i −0.294621 + 0.510298i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −620.301 358.131i −0.737575 0.425839i 0.0836117 0.996498i \(-0.473354\pi\)
−0.821187 + 0.570659i \(0.806688\pi\)
\(30\) 0 0
\(31\) −151.284 262.031i −0.157423 0.272665i 0.776515 0.630098i \(-0.216985\pi\)
−0.933939 + 0.357433i \(0.883652\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1161.38i 0.948063i
\(36\) 0 0
\(37\) 826.277 0.603562 0.301781 0.953377i \(-0.402419\pi\)
0.301781 + 0.953377i \(0.402419\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −481.613 + 278.059i −0.286504 + 0.165413i −0.636364 0.771389i \(-0.719562\pi\)
0.349860 + 0.936802i \(0.386229\pi\)
\(42\) 0 0
\(43\) 446.340 773.084i 0.241395 0.418109i −0.719717 0.694268i \(-0.755728\pi\)
0.961112 + 0.276159i \(0.0890616\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3425.50 1977.72i −1.55070 0.895299i −0.998085 0.0618654i \(-0.980295\pi\)
−0.552619 0.833434i \(-0.686372\pi\)
\(48\) 0 0
\(49\) −1426.44 2470.67i −0.594104 1.02902i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1966.96i 0.700234i −0.936706 0.350117i \(-0.886142\pi\)
0.936706 0.350117i \(-0.113858\pi\)
\(54\) 0 0
\(55\) −1540.69 −0.509320
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4689.48 2707.47i 1.34716 0.777785i 0.359316 0.933216i \(-0.383010\pi\)
0.987847 + 0.155431i \(0.0496765\pi\)
\(60\) 0 0
\(61\) 856.210 1483.00i 0.230102 0.398549i −0.727736 0.685858i \(-0.759427\pi\)
0.957838 + 0.287309i \(0.0927606\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2135.60 + 1232.99i 0.505467 + 0.291831i
\(66\) 0 0
\(67\) −2317.24 4013.58i −0.516205 0.894093i −0.999823 0.0188141i \(-0.994011\pi\)
0.483618 0.875279i \(-0.339322\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6697.12i 1.32853i −0.747497 0.664265i \(-0.768744\pi\)
0.747497 0.664265i \(-0.231256\pi\)
\(72\) 0 0
\(73\) −4823.86 −0.905208 −0.452604 0.891712i \(-0.649505\pi\)
−0.452604 + 0.891712i \(0.649505\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6036.07 3484.93i 1.01806 0.587777i
\(78\) 0 0
\(79\) −2864.40 + 4961.28i −0.458964 + 0.794950i −0.998907 0.0467524i \(-0.985113\pi\)
0.539942 + 0.841702i \(0.318446\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2452.78 + 1416.12i 0.356044 + 0.205562i 0.667344 0.744750i \(-0.267431\pi\)
−0.311300 + 0.950312i \(0.600765\pi\)
\(84\) 0 0
\(85\) −583.147 1010.04i −0.0807124 0.139798i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14277.7i 1.80251i −0.433290 0.901255i \(-0.642647\pi\)
0.433290 0.901255i \(-0.357353\pi\)
\(90\) 0 0
\(91\) −11155.7 −1.34714
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2645.60 + 1527.44i −0.293141 + 0.169245i
\(96\) 0 0
\(97\) −3582.65 + 6205.34i −0.380769 + 0.659511i −0.991172 0.132580i \(-0.957674\pi\)
0.610403 + 0.792091i \(0.291007\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1696.72 + 979.600i 0.166328 + 0.0960298i 0.580853 0.814008i \(-0.302719\pi\)
−0.414525 + 0.910038i \(0.636052\pi\)
\(102\) 0 0
\(103\) −2577.74 4464.77i −0.242976 0.420848i 0.718584 0.695440i \(-0.244790\pi\)
−0.961561 + 0.274592i \(0.911457\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9117.08i 0.796321i −0.917316 0.398161i \(-0.869649\pi\)
0.917316 0.398161i \(-0.130351\pi\)
\(108\) 0 0
\(109\) −16161.1 −1.36024 −0.680122 0.733099i \(-0.738073\pi\)
−0.680122 + 0.733099i \(0.738073\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18272.5 + 10549.6i −1.43100 + 0.826189i −0.997197 0.0748185i \(-0.976162\pi\)
−0.433804 + 0.901007i \(0.642829\pi\)
\(114\) 0 0
\(115\) 115.805 200.581i 0.00875654 0.0151668i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4569.26 + 2638.06i 0.322665 + 0.186291i
\(120\) 0 0
\(121\) −2697.36 4671.97i −0.184233 0.319102i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 15914.9i 1.01855i
\(126\) 0 0
\(127\) 20660.9 1.28098 0.640489 0.767968i \(-0.278732\pi\)
0.640489 + 0.767968i \(0.278732\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2772.53 1600.72i 0.161560 0.0932768i −0.417040 0.908888i \(-0.636933\pi\)
0.578600 + 0.815611i \(0.303599\pi\)
\(132\) 0 0
\(133\) 6909.88 11968.3i 0.390631 0.676594i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3353.18 + 1935.96i 0.178655 + 0.103147i 0.586661 0.809833i \(-0.300442\pi\)
−0.408005 + 0.912980i \(0.633776\pi\)
\(138\) 0 0
