Defining parameters
| Level: | \( N \) | \(=\) | \( 432 = 2^{4} \cdot 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 432.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(432, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 228 | 0 | 228 |
| Cusp forms | 204 | 0 | 204 |
| Eisenstein series | 24 | 0 | 24 |
Decomposition of \(S_{4}^{\mathrm{old}}(432, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(432, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)