Properties

Label 432.4.i.a.145.1
Level $432$
Weight $4$
Character 432.145
Analytic conductor $25.489$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,4,Mod(145,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.145");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.4888251225\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 145.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 432.145
Dual form 432.4.i.a.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 + 7.79423i) q^{5} +(-15.5000 - 26.8468i) q^{7} +O(q^{10})\) \(q+(-4.50000 + 7.79423i) q^{5} +(-15.5000 - 26.8468i) q^{7} +(7.50000 + 12.9904i) q^{11} +(18.5000 - 32.0429i) q^{13} +42.0000 q^{17} +28.0000 q^{19} +(-97.5000 + 168.875i) q^{23} +(22.0000 + 38.1051i) q^{25} +(55.5000 + 96.1288i) q^{29} +(-102.500 + 177.535i) q^{31} +279.000 q^{35} -166.000 q^{37} +(-130.500 + 226.033i) q^{41} +(-21.5000 - 37.2391i) q^{43} +(-88.5000 - 153.286i) q^{47} +(-309.000 + 535.204i) q^{49} -114.000 q^{53} -135.000 q^{55} +(-79.5000 + 137.698i) q^{59} +(-95.5000 - 165.411i) q^{61} +(166.500 + 288.386i) q^{65} +(-210.500 + 364.597i) q^{67} +156.000 q^{71} +182.000 q^{73} +(232.500 - 402.702i) q^{77} +(566.500 + 981.207i) q^{79} +(541.500 + 937.906i) q^{83} +(-189.000 + 327.358i) q^{85} +1050.00 q^{89} -1147.00 q^{91} +(-126.000 + 218.238i) q^{95} +(450.500 + 780.289i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9 q^{5} - 31 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 9 q^{5} - 31 q^{7} + 15 q^{11} + 37 q^{13} + 84 q^{17} + 56 q^{19} - 195 q^{23} + 44 q^{25} + 111 q^{29} - 205 q^{31} + 558 q^{35} - 332 q^{37} - 261 q^{41} - 43 q^{43} - 177 q^{47} - 618 q^{49} - 228 q^{53} - 270 q^{55} - 159 q^{59} - 191 q^{61} + 333 q^{65} - 421 q^{67} + 312 q^{71} + 364 q^{73} + 465 q^{77} + 1133 q^{79} + 1083 q^{83} - 378 q^{85} + 2100 q^{89} - 2294 q^{91} - 252 q^{95} + 901 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.50000 + 7.79423i −0.402492 + 0.697137i −0.994026 0.109143i \(-0.965189\pi\)
0.591534 + 0.806280i \(0.298523\pi\)
\(6\) 0 0
\(7\) −15.5000 26.8468i −0.836921 1.44959i −0.892456 0.451134i \(-0.851020\pi\)
0.0555351 0.998457i \(-0.482314\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 7.50000 + 12.9904i 0.205576 + 0.356068i 0.950316 0.311287i \(-0.100760\pi\)
−0.744740 + 0.667355i \(0.767427\pi\)
\(12\) 0 0
\(13\) 18.5000 32.0429i 0.394691 0.683624i −0.598371 0.801219i \(-0.704185\pi\)
0.993062 + 0.117595i \(0.0375185\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 42.0000 0.599206 0.299603 0.954064i \(-0.403146\pi\)
0.299603 + 0.954064i \(0.403146\pi\)
\(18\) 0 0
\(19\) 28.0000 0.338086 0.169043 0.985609i \(-0.445932\pi\)
0.169043 + 0.985609i \(0.445932\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −97.5000 + 168.875i −0.883920 + 1.53099i −0.0369731 + 0.999316i \(0.511772\pi\)
−0.846947 + 0.531678i \(0.821562\pi\)
\(24\) 0 0
\(25\) 22.0000 + 38.1051i 0.176000 + 0.304841i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 55.5000 + 96.1288i 0.355382 + 0.615540i 0.987183 0.159590i \(-0.0510173\pi\)
−0.631801 + 0.775131i \(0.717684\pi\)
\(30\) 0 0
\(31\) −102.500 + 177.535i −0.593856 + 1.02859i 0.399851 + 0.916580i \(0.369062\pi\)
−0.993707 + 0.112009i \(0.964271\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 279.000 1.34742
\(36\) 0 0
\(37\) −166.000 −0.737574 −0.368787 0.929514i \(-0.620227\pi\)
−0.368787 + 0.929514i \(0.620227\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −130.500 + 226.033i −0.497090 + 0.860985i −0.999994 0.00335732i \(-0.998931\pi\)
0.502905 + 0.864342i \(0.332265\pi\)
\(42\) 0 0
\(43\) −21.5000 37.2391i −0.0762493 0.132068i 0.825380 0.564578i \(-0.190961\pi\)
