Newspace parameters
Level: | \( N \) | \(=\) | \( 432 = 2^{4} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 432.i (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(25.4888251225\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{-11})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{3} - 2x^{2} - 3x + 9 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | no (minimal twist has level 9) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - x^{3} - 2x^{2} - 3x + 9 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{3} + 2\nu^{2} - 2\nu - 3 ) / 6 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{3} + \nu^{2} + 5\nu ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 2\nu^{3} + \nu^{2} + 2\nu - 9 ) / 3 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + \beta_{2} - 2\beta _1 + 2 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{3} + 2\beta_{2} + 8\beta _1 + 1 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 4\beta_{3} - 2\beta_{2} - 2\beta _1 + 11 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).
\(n\) | \(271\) | \(325\) | \(353\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-\beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
145.1 |
|
0 | 0 | 0 | 2.31386 | − | 4.00772i | 0 | 6.05842 | + | 10.4935i | 0 | 0 | 0 | ||||||||||||||||||||||||||
145.2 | 0 | 0 | 0 | 5.18614 | − | 8.98266i | 0 | −2.55842 | − | 4.43132i | 0 | 0 | 0 | |||||||||||||||||||||||||||
289.1 | 0 | 0 | 0 | 2.31386 | + | 4.00772i | 0 | 6.05842 | − | 10.4935i | 0 | 0 | 0 | |||||||||||||||||||||||||||
289.2 | 0 | 0 | 0 | 5.18614 | + | 8.98266i | 0 | −2.55842 | + | 4.43132i | 0 | 0 | 0 | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 432.4.i.c | 4 | |
3.b | odd | 2 | 1 | 144.4.i.c | 4 | ||
4.b | odd | 2 | 1 | 27.4.c.a | 4 | ||
9.c | even | 3 | 1 | inner | 432.4.i.c | 4 | |
9.c | even | 3 | 1 | 1296.4.a.i | 2 | ||
9.d | odd | 6 | 1 | 144.4.i.c | 4 | ||
9.d | odd | 6 | 1 | 1296.4.a.u | 2 | ||
12.b | even | 2 | 1 | 9.4.c.a | ✓ | 4 | |
36.f | odd | 6 | 1 | 27.4.c.a | 4 | ||
36.f | odd | 6 | 1 | 81.4.a.a | 2 | ||
36.h | even | 6 | 1 | 9.4.c.a | ✓ | 4 | |
36.h | even | 6 | 1 | 81.4.a.d | 2 | ||
60.h | even | 2 | 1 | 225.4.e.b | 4 | ||
60.l | odd | 4 | 2 | 225.4.k.b | 8 | ||
180.n | even | 6 | 1 | 225.4.e.b | 4 | ||
180.n | even | 6 | 1 | 2025.4.a.g | 2 | ||
180.p | odd | 6 | 1 | 2025.4.a.n | 2 | ||
180.v | odd | 12 | 2 | 225.4.k.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
9.4.c.a | ✓ | 4 | 12.b | even | 2 | 1 | |
9.4.c.a | ✓ | 4 | 36.h | even | 6 | 1 | |
27.4.c.a | 4 | 4.b | odd | 2 | 1 | ||
27.4.c.a | 4 | 36.f | odd | 6 | 1 | ||
81.4.a.a | 2 | 36.f | odd | 6 | 1 | ||
81.4.a.d | 2 | 36.h | even | 6 | 1 | ||
144.4.i.c | 4 | 3.b | odd | 2 | 1 | ||
144.4.i.c | 4 | 9.d | odd | 6 | 1 | ||
225.4.e.b | 4 | 60.h | even | 2 | 1 | ||
225.4.e.b | 4 | 180.n | even | 6 | 1 | ||
225.4.k.b | 8 | 60.l | odd | 4 | 2 | ||
225.4.k.b | 8 | 180.v | odd | 12 | 2 | ||
432.4.i.c | 4 | 1.a | even | 1 | 1 | trivial | |
432.4.i.c | 4 | 9.c | even | 3 | 1 | inner | |
1296.4.a.i | 2 | 9.c | even | 3 | 1 | ||
1296.4.a.u | 2 | 9.d | odd | 6 | 1 | ||
2025.4.a.g | 2 | 180.n | even | 6 | 1 | ||
2025.4.a.n | 2 | 180.p | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} - 15T_{5}^{3} + 177T_{5}^{2} - 720T_{5} + 2304 \)
acting on \(S_{4}^{\mathrm{new}}(432, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} \)
$5$
\( T^{4} - 15 T^{3} + 177 T^{2} + \cdots + 2304 \)
$7$
\( T^{4} - 7 T^{3} + 111 T^{2} + \cdots + 3844 \)
$11$
\( T^{4} + 66 T^{3} + 3795 T^{2} + \cdots + 314721 \)
$13$
\( T^{4} - 11 T^{3} + 1947 T^{2} + \cdots + 3334276 \)
$17$
\( (T^{2} + 99 T + 1782)^{2} \)
$19$
\( (T^{2} - 77 T - 4532)^{2} \)
$23$
\( T^{4} + 33 T^{3} + 3795 T^{2} + \cdots + 7322436 \)
$29$
\( T^{4} + 51 T^{3} + 1959 T^{2} + \cdots + 412164 \)
$31$
\( T^{4} - 43 T^{3} + 1461 T^{2} + \cdots + 150544 \)
$37$
\( (T^{2} + 50 T - 23432)^{2} \)
$41$
\( T^{4} - 132 T^{3} + \cdots + 5606565129 \)
$43$
\( T^{4} - 88 T^{3} + 6105 T^{2} + \cdots + 2686321 \)
$47$
\( T^{4} + 399 T^{3} + \cdots + 813276324 \)
$53$
\( (T^{2} + 54 T - 215784)^{2} \)
$59$
\( T^{4} + 798 T^{3} + \cdots + 43678881 \)
$61$
\( T^{4} + 439 T^{3} + \cdots + 1829786176 \)
$67$
\( T^{4} - 988 T^{3} + \cdots + 43305193801 \)
$71$
\( (T^{2} - 1368 T + 296784)^{2} \)
$73$
\( (T^{2} + 455 T - 435398)^{2} \)
$79$
\( T^{4} + 803 T^{3} + \cdots + 392522298256 \)
$83$
\( T^{4} + 813 T^{3} + \cdots + 5010940944 \)
$89$
\( (T^{2} - 396 T - 3564)^{2} \)
$97$
\( T^{4} + 736 T^{3} + \cdots + 2459267281 \)
show more
show less