Properties

Label 432.3.q
Level $432$
Weight $3$
Character orbit 432.q
Rep. character $\chi_{432}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $22$
Newform subspaces $5$
Sturm bound $216$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 432.q (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(216\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(432, [\chi])\).

Total New Old
Modular forms 324 26 298
Cusp forms 252 22 230
Eisenstein series 72 4 68

Trace form

\( 22 q + 3 q^{5} + q^{7} - 3 q^{11} - q^{13} + 4 q^{19} - 3 q^{23} + 34 q^{25} + 75 q^{29} - 23 q^{31} - 4 q^{37} + 39 q^{41} + 49 q^{43} + 213 q^{47} - 36 q^{49} + 54 q^{55} + 213 q^{59} - q^{61} + 147 q^{65}+ \cdots - 61 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(432, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
432.3.q.a 432.q 9.d $2$ $11.771$ \(\Q(\sqrt{-3}) \) None 9.3.d.a \(0\) \(0\) \(-6\) \(2\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-4+2\zeta_{6})q^{5}+(2-2\zeta_{6})q^{7}+(-1+\cdots)q^{11}+\cdots\)
432.3.q.b 432.q 9.d $4$ $11.771$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 36.3.g.a \(0\) \(0\) \(-9\) \(1\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+\beta _{2}-\beta _{3})q^{5}+(1-\beta _{1}+2\beta _{3})q^{7}+\cdots\)
432.3.q.c 432.q 9.d $4$ $11.771$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 72.3.m.a \(0\) \(0\) \(-6\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+\beta _{1}-\beta _{2})q^{5}+(\beta _{1}+3\beta _{2}+\beta _{3})q^{7}+\cdots\)
432.3.q.d 432.q 9.d $4$ $11.771$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 18.3.d.a \(0\) \(0\) \(18\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q+(3+3\beta _{2})q^{5}+(\beta _{1}-\beta _{2}+\beta _{3})q^{7}+\cdots\)
432.3.q.e 432.q 9.d $8$ $11.771$ 8.0.\(\cdots\).9 None 72.3.m.b \(0\) \(0\) \(6\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\beta _{1}-\beta _{2}+\beta _{4})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(432, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(432, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)