−0.901629 + 0.432511i \(0.857628\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −88.5000 153.286i −0.274661 0.475726i 0.695389 0.718634i \(-0.255232\pi\)
−0.970049 + 0.242907i \(0.921899\pi\)
\(48\) 0 0
\(49\) −309.000 + 535.204i −0.900875 + 1.56036i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −114.000 −0.295455 −0.147727 0.989028i \(-0.547196\pi\)
−0.147727 + 0.989028i \(0.547196\pi\)
\(54\) 0 0
\(55\) −135.000 −0.330971
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −79.5000 + 137.698i −0.175424 + 0.303843i −0.940308 0.340325i \(-0.889463\pi\)
0.764884 + 0.644168i \(0.222796\pi\)
\(60\) 0 0
\(61\) −95.5000 165.411i −0.200451 0.347192i 0.748223 0.663448i \(-0.230907\pi\)
−0.948674 + 0.316256i \(0.897574\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 166.500 + 288.386i 0.317720 + 0.550307i
\(66\) 0 0
\(67\) −210.500 + 364.597i −0.383831 + 0.664815i −0.991606 0.129294i \(-0.958729\pi\)
0.607775 + 0.794109i \(0.292062\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 156.000 0.260758 0.130379 0.991464i \(-0.458381\pi\)
0.130379 + 0.991464i \(0.458381\pi\)
\(72\) 0 0
\(73\) 182.000 0.291801 0.145901 0.989299i \(-0.453392\pi\)
0.145901 + 0.989299i \(0.453392\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 232.500 402.702i 0.344102 0.596002i
\(78\) 0 0
\(79\) 566.500 + 981.207i 0.806788 + 1.39740i 0.915078 + 0.403278i \(0.132129\pi\)
−0.108290 + 0.994119i \(0.534537\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 541.500 + 937.906i 0.716113 + 1.24034i 0.962529 + 0.271179i \(0.0874136\pi\)
−0.246416 + 0.969164i \(0.579253\pi\)
\(84\) 0 0
\(85\) −189.000 + 327.358i −0.241176 + 0.417728i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1050.00 1.25056 0.625280 0.780401i \(-0.284985\pi\)
0.625280 + 0.780401i \(0.284985\pi\)
\(90\) 0 0
\(91\) −1147.00 −1.32130
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −126.000 + 218.238i −0.136077 + 0.235693i
\(96\) 0 0
\(97\) 450.500 + 780.289i 0.471560 + 0.816766i 0.999471 0.0325338i \(-0.0103576\pi\)
−0.527910 + 0.849300i \(0.677024\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 193.500 + 335.152i 0.190633 + 0.330187i 0.945460 0.325737i \(-0.105613\pi\)
−0.754827 + 0.655924i \(0.772279\pi\)
\(102\) 0 0
\(103\) 275.500 477.180i 0.263552 0.456485i −0.703631 0.710565i \(-0.748439\pi\)
0.967183 + 0.254080i \(0.0817727\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −0.0108419 −0.00542095 0.999985i \(-0.501726\pi\)
−0.00542095 + 0.999985i \(0.501726\pi\)
\(108\) 0 0
\(109\) −502.000 −0.441127 −0.220564 0.975373i \(-0.570790\pi\)
−0.220564 + 0.975373i \(0.570790\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −700.500 + 1213.30i −0.583164 + 1.01007i 0.411938 + 0.911212i \(0.364852\pi\)
−0.995102 + 0.0988572i \(0.968481\pi\)
\(114\) 0 0
\(115\) −877.500 1519.87i −0.711542 1.23243i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −651.000 1127.57i −0.501488 0.868603i
\(120\) 0 0
\(121\) 553.000 957.824i 0.415477 0.719627i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1521.00 −1.08834
\(126\) 0 0
\(127\) 880.000 0.614861 0.307431 0.951571i \(-0.400531\pi\)
0.307431 + 0.951571i \(0.400531\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −751.500 + 1301.64i −0.501213 + 0.868126i 0.498786 + 0.866725i \(0.333779\pi\)
−0.999999 + 0.00140084i \(0.999554\pi\)
\(132\) 0 0
\(133\) −434.000 751.710i −0.282952 0.490087i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1330.50 2304.49i −0.829725 1.43713i −0.898254 0.439476i \(-0.855164\pi\)
0.0685295 0.997649i \(-0.478169\pi\)
\(138\) 0 0
\(139\) −60.5000 + 104.789i −0.0369176 + 0.0639431i −0.883894 0.467688i \(-0.845087\pi\)
0.846976 + 0.531631i \(0.178421\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 555.000 0.324555