\(139\) −5839.62 10114.5i −0.302242 0.523499i 0.674401 0.738365i \(-0.264402\pi\)
−0.976644 + 0.214866i \(0.931068\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14799.2i 0.723714i
\(144\) 0 0
\(145\) 11476.4 0.545844
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13069.8 7545.88i 0.588705 0.339889i −0.175880 0.984412i \(-0.556277\pi\)
0.764585 + 0.644522i \(0.222944\pi\)
\(150\) 0 0
\(151\) 15127.7 26201.9i 0.663465 1.14915i −0.316234 0.948681i \(-0.602419\pi\)
0.979699 0.200474i \(-0.0642481\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4198.42 + 2423.96i 0.174752 + 0.100893i
\(156\) 0 0
\(157\) −10311.4 17859.8i −0.418328 0.724565i 0.577443 0.816431i \(-0.304050\pi\)
−0.995771 + 0.0918653i \(0.970717\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1047.77i 0.0404216i
\(162\) 0 0
\(163\) −39790.7 −1.49764 −0.748818 0.662776i \(-0.769378\pi\)
−0.748818 + 0.662776i \(0.769378\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −23773.0 + 13725.3i −0.852414 + 0.492141i −0.861465 0.507818i \(-0.830452\pi\)
0.00905084 + 0.999959i \(0.497119\pi\)
\(168\) 0 0
\(169\) 2436.98 4220.97i 0.0853253 0.147788i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8729.26 5039.84i −0.291666 0.168393i 0.347027 0.937855i \(-0.387191\pi\)
−0.638693 + 0.769462i \(0.720525\pi\)
\(174\) 0 0
\(175\) 13347.0 + 23117.7i 0.435821 + 0.754864i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1215.45i 0.0379343i −0.999820 0.0189672i \(-0.993962\pi\)
0.999820 0.0189672i \(-0.00603779\pi\)
\(180\) 0 0
\(181\) 28359.9 0.865661 0.432831 0.901475i \(-0.357515\pi\)
0.432831 + 0.901475i \(0.357515\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −11465.4 + 6619.55i −0.335001 + 0.193413i
\(186\) 0 0
\(187\) −3499.68 + 6061.62i −0.100079 + 0.173343i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8445.34 4875.92i −0.231500 0.133656i 0.379764 0.925083i \(-0.376005\pi\)
−0.611264 + 0.791427i \(0.709339\pi\)
\(192\) 0 0
\(193\) 26701.4 + 46248.2i 0.716836 + 1.24160i 0.962247 + 0.272177i \(0.0877436\pi\)
−0.245411 + 0.969419i \(0.578923\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 68537.7i 1.76603i 0.469349 + 0.883013i \(0.344489\pi\)
−0.469349 + 0.883013i \(0.655511\pi\)
\(198\) 0 0
\(199\) 8237.42 0.208010 0.104005 0.994577i \(-0.466834\pi\)
0.104005 + 0.994577i \(0.466834\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −44961.7 + 25958.7i −1.09107 + 0.629927i
\(204\) 0 0
\(205\) 4455.24 7716.70i 0.106014 0.183622i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15877.2 + 9166.71i 0.363481 + 0.209856i
\(210\) 0 0
\(211\) 20393.7 + 35322.9i 0.458069 + 0.793399i 0.998859 0.0477587i \(-0.0152079\pi\)
−0.540790 + 0.841158i \(0.681875\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14303.1i 0.309423i
\(216\) 0 0
\(217\) −21931.2 −0.465740
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9701.99 5601.45i 0.198644 0.114687i
\(222\) 0 0
\(223\) −29959.8 + 51891.9i −0.602461 + 1.04349i 0.389986 + 0.920821i \(0.372480\pi\)
−0.992447 + 0.122672i \(0.960854\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 85572.3 + 49405.2i 1.66066 + 0.958785i 0.972399 + 0.233325i \(0.0749607\pi\)
0.688265 + 0.725459i \(0.258373\pi\)
\(228\) 0 0
\(229\) 2658.97 + 4605.47i 0.0507040 + 0.0878220i 0.890263 0.455446i \(-0.150520\pi\)
−0.839559 + 0.543268i \(0.817187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18467.8i 0.340176i −0.985429 0.170088i \(-0.945595\pi\)
0.985429 0.170088i \(-0.0544052\pi\)
\(234\) 0 0
\(235\) 63376.3 1.14760
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22383.5 12923.1i 0.391861 0.226241i −0.291105 0.956691i \(-0.594023\pi\)
0.682966 + 0.730450i \(0.260690\pi\)
\(240\) 0 0
\(241\) −41536.2 + 71942.7i −0.715142 + 1.23866i 0.247763 + 0.968821i \(0.420305\pi\)
−0.962905 + 0.269841i \(0.913029\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 39586.6 + 22855.3i 0.659502 + 0.380764i
\(246\) 0 0
\(247\) −14671.9 25412.4i −0.240487 0.416536i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 49051.6i 0.778585i −0.921114 0.389292i \(-0.872720\pi\)
0.921114 0.389292i \(-0.127280\pi\)
\(252\) 0 0
\(253\) −1389.98 −0.0217154
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −84096.0 + 48552.9i −1.27324 + 0.735104i −0.975596 0.219574i \(-0.929533\pi\)
−0.297641 + 0.954678i \(0.596200\pi\)
\(258\) 0 0
