Defining parameters
Level: | \( N \) | \(=\) | \( 432 = 2^{4} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 432.q (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(432, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 324 | 26 | 298 |
Cusp forms | 252 | 22 | 230 |
Eisenstein series | 72 | 4 | 68 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(432, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
432.3.q.a | $2$ | $11.771$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-6\) | \(2\) | \(q+(-4+2\zeta_{6})q^{5}+(2-2\zeta_{6})q^{7}+(-1+\cdots)q^{11}+\cdots\) |
432.3.q.b | $4$ | $11.771$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(0\) | \(0\) | \(-9\) | \(1\) | \(q+(-2+\beta _{2}-\beta _{3})q^{5}+(1-\beta _{1}+2\beta _{3})q^{7}+\cdots\) |
432.3.q.c | $4$ | $11.771$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(-6\) | \(6\) | \(q+(-1+\beta _{1}-\beta _{2})q^{5}+(\beta _{1}+3\beta _{2}+\beta _{3})q^{7}+\cdots\) |
432.3.q.d | $4$ | $11.771$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(18\) | \(-2\) | \(q+(3+3\beta _{2})q^{5}+(\beta _{1}-\beta _{2}+\beta _{3})q^{7}+\cdots\) |
432.3.q.e | $8$ | $11.771$ | 8.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(6\) | \(-6\) | \(q+(1-\beta _{1}-\beta _{2}+\beta _{4})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(432, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(432, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)