\(144\) 0 0
\(145\) −999.000 −0.572155
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1414.50 + 2449.99i −0.777721 + 1.34705i 0.155532 + 0.987831i \(0.450291\pi\)
−0.933253 + 0.359221i \(0.883043\pi\)
\(150\) 0 0
\(151\) 230.500 + 399.238i 0.124224 + 0.215162i 0.921429 0.388546i \(-0.127023\pi\)
−0.797205 + 0.603708i \(0.793689\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −922.500 1597.82i −0.478045 0.827998i
\(156\) 0 0
\(157\) 1488.50 2578.16i 0.756658 1.31057i −0.187889 0.982190i \(-0.560164\pi\)
0.944546 0.328379i \(-0.106502\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6045.00 2.95909
\(162\) 0 0
\(163\) 3316.00 1.59343 0.796715 0.604355i \(-0.206569\pi\)
0.796715 + 0.604355i \(0.206569\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 340.500 589.763i 0.157777 0.273277i −0.776290 0.630376i \(-0.782901\pi\)
0.934067 + 0.357099i \(0.116234\pi\)
\(168\) 0 0
\(169\) 414.000 + 717.069i 0.188439 + 0.326386i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1990.50 3447.65i −0.874768 1.51514i −0.857009 0.515301i \(-0.827680\pi\)
−0.0177589 0.999842i \(-0.505653\pi\)
\(174\) 0 0
\(175\) 682.000 1181.26i 0.294596 0.510256i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2004.00 0.836793 0.418397 0.908264i \(-0.362592\pi\)
0.418397 + 0.908264i \(0.362592\pi\)
\(180\) 0 0
\(181\) 1274.00 0.523181 0.261590 0.965179i \(-0.415753\pi\)
0.261590 + 0.965179i \(0.415753\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 747.000 1293.84i 0.296868 0.514190i
\(186\) 0 0
\(187\) 315.000 + 545.596i 0.123182 + 0.213358i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −580.500 1005.46i −0.219914 0.380902i 0.734868 0.678210i \(-0.237244\pi\)
−0.954781 + 0.297309i \(0.903911\pi\)
\(192\) 0 0
\(193\) −1805.50 + 3127.22i −0.673382 + 1.16633i 0.303557 + 0.952813i \(0.401826\pi\)
−0.976939 + 0.213519i \(0.931508\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2046.00 −0.739957 −0.369978 0.929040i \(-0.620635\pi\)
−0.369978 + 0.929040i \(0.620635\pi\)
\(198\) 0 0
\(199\) −2996.00 −1.06724 −0.533620 0.845724i \(-0.679169\pi\)
−0.533620 + 0.845724i \(0.679169\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1720.50 2979.99i 0.594854 1.03032i
\(204\) 0 0
\(205\) −1174.50 2034.29i −0.400149 0.693079i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 210.000 + 363.731i 0.0695024 + 0.120382i
\(210\) 0 0
\(211\) 377.500 653.849i 0.123167 0.213331i −0.797848 0.602858i \(-0.794028\pi\)
0.921015 + 0.389528i \(0.127362\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 387.000 0.122759
\(216\) 0 0
\(217\) 6355.00 1.98804
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 777.000 1345.80i 0.236501 0.409631i
\(222\) 0 0
\(223\) −1731.50 2999.05i −0.519954 0.900587i −0.999731 0.0231966i \(-0.992616\pi\)
0.479777 0.877391i \(-0.340718\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3112.50 5391.01i −0.910061 1.57627i −0.813976 0.580899i \(-0.802701\pi\)
−0.0960856 0.995373i \(-0.530632\pi\)
\(228\) 0 0
\(229\) 732.500 1268.73i 0.211375 0.366113i −0.740770 0.671759i \(-0.765539\pi\)
0.952145 + 0.305646i \(0.0988724\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2634.00 −0.740597 −0.370298 0.928913i \(-0.620745\pi\)
−0.370298 + 0.928913i \(0.620745\pi\)
\(234\) 0 0
\(235\) 1593.00 0.442195
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3457.50 + 5988.57i −0.935762 + 1.62079i −0.162492 + 0.986710i \(0.551953\pi\)
−0.773270 + 0.634077i \(0.781380\pi\)
\(240\) 0 0
\(241\) 744.500 + 1289.51i 0.198994 + 0.344667i 0.948202 0.317667i \(-0.102899\pi\)
−0.749209 + 0.662334i \(0.769566\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2781.00 4816.83i −0.725190 1.25607i
\(246\) 0 0