\(259\) 29945.8 51867.7i 0.446413 0.773209i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 35921.0 + 20739.0i 0.519323 + 0.299831i 0.736658 0.676266i \(-0.236403\pi\)
−0.217335 + 0.976097i \(0.569736\pi\)
\(264\) 0 0
\(265\) 15757.9 + 27293.5i 0.224391 + 0.388657i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 115737.i 1.59944i −0.600370 0.799722i \(-0.704980\pi\)
0.600370 0.799722i \(-0.295020\pi\)
\(270\) 0 0
\(271\) 5077.71 0.0691400 0.0345700 0.999402i \(-0.488994\pi\)
0.0345700 + 0.999402i \(0.488994\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −30668.2 + 17706.3i −0.405529 + 0.234133i
\(276\) 0 0
\(277\) 21192.9 36707.2i 0.276205 0.478401i −0.694234 0.719750i \(-0.744257\pi\)
0.970438 + 0.241349i \(0.0775899\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 35902.5 + 20728.3i 0.454687 + 0.262513i 0.709807 0.704396i \(-0.248782\pi\)
−0.255121 + 0.966909i \(0.582115\pi\)
\(282\) 0 0
\(283\) 19194.0 + 33245.0i 0.239658 + 0.415100i 0.960616 0.277879i \(-0.0896313\pi\)
−0.720958 + 0.692979i \(0.756298\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 40309.6i 0.489378i
\(288\) 0 0
\(289\) 78222.5 0.936561
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11239.5 6489.12i 0.130922 0.0755876i −0.433109 0.901342i \(-0.642583\pi\)
0.564030 + 0.825754i \(0.309250\pi\)
\(294\) 0 0
\(295\) −43380.7 + 75137.6i −0.498486 + 0.863402i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1926.69 + 1112.37i 0.0215511 + 0.0124425i
\(300\) 0 0
\(301\) −32352.4 56036.0i −0.357086 0.618492i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 27437.4i 0.294947i
\(306\) 0 0
\(307\) 126105. 1.33799 0.668997 0.743265i \(-0.266724\pi\)
0.668997 + 0.743265i \(0.266724\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −86432.4 + 49901.7i −0.893626 + 0.515935i −0.875127 0.483894i \(-0.839222\pi\)
−0.0184989 + 0.999829i \(0.505889\pi\)
\(312\) 0 0
\(313\) 1112.68 1927.21i 0.0113574 0.0196716i −0.860291 0.509804i \(-0.829718\pi\)
0.871648 + 0.490132i \(0.163051\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 145552. + 84034.3i 1.44843 + 0.836254i 0.998388 0.0567515i \(-0.0180743\pi\)
0.450046 + 0.893005i \(0.351408\pi\)
\(318\) 0 0
\(319\) −34437.0 59646.6i −0.338410 0.586144i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13878.3i 0.133024i
\(324\) 0 0
\(325\) 56679.9 0.536615
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −248293. + 143352.i −2.29389 + 1.32438i
\(330\) 0 0
\(331\) 3379.43 5853.34i 0.0308452 0.0534254i −0.850191 0.526475i \(-0.823513\pi\)
0.881036 + 0.473049i \(0.156847\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 64308.1 + 37128.3i 0.573028 + 0.330838i
\(336\) 0 0
\(337\) 111046. + 192338.i 0.977787 + 1.69358i 0.670413 + 0.741988i \(0.266117\pi\)
0.307375 + 0.951589i \(0.400550\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 29094.2i 0.250206i
\(342\) 0 0
\(343\) −32754.4 −0.278408
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −140770. + 81273.8i −1.16910 + 0.674981i −0.953468 0.301494i \(-0.902515\pi\)
−0.215633 + 0.976475i \(0.569181\pi\)
\(348\) 0 0
\(349\) 36348.5 62957.4i 0.298425 0.516887i −0.677351 0.735660i \(-0.736872\pi\)
0.975776 + 0.218773i \(0.0702054\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −111396. 64314.6i −0.893966 0.516131i −0.0187281 0.999825i \(-0.505962\pi\)
−0.875238 + 0.483693i \(0.839295\pi\)
\(354\) 0 0
\(355\) 53652.7 + 92929.2i 0.425730 + 0.737387i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 95302.8i 0.739463i −0.929139 0.369732i \(-0.879450\pi\)
0.929139 0.369732i \(-0.120550\pi\)
\(360\) 0 0
\(361\) −93969.7 −0.721063
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 66935.7 38645.4i 0.502426 0.290076i
\(366\) 0 0
\(367\) 52073.0 90193.1i 0.386616 0.669639i −0.605376 0.795940i \(-0.706977\pi\)
0.991992 + 0.126301i \(0.0403104\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −123471. 71286.2i −0.897053 0.517914i
\(372\) 0 0
\(373\) −122915. 212896.i −0.883463 1.53020i −0.847465 0.530851i \(-0.821872\pi\)
−0.0359975 0.999352i \(-0.511461\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 110237.i 0.775612i
\(378\) 0 0
\(379\) −200830. −1.39814 −0.699070 0.715053i \(-0.746403\pi\)
−0.699070 + 0.715053i \(0.746403\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 117206. 67668.8i 0.799008 0.461308i −0.0441160 0.999026i \(-0.514047\pi\)
