Properties

Label 432.2.y.e.181.6
Level $432$
Weight $2$
Character 432.181
Analytic conductor $3.450$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,2,Mod(37,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-4,0,-2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 181.6
Character \(\chi\) \(=\) 432.181
Dual form 432.2.y.e.253.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04877 + 0.948722i) q^{2} +(0.199854 - 1.98999i) q^{4} +(-0.00302457 + 0.0112878i) q^{5} +(-1.05753 - 0.610563i) q^{7} +(1.67835 + 2.27665i) q^{8} +(-0.00753693 - 0.0147079i) q^{10} +(-1.83070 + 0.490535i) q^{11} +(5.06759 + 1.35786i) q^{13} +(1.68836 - 0.362956i) q^{14} +(-3.92012 - 0.795413i) q^{16} +1.54238 q^{17} +(4.06823 - 4.06823i) q^{19} +(0.0218582 + 0.00827477i) q^{20} +(1.45461 - 2.25129i) q^{22} +(5.20660 - 3.00603i) q^{23} +(4.33001 + 2.49993i) q^{25} +(-6.60298 + 3.38365i) q^{26} +(-1.42637 + 1.98244i) q^{28} +(-0.798708 - 2.98082i) q^{29} +(2.92831 + 5.07198i) q^{31} +(4.86594 - 2.88489i) q^{32} +(-1.61761 + 1.46329i) q^{34} +(0.0100905 - 0.0100905i) q^{35} +(0.923082 + 0.923082i) q^{37} +(-0.407035 + 8.12628i) q^{38} +(-0.0307748 + 0.0120590i) q^{40} +(3.20829 - 1.85231i) q^{41} +(-4.84015 + 1.29691i) q^{43} +(0.610287 + 3.74111i) q^{44} +(-2.60866 + 8.09227i) q^{46} +(1.31218 - 2.27277i) q^{47} +(-2.75442 - 4.77080i) q^{49} +(-6.91294 + 1.48611i) q^{50} +(3.71490 - 9.81308i) q^{52} +(8.88508 + 8.88508i) q^{53} -0.0221483i q^{55} +(-0.384853 - 3.43236i) q^{56} +(3.66563 + 2.36845i) q^{58} +(-2.35453 + 8.78724i) q^{59} +(3.24737 + 12.1194i) q^{61} +(-7.88303 - 2.54121i) q^{62} +(-2.36631 + 7.64203i) q^{64} +(-0.0306545 + 0.0530952i) q^{65} +(-11.8800 - 3.18324i) q^{67} +(0.308250 - 3.06932i) q^{68} +(-0.00100958 + 0.0201557i) q^{70} -14.2363i q^{71} -4.32091i q^{73} +(-1.84385 - 0.0923563i) q^{74} +(-7.28269 - 8.90879i) q^{76} +(2.23552 + 0.599006i) q^{77} +(-0.261880 + 0.453589i) q^{79} +(0.0208352 - 0.0418439i) q^{80} +(-1.60745 + 4.98643i) q^{82} +(-2.91592 - 10.8824i) q^{83} +(-0.00466503 + 0.0174101i) q^{85} +(3.84581 - 5.95212i) q^{86} +(-4.18933 - 3.34459i) q^{88} +10.7103i q^{89} +(-4.53005 - 4.53005i) q^{91} +(-4.94142 - 10.9619i) q^{92} +(0.780042 + 3.62852i) q^{94} +(0.0336169 + 0.0582262i) q^{95} +(8.78820 - 15.2216i) q^{97} +(7.41493 + 2.39031i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 4 q^{2} - 2 q^{4} - 4 q^{5} + 8 q^{8} - 20 q^{10} + 2 q^{11} - 16 q^{13} + 4 q^{14} - 10 q^{16} + 16 q^{17} + 28 q^{19} - 12 q^{20} - 8 q^{22} + 4 q^{26} - 16 q^{28} - 4 q^{29} + 28 q^{31} + 46 q^{32}+ \cdots - 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04877 + 0.948722i −0.741595 + 0.670848i
\(3\) 0 0
\(4\) 0.199854 1.98999i 0.0999268 0.994995i
\(5\) −0.00302457 + 0.0112878i −0.00135263 + 0.00504807i −0.966599 0.256294i \(-0.917498\pi\)
0.965246 + 0.261342i \(0.0841651\pi\)
\(6\) 0 0