\(247\) 518.000 897.202i 0.133439 0.231124i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4620.00 −1.16180 −0.580900 0.813975i \(-0.697299\pi\)
−0.580900 + 0.813975i \(0.697299\pi\)
\(252\) 0 0
\(253\) −2925.00 −0.726850
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1675.50 2902.05i 0.406672 0.704377i −0.587842 0.808976i \(-0.700022\pi\)
0.994515 + 0.104598i \(0.0333557\pi\)
\(258\) 0 0
\(259\) 2573.00 + 4456.57i 0.617291 + 1.06918i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 301.500 + 522.213i 0.0706893 + 0.122437i 0.899204 0.437530i \(-0.144147\pi\)
−0.828514 + 0.559968i \(0.810813\pi\)
\(264\) 0 0
\(265\) 513.000 888.542i 0.118918 0.205972i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1470.00 0.333188 0.166594 0.986026i \(-0.446723\pi\)
0.166594 + 0.986026i \(0.446723\pi\)
\(270\) 0 0
\(271\) −2072.00 −0.464447 −0.232223 0.972662i \(-0.574600\pi\)
−0.232223 + 0.972662i \(0.574600\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −330.000 + 571.577i −0.0723627 + 0.125336i
\(276\) 0 0
\(277\) −3569.50 6182.56i −0.774262 1.34106i −0.935209 0.354097i \(-0.884788\pi\)
0.160947 0.986963i \(-0.448545\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4213.50 + 7298.00i 0.894507 + 1.54933i 0.834414 + 0.551138i \(0.185806\pi\)
0.0600924 + 0.998193i \(0.480860\pi\)
\(282\) 0 0
\(283\) −228.500 + 395.774i −0.0479962 + 0.0831318i −0.889025 0.457858i \(-0.848617\pi\)
0.841029 + 0.540990i \(0.181950\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8091.00 1.66410
\(288\) 0 0
\(289\) −3149.00 −0.640953
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2944.50 + 5100.02i −0.587097 + 1.01688i 0.407513 + 0.913199i \(0.366396\pi\)
−0.994610 + 0.103683i \(0.966937\pi\)
\(294\) 0 0
\(295\) −715.500 1239.28i −0.141214 0.244589i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3607.50 + 6248.37i 0.697750 + 1.20854i
\(300\) 0 0
\(301\) −666.500 + 1154.41i −0.127629 + 0.221060i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1719.00 0.322720
\(306\) 0 0
\(307\) 1204.00 0.223830 0.111915 0.993718i \(-0.464302\pi\)
0.111915 + 0.993718i \(0.464302\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1642.50 2844.89i 0.299478 0.518711i −0.676539 0.736407i \(-0.736521\pi\)
0.976017 + 0.217696i \(0.0698542\pi\)
\(312\) 0 0
\(313\) 5028.50 + 8709.62i 0.908075 + 1.57283i 0.816735 + 0.577013i \(0.195782\pi\)
0.0913406 + 0.995820i \(0.470885\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1147.50 + 1987.53i 0.203312 + 0.352147i 0.949594 0.313483i \(-0.101496\pi\)
−0.746281 + 0.665631i \(0.768163\pi\)
\(318\) 0 0
\(319\) −832.500 + 1441.93i −0.146116 + 0.253081i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1176.00 0.202583
\(324\) 0 0
\(325\) 1628.00 0.277862
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2743.50 + 4751.88i −0.459739 + 0.796291i
\(330\) 0 0
\(331\) −3339.50 5784.18i −0.554548 0.960506i −0.997939 0.0641773i \(-0.979558\pi\)
0.443390 0.896329i \(-0.353776\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1894.50 3281.37i −0.308978 0.535165i
\(336\) 0 0
\(337\) −1091.50 + 1890.53i −0.176433 + 0.305590i −0.940656 0.339361i \(-0.889789\pi\)
0.764224 + 0.644951i \(0.223122\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3075.00 −0.488330
\(342\) 0 0
\(343\) 8525.00 1.34200
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1945.50 + 3369.70i −0.300980 + 0.521312i −0.976358 0.216159i \(-0.930647\pi\)
0.675379 + 0.737471i \(0.263980\pi\)
\(348\) 0 0
\(349\) −1397.50 2420.54i −0.214345 0.371257i 0.738725 0.674007i \(-0.235428\pi\)
−0.953070 + 0.302751i \(0.902095\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2377.50 + 4117.95i 0.358475 + 0.620896i 0.987706 0.156322i \(-0.0499636\pi\)