0.843124 + 0.537719i \(0.180714\pi\)
\(384\) 0 0
\(385\) −55837.6 + 96713.6i −0.376708 + 0.652478i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 175090. + 101088.i 1.15708 + 0.668039i 0.950602 0.310413i \(-0.100467\pi\)
0.206475 + 0.978452i \(0.433801\pi\)
\(390\) 0 0
\(391\) −526.102 911.236i −0.00344125 0.00596043i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 91790.2i 0.588304i
\(396\) 0 0
\(397\) 102384. 0.649608 0.324804 0.945781i \(-0.394702\pi\)
0.324804 + 0.945781i \(0.394702\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 78026.4 45048.6i 0.485236 0.280151i −0.237360 0.971422i \(-0.576282\pi\)
0.722596 + 0.691271i \(0.242949\pi\)
\(402\) 0 0
\(403\) −23283.5 + 40328.2i −0.143363 + 0.248313i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 68808.1 + 39726.4i 0.415385 + 0.239823i
\(408\) 0 0
\(409\) −74861.0 129663.i −0.447517 0.775122i 0.550707 0.834699i \(-0.314358\pi\)
−0.998224 + 0.0595770i \(0.981025\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 392495.i 2.30109i
\(414\) 0 0
\(415\) −45379.7 −0.263491
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 109423. 63175.3i 0.623276 0.359848i −0.154868 0.987935i \(-0.549495\pi\)
0.778143 + 0.628087i \(0.216162\pi\)
\(420\) 0 0
\(421\) 107645. 186446.i 0.607335 1.05194i −0.384342 0.923191i \(-0.625572\pi\)
0.991678 0.128745i \(-0.0410949\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −23215.6 13403.5i −0.128529 0.0742063i
\(426\) 0 0
\(427\) −62061.3 107493.i −0.340381 0.589557i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 121972.i 0.656607i 0.944572 + 0.328304i \(0.106477\pi\)
−0.944572 + 0.328304i \(0.893523\pi\)
\(432\) 0 0
\(433\) −152419. −0.812951 −0.406475 0.913662i \(-0.633242\pi\)
−0.406475 + 0.913662i \(0.633242\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2386.80 + 1378.02i −0.0124984 + 0.00721593i
\(438\) 0 0
\(439\) 115564. 200162.i 0.599643 1.03861i −0.393230 0.919440i \(-0.628642\pi\)
0.992874 0.119173i \(-0.0380242\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17481.4 10092.9i −0.0890774 0.0514289i 0.454800 0.890594i \(-0.349711\pi\)
−0.543877 + 0.839165i \(0.683044\pi\)
\(444\) 0 0
\(445\) 114383. + 198117.i 0.577618 + 1.00046i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 92962.8i 0.461123i −0.973058 0.230561i \(-0.925944\pi\)
0.973058 0.230561i \(-0.0740562\pi\)
\(450\) 0 0
\(451\) −53475.0 −0.262905
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 154796. 89371.5i 0.747716 0.431694i
\(456\) 0 0
\(457\) −110443. + 191293.i −0.528819 + 0.915941i 0.470616 + 0.882338i \(0.344032\pi\)
−0.999435 + 0.0336033i \(0.989302\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −91967.2 53097.3i −0.432744 0.249845i 0.267771 0.963483i \(-0.413713\pi\)
−0.700515 + 0.713638i \(0.747046\pi\)
\(462\) 0 0
\(463\) −34090.0 59045.5i −0.159025 0.275439i 0.775493 0.631357i \(-0.217502\pi\)
−0.934517 + 0.355918i \(0.884168\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 224350.i 1.02871i −0.857578 0.514353i \(-0.828032\pi\)
0.857578 0.514353i \(-0.171968\pi\)
\(468\) 0 0
\(469\) −335925. −1.52720
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 74337.9 42919.0i 0.332267 0.191835i
\(474\) 0 0
\(475\) −35107.8 + 60808.5i −0.155603 + 0.269511i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −94542.7 54584.3i −0.412057 0.237901i 0.279616 0.960112i \(-0.409793\pi\)
−0.691673 + 0.722211i \(0.743126\pi\)
\(480\) 0 0
\(481\) −63584.5 110132.i −0.274828 0.476016i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 114807.i 0.488073i
\(486\) 0 0
\(487\) −106309. −0.448240 −0.224120 0.974562i \(-0.571951\pi\)
−0.224120 + 0.974562i \(0.571951\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −64472.7 + 37223.3i −0.267432 + 0.154402i −0.627720 0.778439i \(-0.716012\pi\)
0.360288 + 0.932841i \(0.382678\pi\)
\(492\) 0 0
\(493\) 26068.5 45152.0i 0.107256 0.185773i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −420397. 242716.i −1.70195 0.982621i
\(498\) 0 0
\(499\) −55603.4 96308.0i −0.223306 0.386777i 0.732504 0.680763i \(-0.238352\pi\)
−0.955810 + 0.293985i \(0.905018\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 115897.i 0.458077i −0.973417 0.229038i \(-0.926442\pi\)
0.973417 0.229038i \(-0.0735581\pi\)
\(504\) 0 0
\(505\) −31391.5 −0.123092
