Defining parameters
| Level: | \( N \) | \(=\) | \( 432 = 2^{4} \cdot 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 432.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 19 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(432))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 234 | 24 | 210 |
| Cusp forms | 198 | 24 | 174 |
| Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(60\) | \(7\) | \(53\) | \(51\) | \(7\) | \(44\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(-\) | \(-\) | \(57\) | \(5\) | \(52\) | \(48\) | \(5\) | \(43\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(+\) | \(-\) | \(57\) | \(6\) | \(51\) | \(48\) | \(6\) | \(42\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(-\) | \(+\) | \(60\) | \(6\) | \(54\) | \(51\) | \(6\) | \(45\) | \(9\) | \(0\) | \(9\) | |||
| Plus space | \(+\) | \(120\) | \(13\) | \(107\) | \(102\) | \(13\) | \(89\) | \(18\) | \(0\) | \(18\) | ||||
| Minus space | \(-\) | \(114\) | \(11\) | \(103\) | \(96\) | \(11\) | \(85\) | \(18\) | \(0\) | \(18\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(432))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(432))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(432)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 2}\)