−0.629232 + 0.777218i \(0.716630\pi\)
\(354\) 0 0
\(355\) −702.000 + 1215.90i −0.104953 + 0.181784i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4608.00 0.677440 0.338720 0.940887i \(-0.390006\pi\)
0.338720 + 0.940887i \(0.390006\pi\)
\(360\) 0 0
\(361\) −6075.00 −0.885698
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −819.000 + 1418.55i −0.117448 + 0.203425i
\(366\) 0 0
\(367\) 1922.50 + 3329.87i 0.273443 + 0.473618i 0.969741 0.244135i \(-0.0785041\pi\)
−0.696298 + 0.717753i \(0.745171\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1767.00 + 3060.53i 0.247272 + 0.428288i
\(372\) 0 0
\(373\) 4158.50 7202.73i 0.577263 0.999848i −0.418529 0.908203i \(-0.637454\pi\)
0.995792 0.0916449i \(-0.0292125\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4107.00 0.561064
\(378\) 0 0
\(379\) −12560.0 −1.70228 −0.851140 0.524939i \(-0.824088\pi\)
−0.851140 + 0.524939i \(0.824088\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6043.50 + 10467.6i −0.806288 + 1.39653i 0.109130 + 0.994028i \(0.465194\pi\)
−0.915418 + 0.402505i \(0.868140\pi\)
\(384\) 0 0
\(385\) 2092.50 + 3624.32i 0.276997 + 0.479772i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4270.50 7396.72i −0.556614 0.964084i −0.997776 0.0666565i \(-0.978767\pi\)
0.441162 0.897428i \(-0.354567\pi\)
\(390\) 0 0
\(391\) −4095.00 + 7092.75i −0.529650 + 0.917380i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10197.0 −1.29890
\(396\) 0 0
\(397\) −13174.0 −1.66545 −0.832726 0.553686i \(-0.813221\pi\)
−0.832726 + 0.553686i \(0.813221\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4801.50 8316.44i 0.597944 1.03567i −0.395180 0.918604i \(-0.629318\pi\)
0.993124 0.117066i \(-0.0373488\pi\)
\(402\) 0 0
\(403\) 3792.50 + 6568.80i 0.468779 + 0.811949i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1245.00 2156.40i −0.151627 0.262626i
\(408\) 0 0
\(409\) −5735.50 + 9934.18i −0.693404 + 1.20101i 0.277312 + 0.960780i \(0.410557\pi\)
−0.970716 + 0.240231i \(0.922777\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4929.00 0.587264
\(414\) 0 0
\(415\) −9747.00 −1.15292
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2986.50 5172.77i 0.348210 0.603118i −0.637721 0.770267i \(-0.720123\pi\)
0.985932 + 0.167149i \(0.0534562\pi\)
\(420\) 0 0
\(421\) 4452.50 + 7711.96i 0.515443 + 0.892774i 0.999839 + 0.0179250i \(0.00570601\pi\)
−0.484396 + 0.874849i \(0.660961\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 924.000 + 1600.41i 0.105460 + 0.182662i
\(426\) 0 0
\(427\) −2960.50 + 5127.74i −0.335524 + 0.581144i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1416.00 0.158251 0.0791257 0.996865i \(-0.474787\pi\)
0.0791257 + 0.996865i \(0.474787\pi\)
\(432\) 0 0
\(433\) 10766.0 1.19488 0.597438 0.801915i \(-0.296186\pi\)
0.597438 + 0.801915i \(0.296186\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2730.00 + 4728.50i −0.298841 + 0.517608i
\(438\) 0 0
\(439\) 2174.50 + 3766.34i 0.236408 + 0.409471i 0.959681 0.281091i \(-0.0906964\pi\)
−0.723273 + 0.690562i \(0.757363\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7273.50 + 12598.1i 0.780078 + 1.35113i 0.931896 + 0.362726i \(0.118154\pi\)
−0.151818 + 0.988408i \(0.548513\pi\)
\(444\) 0 0
\(445\) −4725.00 + 8183.94i −0.503340 + 0.871811i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3330.00 0.350005 0.175003 0.984568i \(-0.444007\pi\)
0.175003 + 0.984568i \(0.444007\pi\)
\(450\) 0 0
\(451\) −3915.00 −0.408759
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5161.50 8939.98i 0.531813 0.921127i
\(456\) 0 0
\(457\) −4073.50 7055.51i −0.416959 0.722194i 0.578673 0.815560i \(-0.303571\pi\)
−0.995632 + 0.0933655i \(0.970237\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4015.50 + 6955.05i 0.405684 + 0.702666i 0.994401 0.105674i \(-0.0336999\pi\)