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 170299. 98322.1i 0.657319 0.379503i −0.133936 0.990990i \(-0.542762\pi\)
0.791255 + 0.611487i \(0.209428\pi\)
\(510\) 0 0
\(511\) −174825. + 302807.i −0.669519 + 1.15964i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 71537.3 + 41302.1i 0.269723 + 0.155725i
\(516\) 0 0
\(517\) −190172. 329388.i −0.711486 1.23233i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 299306.i 1.10266i 0.834289 + 0.551328i \(0.185879\pi\)
−0.834289 + 0.551328i \(0.814121\pi\)
\(522\) 0 0
\(523\) 162892. 0.595520 0.297760 0.954641i \(-0.403760\pi\)
0.297760 + 0.954641i \(0.403760\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19073.4 11012.0i 0.0686763 0.0396503i
\(528\) 0 0
\(529\) −139816. + 242168.i −0.499627 + 0.865379i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 74123.1 + 42795.0i 0.260915 + 0.150639i
\(534\) 0 0
\(535\) 73039.7 + 126508.i 0.255183 + 0.441989i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 274327.i 0.944257i
\(540\) 0 0
\(541\) −62918.7 −0.214974 −0.107487 0.994207i \(-0.534280\pi\)
−0.107487 + 0.994207i \(0.534280\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 224251. 129471.i 0.754989 0.435893i
\(546\) 0 0
\(547\) −7403.57 + 12823.4i −0.0247438 + 0.0428575i −0.878132 0.478418i \(-0.841210\pi\)
0.853388 + 0.521276i \(0.174544\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −118267. 68281.3i −0.389547 0.224905i
\(552\) 0 0
\(553\) 207622. + 359612.i 0.678927 + 1.17594i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 254392.i 0.819962i 0.912094 + 0.409981i \(0.134465\pi\)
−0.912094 + 0.409981i \(0.865535\pi\)
\(558\) 0 0
\(559\) −137389. −0.439671
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 80806.7 46653.8i 0.254936 0.147187i −0.367087 0.930187i \(-0.619645\pi\)
0.622022 + 0.783000i \(0.286311\pi\)
\(564\) 0 0
\(565\) 169032. 292772.i 0.529508 0.917134i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 136853. + 79012.1i 0.422698 + 0.244045i 0.696231 0.717818i \(-0.254859\pi\)
−0.273533 + 0.961863i \(0.588192\pi\)
\(570\) 0 0
\(571\) −219188. 379644.i −0.672270 1.16441i −0.977259 0.212050i \(-0.931986\pi\)
0.304988 0.952356i \(-0.401347\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5323.52i 0.0161014i
\(576\) 0 0
\(577\) 214770. 0.645094 0.322547 0.946554i \(-0.395461\pi\)
0.322547 + 0.946554i \(0.395461\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 177787. 102645.i 0.526681 0.304079i
\(582\) 0 0
\(583\) 94568.9 163798.i 0.278235 0.481917i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 568470. + 328206.i 1.64980 + 0.952512i 0.977150 + 0.212550i \(0.0681767\pi\)
0.672649 + 0.739962i \(0.265157\pi\)
\(588\) 0 0
\(589\) −28843.8 49959.0i −0.0831423 0.144007i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 118369.i 0.336612i −0.985735 0.168306i \(-0.946170\pi\)
0.985735 0.168306i \(-0.0538296\pi\)
\(594\) 0 0
\(595\) −84537.3 −0.238789
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −306693. + 177069.i −0.854772 + 0.493503i −0.862258 0.506469i \(-0.830950\pi\)
0.00748620 + 0.999972i \(0.497617\pi\)
\(600\) 0 0
\(601\) 297820. 515839.i 0.824526 1.42812i −0.0777554 0.996972i \(-0.524775\pi\)
0.902281 0.431148i \(-0.141891\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 74857.1 + 43218.8i 0.204514 + 0.118076i
\(606\) 0 0
\(607\) 4860.81 + 8419.17i 0.0131926 + 0.0228503i 0.872546 0.488531i \(-0.162467\pi\)
−0.859354 + 0.511382i \(0.829134\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 608765.i 1.63067i
\(612\) 0 0
\(613\) 194450. 0.517473 0.258736 0.965948i \(-0.416694\pi\)
0.258736 + 0.965948i \(0.416694\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −422308. + 243819.i −1.10932 + 0.640469i −0.938654 0.344860i \(-0.887927\pi\)
−0.170670 + 0.985328i \(0.554593\pi\)
\(618\) 0 0
\(619\) 8628.23 14944.5i 0.0225185 0.0390033i −0.854547 0.519375i \(-0.826165\pi\)
0.877065 + 0.480372i \(0.159498\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −896249. 517449.i −2.30915 1.33319i
\(624\) 0 0
\(625\) 12412.5 + 21499.1i 0.0317760 + 0.0550376i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 60145.1i 0.152019i
\(630\) 0 0
\(631\) 429836. 1.07955 0.539777 0.841808i \(-0.318509\pi\)
0.539777 + 0.841808i \(0.318509\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −286690. + 165521.i −0.710993 + 0.410492i