−0.588717 + 0.808340i \(0.700367\pi\)
\(462\) 0 0
\(463\) 2141.50 3709.19i 0.214955 0.372312i −0.738304 0.674468i \(-0.764373\pi\)
0.953259 + 0.302156i \(0.0977063\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5460.00 0.541025 0.270512 0.962716i \(-0.412807\pi\)
0.270512 + 0.962716i \(0.412807\pi\)
\(468\) 0 0
\(469\) 13051.0 1.28494
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 322.500 558.586i 0.0313500 0.0542999i
\(474\) 0 0
\(475\) 616.000 + 1066.94i 0.0595032 + 0.103063i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −214.500 371.525i −0.0204609 0.0354393i 0.855614 0.517615i \(-0.173180\pi\)
−0.876075 + 0.482176i \(0.839847\pi\)
\(480\) 0 0
\(481\) −3071.00 + 5319.13i −0.291113 + 0.504223i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8109.00 −0.759197
\(486\) 0 0
\(487\) 11296.0 1.05107 0.525535 0.850772i \(-0.323865\pi\)
0.525535 + 0.850772i \(0.323865\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7336.50 12707.2i 0.674321 1.16796i −0.302346 0.953198i \(-0.597770\pi\)
0.976667 0.214760i \(-0.0688969\pi\)
\(492\) 0 0
\(493\) 2331.00 + 4037.41i 0.212947 + 0.368835i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2418.00 4188.10i −0.218234 0.377992i
\(498\) 0 0
\(499\) 6719.50 11638.5i 0.602818 1.04411i −0.389574 0.920995i \(-0.627378\pi\)
0.992392 0.123116i \(-0.0392888\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17388.0 −1.54134 −0.770669 0.637236i \(-0.780078\pi\)
−0.770669 + 0.637236i \(0.780078\pi\)
\(504\) 0 0
\(505\) −3483.00 −0.306914
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1894.50 + 3281.37i −0.164975 + 0.285745i −0.936646 0.350276i \(-0.886088\pi\)
0.771671 + 0.636021i \(0.219421\pi\)
\(510\) 0 0
\(511\) −2821.00 4886.12i −0.244215 0.422992i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2479.50 + 4294.62i 0.212155 + 0.367463i
\(516\) 0 0
\(517\) 1327.50 2299.30i 0.112927 0.195596i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9786.00 −0.822903 −0.411451 0.911432i \(-0.634978\pi\)
−0.411451 + 0.911432i \(0.634978\pi\)
\(522\) 0 0
\(523\) 8008.00 0.669532 0.334766 0.942301i \(-0.391343\pi\)
0.334766 + 0.942301i \(0.391343\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4305.00 + 7456.48i −0.355842 + 0.616336i
\(528\) 0 0
\(529\) −12929.0 22393.7i −1.06263 1.84053i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4828.50 + 8363.21i 0.392393 + 0.679645i
\(534\) 0 0
\(535\) 54.0000 93.5307i 0.00436378 0.00755829i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9270.00 −0.740793
\(540\) 0 0
\(541\) −2938.00 −0.233483 −0.116742 0.993162i \(-0.537245\pi\)
−0.116742 + 0.993162i \(0.537245\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2259.00 3912.70i 0.177550 0.307526i
\(546\) 0 0
\(547\) −5187.50 8985.01i −0.405487 0.702324i 0.588891 0.808213i \(-0.299565\pi\)
−0.994378 + 0.105888i \(0.966231\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1554.00 + 2691.61i 0.120150 + 0.208106i
\(552\) 0 0
\(553\) 17561.5 30417.4i 1.35044 2.33902i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3306.00 −0.251490 −0.125745 0.992063i \(-0.540132\pi\)
−0.125745 + 0.992063i \(0.540132\pi\)
\(558\) 0 0
\(559\) −1591.00 −0.120379
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10546.5 18267.1i 0.789488 1.36743i −0.136792 0.990600i \(-0.543679\pi\)
0.926281 0.376834i \(-0.122987\pi\)
\(564\) 0 0
\(565\) −6304.50 10919.7i −0.469438 0.813090i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 643.500 + 1114.57i 0.0474111 + 0.0821185i 0.888757 0.458379i \(-0.151570\pi\)
−0.841346 + 0.540497i \(0.818236\pi\)
\(570\) 0 0
\(571\) 7517.50 13020.7i 0.550959 0.954289i −0.447247 0.894411i \(-0.647595\pi\)