\(636\) 0 0
\(637\) −219538. + 380251.i −0.541042 + 0.937113i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27979.5 + 16154.0i 0.0680964 + 0.0393155i 0.533662 0.845698i \(-0.320816\pi\)
−0.465565 + 0.885014i \(0.654149\pi\)
\(642\) 0 0
\(643\) 138524. + 239931.i 0.335045 + 0.580315i 0.983494 0.180943i \(-0.0579150\pi\)
−0.648448 + 0.761259i \(0.724582\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 125452.i 0.299689i 0.988710 + 0.149844i \(0.0478773\pi\)
−0.988710 + 0.149844i \(0.952123\pi\)
\(648\) 0 0
\(649\) 520687. 1.23620
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −245936. + 141991.i −0.576760 + 0.332992i −0.759845 0.650105i \(-0.774725\pi\)
0.183085 + 0.983097i \(0.441392\pi\)
\(654\) 0 0
\(655\) −25647.8 + 44423.2i −0.0597815 + 0.103545i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 311139. + 179636.i 0.716446 + 0.413640i 0.813443 0.581644i \(-0.197590\pi\)
−0.0969973 + 0.995285i \(0.530924\pi\)
\(660\) 0 0
\(661\) −98902.1 171303.i −0.226362 0.392070i 0.730366 0.683057i \(-0.239350\pi\)
−0.956727 + 0.290987i \(0.906016\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 221429.i 0.500715i
\(666\) 0 0
\(667\) 10353.7 0.0232726
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 142602. 82331.1i 0.316723 0.182860i
\(672\) 0 0
\(673\) −119036. + 206176.i −0.262814 + 0.455207i −0.966989 0.254820i \(-0.917984\pi\)
0.704175 + 0.710027i \(0.251317\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −216636. 125075.i −0.472666 0.272894i 0.244689 0.969602i \(-0.421314\pi\)
−0.717355 + 0.696708i \(0.754647\pi\)
\(678\) 0 0
\(679\) 259684. + 449786.i 0.563256 + 0.975588i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 267358.i 0.573129i −0.958061 0.286564i \(-0.907487\pi\)
0.958061 0.286564i \(-0.0925132\pi\)
\(684\) 0 0
\(685\) −62038.2 −0.132214
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −262169. + 151363.i −0.552259 + 0.318847i
\(690\) 0 0
\(691\) 168343. 291579.i 0.352565 0.610660i −0.634133 0.773224i \(-0.718643\pi\)
0.986698 + 0.162564i \(0.0519763\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 162061. + 93565.9i 0.335513 + 0.193708i
\(696\) 0 0
\(697\) −20240.1 35056.9i −0.0416627 0.0721618i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 635795.i 1.29384i 0.762557 + 0.646921i \(0.223944\pi\)
−0.762557 + 0.646921i \(0.776056\pi\)
\(702\) 0 0
\(703\) 157538. 0.318768
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 122984. 71005.0i 0.246043 0.142053i
\(708\) 0 0
\(709\) −215513. + 373280.i −0.428728 + 0.742578i −0.996760 0.0804279i \(-0.974371\pi\)
0.568033 + 0.823006i \(0.307705\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3787.73 + 2186.84i 0.00745074 + 0.00430169i
\(714\) 0 0
\(715\) 118561. + 205354.i 0.231916 + 0.401690i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 798370.i 1.54435i 0.635409 + 0.772176i \(0.280832\pi\)
−0.635409 + 0.772176i \(0.719168\pi\)
\(720\) 0 0
\(721\) −373688. −0.718850
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 228442. 131891.i 0.434610 0.250922i
\(726\) 0 0
\(727\) 158557. 274628.i 0.299996 0.519609i −0.676139 0.736775i \(-0.736348\pi\)
0.976135 + 0.217166i \(0.0696812\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 56273.2 + 32489.3i 0.105309 + 0.0608004i
\(732\) 0 0
\(733\) 488922. + 846837.i 0.909979 + 1.57613i 0.814091 + 0.580738i \(0.197236\pi\)
0.0958883 + 0.995392i \(0.469431\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 445641.i 0.820446i
\(738\) 0 0
\(739\) 392565. 0.718825 0.359412 0.933179i \(-0.382977\pi\)
0.359412 + 0.933179i \(0.382977\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 899450. 519298.i 1.62929 0.940673i 0.644990 0.764191i \(-0.276861\pi\)
0.984304 0.176482i \(-0.0564719\pi\)
\(744\) 0 0
\(745\) −120905. + 209413.i −0.217836 + 0.377304i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −572304. 330420.i −1.02015 0.588983i
\(750\) 0 0
\(751\) 159783. + 276752.i 0.283302 + 0.490694i 0.972196 0.234168i \(-0.0752367\pi\)
−0.688894 + 0.724862i \(0.741903\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 484769.i 0.850435i
\(756\) 0 0
\(757\) 500321. 0.873085 0.436543 0.899684i \(-0.356203\pi\)
0.436543 + 0.899684i \(0.356203\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 783645. 452437.i 1.35316 0.781249i 0.364471 0.931215i \(-0.381250\pi\)