0.998206 0.0598783i \(-0.0190713\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8580.00 −0.622280
\(576\) 0 0
\(577\) 1190.00 0.0858585 0.0429292 0.999078i \(-0.486331\pi\)
0.0429292 + 0.999078i \(0.486331\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16786.5 29075.1i 1.19866 2.07614i
\(582\) 0 0
\(583\) −855.000 1480.90i −0.0607384 0.105202i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8941.50 + 15487.1i 0.628714 + 1.08896i 0.987810 + 0.155664i \(0.0497518\pi\)
−0.359096 + 0.933301i \(0.616915\pi\)
\(588\) 0 0
\(589\) −2870.00 + 4970.99i −0.200775 + 0.347752i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −20118.0 −1.39317 −0.696583 0.717476i \(-0.745297\pi\)
−0.696583 + 0.717476i \(0.745297\pi\)
\(594\) 0 0
\(595\) 11718.0 0.807380
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 532.500 922.317i 0.0363228 0.0629129i −0.847293 0.531127i \(-0.821769\pi\)
0.883615 + 0.468214i \(0.155102\pi\)
\(600\) 0 0
\(601\) 10362.5 + 17948.4i 0.703320 + 1.21819i 0.967294 + 0.253656i \(0.0816331\pi\)
−0.263975 + 0.964530i \(0.585034\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4977.00 + 8620.42i 0.334453 + 0.579289i
\(606\) 0 0
\(607\) −7872.50 + 13635.6i −0.526417 + 0.911780i 0.473110 + 0.881004i \(0.343131\pi\)
−0.999526 + 0.0307768i \(0.990202\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6549.00 −0.433624
\(612\) 0 0
\(613\) 5042.00 0.332210 0.166105 0.986108i \(-0.446881\pi\)
0.166105 + 0.986108i \(0.446881\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5026.50 + 8706.15i −0.327973 + 0.568066i −0.982110 0.188311i \(-0.939699\pi\)
0.654137 + 0.756376i \(0.273032\pi\)
\(618\) 0 0
\(619\) −2991.50 5181.43i −0.194246 0.336445i 0.752407 0.658699i \(-0.228893\pi\)
−0.946653 + 0.322254i \(0.895559\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16275.0 28189.1i −1.04662 1.81280i
\(624\) 0 0
\(625\) 4094.50 7091.88i 0.262048 0.453880i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6972.00 −0.441958
\(630\) 0 0
\(631\) 19696.0 1.24261 0.621304 0.783570i \(-0.286603\pi\)
0.621304 + 0.783570i \(0.286603\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3960.00 + 6858.92i −0.247477 + 0.428642i
\(636\) 0 0
\(637\) 11433.0 + 19802.5i 0.711133 + 1.23172i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5488.50 9506.36i −0.338195 0.585770i 0.645899 0.763423i \(-0.276483\pi\)
−0.984093 + 0.177653i \(0.943150\pi\)
\(642\) 0 0
\(643\) −7914.50 + 13708.3i −0.485408 + 0.840752i −0.999859 0.0167681i \(-0.994662\pi\)
0.514451 + 0.857520i \(0.327996\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28224.0 1.71499 0.857496 0.514490i \(-0.172019\pi\)
0.857496 + 0.514490i \(0.172019\pi\)
\(648\) 0 0
\(649\) −2385.00 −0.144252
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14083.5 24393.3i 0.843997 1.46185i −0.0424927 0.999097i \(-0.513530\pi\)
0.886490 0.462749i \(-0.153137\pi\)
\(654\) 0 0
\(655\) −6763.50 11714.7i −0.403468 0.698828i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5368.50 9298.51i −0.317340 0.549649i 0.662592 0.748980i \(-0.269456\pi\)
−0.979932 + 0.199331i \(0.936123\pi\)
\(660\) 0 0
\(661\) −5063.50 + 8770.24i −0.297954 + 0.516071i −0.975668 0.219255i \(-0.929637\pi\)
0.677714 + 0.735326i \(0.262971\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7812.00 0.455543
\(666\) 0 0
\(667\) −21645.0 −1.25652
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1432.50 2481.16i 0.0824159 0.142748i
\(672\) 0 0
\(673\) −125.500 217.372i −0.00718822 0.0124504i 0.862409 0.506212i \(-0.168955\pi\)
−0.869597 + 0.493762i \(0.835621\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4225.50 + 7318.78i 0.239881 + 0.415485i 0.960680 0.277659i \(-0.0895584\pi\)