0.988691 + 0.149966i \(0.0479165\pi\)
\(762\) 0 0
\(763\) −585707. + 1.01447e6i −1.00608 + 1.74258i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −721738. 416696.i −1.22684 0.708318i
\(768\) 0 0
\(769\) −71688.6 124168.i −0.121227 0.209970i 0.799025 0.601298i \(-0.205349\pi\)
−0.920252 + 0.391327i \(0.872016\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 710063.i 1.18833i 0.804342 + 0.594166i \(0.202518\pi\)
−0.804342 + 0.594166i \(0.797482\pi\)
\(774\) 0 0
\(775\) 111428. 0.185521
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −91824.5 + 53014.9i −0.151316 + 0.0873621i
\(780\) 0 0
\(781\) 321990. 557702.i 0.527885 0.914324i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 286161. + 165215.i 0.464377 + 0.268108i
\(786\) 0 0
\(787\) −300855. 521097.i −0.485745 0.841335i 0.514121 0.857718i \(-0.328118\pi\)
−0.999866 + 0.0163827i \(0.994785\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.52935e6i 2.44429i
\(792\) 0 0
\(793\) −263552. −0.419102
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 372227. 214905.i 0.585991 0.338322i −0.177519 0.984117i \(-0.556807\pi\)
0.763511 + 0.645795i \(0.223474\pi\)
\(798\) 0 0
\(799\) 143959. 249344.i 0.225499 0.390576i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −401706. 231925.i −0.622984 0.359680i
\(804\) 0 0
\(805\) −8393.99 14538.8i −0.0129532 0.0224356i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 629639.i 0.962042i 0.876709 + 0.481021i \(0.159734\pi\)
−0.876709 + 0.481021i \(0.840266\pi\)
\(810\) 0 0
\(811\) −577760. −0.878428 −0.439214 0.898383i \(-0.644743\pi\)
−0.439214 + 0.898383i \(0.644743\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 552135. 318775.i 0.831246 0.479920i
\(816\) 0 0
\(817\) 85099.3 147396.i 0.127492 0.220822i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −38728.3 22359.8i −0.0574569 0.0331727i 0.470996 0.882135i \(-0.343894\pi\)
−0.528453 + 0.848962i \(0.677228\pi\)
\(822\) 0 0
\(823\) −146289. 253380.i −0.215979 0.374087i 0.737596 0.675242i \(-0.235961\pi\)
−0.953575 + 0.301155i \(0.902628\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 806491.i 1.17920i −0.807694 0.589601i \(-0.799285\pi\)
0.807694 0.589601i \(-0.200715\pi\)
\(828\) 0 0
\(829\) 204904. 0.298154 0.149077 0.988826i \(-0.452370\pi\)
0.149077 + 0.988826i \(0.452370\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 179842. 103832.i 0.259179 0.149637i
\(834\) 0 0
\(835\) 219915. 380905.i 0.315415 0.546315i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 667796. + 385552.i 0.948681 + 0.547721i 0.892671 0.450709i \(-0.148829\pi\)
0.0560100 + 0.998430i \(0.482162\pi\)
\(840\) 0 0
\(841\) −97125.1 168226.i −0.137322 0.237848i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 78093.4i 0.109371i
\(846\) 0 0
\(847\) −391030. −0.545058
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −10343.8 + 5972.02i −0.0142831 + 0.00824635i
\(852\) 0 0
\(853\) −541184. + 937358.i −0.743784 + 1.28827i 0.206977 + 0.978346i \(0.433637\pi\)
−0.950761 + 0.309925i \(0.899696\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 461890. + 266672.i 0.628893 + 0.363092i 0.780323 0.625376i \(-0.215055\pi\)
−0.151430 + 0.988468i \(0.548388\pi\)
\(858\) 0 0
\(859\) 565525. + 979517.i 0.766417 + 1.32747i 0.939494 + 0.342565i \(0.111296\pi\)
−0.173077 + 0.984908i \(0.555371\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 110025.i 0.147730i 0.997268 + 0.0738649i \(0.0235334\pi\)
−0.997268 + 0.0738649i \(0.976467\pi\)
\(864\) 0 0
\(865\) 161503. 0.215848
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −477065. + 275433.i −0.631739 + 0.364735i
\(870\) 0 0
\(871\) −356638. + 617715.i −0.470101 + 0.814238i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −999020. 576784.i −1.30484 0.753351i
\(876\) 0 0
\(877\) 204377. + 353991.i 0.265725 + 0.460249i 0.967753 0.251900i \(-0.0810554\pi\)
−0.702028 + 0.712149i \(0.747722\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 235809.i 0.303815i 0.988395 + 0.151907i \(0.0485416\pi\)
−0.988395 + 0.151907i \(0.951458\pi\)
\(882\) 0 0
\(883\) 273719. 0.351061 0.175531 0.984474i \(-0.443836\pi\)
0.175531 + 0.984474i \(0.443836\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 322071. 185948.i 0.409359 0.236344i −0.281155 0.959662i \(-0.590718\pi\)
0.690514 + 0.723319i \(0.257384\pi\)
\(888\) 0 0
\(889\) 748789. 1.29694e6i 0.947449 1.64103i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −653108. 377072.i −0.818996 0.472848i
\(894\) 0 0
\(895\) 9737.36 + 16865.6i 0.0121561 + 0.0210550i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 216718.i 0.268148i
\(900\) 0 0
\(901\) 143176. 0.176368
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −393522. + 227200.i −0.480476 + 0.277403i
\(906\) 0 0
\(907\) −71965.4 + 124648.i −0.0874801 + 0.151520i −0.906445 0.422323i \(-0.861215\pi\)
0.818965 + 0.573843i \(0.194548\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −772201. 445830.i −0.930451 0.537196i −0.0434969 0.999054i \(-0.513850\pi\)
−0.886954 + 0.461857i \(0.847183\pi\)
\(912\) 0 0
\(913\) 136170. + 235854.i 0.163358 + 0.282944i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 232053.i 0.275961i
\(918\) 0 0
\(919\) 582156. 0.689300 0.344650 0.938731i \(-0.387998\pi\)
0.344650 + 0.938731i \(0.387998\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −892636. + 515364.i −1.04778 + 0.604937i
\(924\) 0 0
\(925\) −152149. + 263530.i −0.177822 + 0.307997i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 668027. + 385685.i 0.774038 + 0.446891i 0.834313 0.551291i \(-0.185864\pi\)
−0.0602751 + 0.998182i \(0.519198\pi\)
\(930\) 0 0
\(931\) −271966. 471059.i −0.313773 0.543470i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 112148.i 0.128283i
\(936\) 0 0
\(937\) −1.46097e6 −1.66403 −0.832015 0.554753i \(-0.812813\pi\)
−0.832015 + 0.554753i \(0.812813\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −146658. + 84673.2i −0.165626 + 0.0956240i −0.580522 0.814245i \(-0.697151\pi\)
0.414896 + 0.909869i \(0.363818\pi\)
\(942\) 0 0
\(943\) 4019.42 6961.83i 0.00452001 0.00782889i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 514322. + 296944.i 0.573503 + 0.331112i 0.758547 0.651618i \(-0.225910\pi\)
−0.185044 + 0.982730i \(0.559243\pi\)
\(948\) 0 0
\(949\) 371210. + 642955.i 0.412180 + 0.713917i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.25477e6i 1.38159i −0.723050 0.690796i \(-0.757260\pi\)
0.723050 0.690796i \(-0.242740\pi\)
\(954\) 0 0
\(955\) 156250. 0.171322
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 243051. 140326.i 0.264278 0.152581i
\(960\) 0 0
\(961\) 415987. 720510.i 0.450436 0.780178i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −741017. 427826.i −0.795744 0.459423i
\(966\) 0 0
\(967\) −528928. 916130.i −0.565645 0.979725i −0.996989 0.0775381i \(-0.975294\pi\)
0.431345 0.902187i \(-0.358039\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 775745.i 0.822774i −0.911461 0.411387i \(-0.865044\pi\)
0.911461 0.411387i \(-0.134956\pi\)
\(972\) 0 0
\(973\) −846555. −0.894189
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 429995. 248258.i 0.450479 0.260084i −0.257554 0.966264i \(-0.582916\pi\)
0.708032 + 0.706180i \(0.249583\pi\)
\(978\) 0 0
\(979\) 686453. 1.18897e6i 0.716218 1.24053i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 260643. + 150482.i 0.269736 + 0.155732i 0.628768 0.777593i \(-0.283560\pi\)
−0.359032 + 0.933325i \(0.616893\pi\)
\(984\) 0 0
\(985\) −549076. 951028.i −0.565927 0.980214i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12903.9i 0.0131925i
\(990\) 0 0
\(991\) −1.70094e6 −1.73197 −0.865987 0.500067i \(-0.833309\pi\)
−0.865987 + 0.500067i \(0.833309\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −114302. + 65992.4i −0.115454 + 0.0666573i
\(996\) 0 0
\(997\) 312919. 541991.i 0.314805 0.545258i −0.664591 0.747207i \(-0.731394\pi\)
0.979396 + 0.201949i \(0.0647276\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.5.q.a.305.1 6
3.2 odd 2 144.5.q.a.65.3 6
4.3 odd 2 27.5.d.a.8.1 6
9.2 odd 6 1296.5.e.c.161.5 6
9.4 even 3 144.5.q.a.113.3 6
9.5 odd 6 inner 432.5.q.a.17.1 6
9.7 even 3 1296.5.e.c.161.2 6
12.11 even 2 9.5.d.a.2.3 6
36.7 odd 6 81.5.b.a.80.5 6
36.11 even 6 81.5.b.a.80.2 6
36.23 even 6 27.5.d.a.17.1 6
36.31 odd 6 9.5.d.a.5.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.5.d.a.2.3 6 12.11 even 2
9.5.d.a.5.3 yes 6 36.31 odd 6
27.5.d.a.8.1 6 4.3 odd 2
27.5.d.a.17.1 6 36.23 even 6
81.5.b.a.80.2 6 36.11 even 6
81.5.b.a.80.5 6 36.7 odd 6
144.5.q.a.65.3 6 3.2 odd 2
144.5.q.a.113.3 6 9.4 even 3
432.5.q.a.17.1 6 9.5 odd 6 inner
432.5.q.a.305.1 6 1.1 even 1 trivial
1296.5.e.c.161.2 6 9.7 even 3
1296.5.e.c.161.5 6 9.2 odd 6