−0.720799 + 0.693144i \(0.756225\pi\)
\(678\) 0 0
\(679\) 13965.5 24189.0i 0.789318 1.36714i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25884.0 −1.45011 −0.725054 0.688692i \(-0.758185\pi\)
−0.725054 + 0.688692i \(0.758185\pi\)
\(684\) 0 0
\(685\) 23949.0 1.33583
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2109.00 + 3652.90i −0.116613 + 0.201980i
\(690\) 0 0
\(691\) 3182.50 + 5512.25i 0.175207 + 0.303467i 0.940233 0.340532i \(-0.110607\pi\)
−0.765026 + 0.643999i \(0.777274\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −544.500 943.102i −0.0297181 0.0514732i
\(696\) 0 0
\(697\) −5481.00 + 9493.37i −0.297859 + 0.515907i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1122.00 −0.0604527 −0.0302264 0.999543i \(-0.509623\pi\)
−0.0302264 + 0.999543i \(0.509623\pi\)
\(702\) 0 0
\(703\) −4648.00 −0.249364
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5998.50 10389.7i 0.319090 0.552681i
\(708\) 0 0
\(709\) −2141.50 3709.19i −0.113435 0.196476i 0.803718 0.595011i \(-0.202852\pi\)
−0.917153 + 0.398535i \(0.869519\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −19987.5 34619.4i −1.04984 1.81838i
\(714\) 0 0
\(715\) −2497.50 + 4325.80i −0.130631 + 0.226260i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4032.00 0.209135 0.104568 0.994518i \(-0.466654\pi\)
0.104568 + 0.994518i \(0.466654\pi\)
\(720\) 0 0
\(721\) −17081.0 −0.882288
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2442.00 + 4229.67i −0.125095 + 0.216670i
\(726\) 0 0
\(727\) 12002.5 + 20788.9i 0.612308 + 1.06055i 0.990850 + 0.134965i \(0.0430922\pi\)
−0.378542 + 0.925584i \(0.623574\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −903.000 1564.04i −0.0456890 0.0791357i
\(732\) 0 0
\(733\) 18750.5 32476.8i 0.944837 1.63651i 0.188760 0.982023i \(-0.439553\pi\)
0.756077 0.654482i \(-0.227113\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6315.00 −0.315626
\(738\) 0 0
\(739\) 880.000 0.0438042 0.0219021 0.999760i \(-0.493028\pi\)
0.0219021 + 0.999760i \(0.493028\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −811.500 + 1405.56i −0.0400687 + 0.0694010i −0.885364 0.464898i \(-0.846091\pi\)
0.845296 + 0.534299i \(0.179424\pi\)
\(744\) 0 0
\(745\) −12730.5 22049.9i −0.626053 1.08436i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 186.000 + 322.161i 0.00907382 + 0.0157163i
\(750\) 0 0
\(751\) −3444.50 + 5966.05i −0.167366 + 0.289886i −0.937493 0.348005i \(-0.886859\pi\)
0.770127 + 0.637890i \(0.220193\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4149.00 −0.199997
\(756\) 0 0
\(757\) −12850.0 −0.616963 −0.308482 0.951230i \(-0.599821\pi\)
−0.308482 + 0.951230i \(0.599821\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2305.50 3993.24i 0.109822 0.190217i −0.805876 0.592084i \(-0.798305\pi\)
0.915698 + 0.401867i \(0.131639\pi\)
\(762\) 0 0
\(763\) 7781.00 + 13477.1i 0.369189 + 0.639454i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2941.50 + 5094.83i 0.138476 + 0.239848i
\(768\) 0 0
\(769\) 1152.50 1996.19i 0.0540445 0.0936078i −0.837737 0.546073i \(-0.816122\pi\)
0.891782 + 0.452465i \(0.149455\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34902.0 1.62398 0.811991 0.583670i \(-0.198384\pi\)
0.811991 + 0.583670i \(0.198384\pi\)
\(774\) 0 0
\(775\) −9020.00 −0.418075
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3654.00 + 6328.91i −0.168059 + 0.291087i
\(780\) 0 0
\(781\) 1170.00 + 2026.50i 0.0536055 + 0.0928474i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13396.5 + 23203.4i 0.609098 + 1.05499i
\(786\) 0 0
\(787\) 13127.5 22737.5i 0.594593 1.02987i −0.399011 0.916946i \(-0.630646\pi\)
0.993604 0.112919i \(-0.0360202\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 43431.0 1.95225
\(792\) 0 0