\(7\) −1.05753 0.610563i −0.399708 0.230771i 0.286650 0.958035i \(-0.407458\pi\)
−0.686358 + 0.727264i \(0.740792\pi\)
\(8\) 1.67835 + 2.27665i 0.593385 + 0.804919i
\(9\) 0 0
\(10\) −0.00753693 0.0147079i −0.00238339 0.00465104i
\(11\) −1.83070 + 0.490535i −0.551977 + 0.147902i −0.524018 0.851707i \(-0.675568\pi\)
−0.0279594 + 0.999609i \(0.508901\pi\)
\(12\) 0 0
\(13\) 5.06759 + 1.35786i 1.40550 + 0.376602i 0.880315 0.474389i \(-0.157331\pi\)
0.525181 + 0.850991i \(0.323998\pi\)
\(14\) 1.68836 0.362956i 0.451234 0.0970040i
\(15\) 0 0
\(16\) −3.92012 0.795413i −0.980029 0.198853i
\(17\) 1.54238 0.374082 0.187041 0.982352i \(-0.440110\pi\)
0.187041 + 0.982352i \(0.440110\pi\)
\(18\) 0 0
\(19\) 4.06823 4.06823i 0.933317 0.933317i −0.0645950 0.997912i \(-0.520576\pi\)
0.997912 + 0.0645950i \(0.0205756\pi\)
\(20\) 0.0218582 + 0.00827477i 0.00488764 + 0.00185030i
\(21\) 0 0
\(22\) 1.45461 2.25129i 0.310124 0.479976i
\(23\) 5.20660 3.00603i 1.08565 0.626801i 0.153236 0.988190i \(-0.451030\pi\)
0.932415 + 0.361388i \(0.117697\pi\)
\(24\) 0 0
\(25\) 4.33001 + 2.49993i 0.866002 + 0.499986i
\(26\) −6.60298 + 3.38365i −1.29495 + 0.663588i
\(27\) 0 0
\(28\) −1.42637 + 1.98244i −0.269558 + 0.374647i
\(29\) −0.798708 2.98082i −0.148316 0.553524i −0.999585 0.0287946i \(-0.990833\pi\)
0.851269 0.524730i \(-0.175834\pi\)
\(30\) 0 0
\(31\) 2.92831 + 5.07198i 0.525939 + 0.910954i 0.999543 + 0.0302159i \(0.00961949\pi\)
−0.473604 + 0.880738i \(0.657047\pi\)
\(32\) 4.86594 2.88489i 0.860185 0.509982i
\(33\) 0 0
\(34\) −1.61761 + 1.46329i −0.277418 + 0.250952i
\(35\) 0.0100905 0.0100905i 0.00170561 0.00170561i
\(36\) 0 0
\(37\) 0.923082 + 0.923082i 0.151754 + 0.151754i 0.778901 0.627147i \(-0.215777\pi\)
−0.627147 + 0.778901i \(0.715777\pi\)
\(38\) −0.407035 + 8.12628i −0.0660298 + 1.31826i
\(39\) 0 0
\(40\) −0.0307748 + 0.0120590i −0.00486592 + 0.00190669i
\(41\) 3.20829 1.85231i 0.501051 0.289282i −0.228096 0.973639i \(-0.573250\pi\)
0.729147 + 0.684357i \(0.239917\pi\)
\(42\) 0 0
\(43\) −4.84015 + 1.29691i −0.738115 + 0.197777i −0.608240 0.793753i \(-0.708124\pi\)
−0.129875 + 0.991530i \(0.541458\pi\)
\(44\) 0.610287 + 3.74111i 0.0920043 + 0.563994i
\(45\) 0 0
\(46\) −2.60866 + 8.09227i −0.384626 + 1.19314i
\(47\) 1.31218 2.27277i 0.191402 0.331517i −0.754313 0.656515i \(-0.772030\pi\)
0.945715 + 0.324997i \(0.105363\pi\)
\(48\) 0 0
\(49\) −2.75442 4.77080i −0.393489 0.681543i
\(50\) −6.91294 + 1.48611i −0.977637 + 0.210168i
\(51\) 0 0
\(52\) 3.71490 9.81308i 0.515163 1.36083i
\(53\) 8.88508 + 8.88508i 1.22046 + 1.22046i 0.967469 + 0.252991i \(0.0814144\pi\)
0.252991 + 0.967469i \(0.418586\pi\)
\(54\) 0 0
\(55\) 0.0221483i 0.00298648i
\(56\) −0.384853 3.43236i −0.0514282 0.458668i
\(57\) 0 0
\(58\) 3.66563 + 2.36845i 0.481321 + 0.310993i
\(59\) −2.35453 + 8.78724i −0.306534 + 1.14400i 0.625082 + 0.780559i \(0.285065\pi\)
−0.931617 + 0.363443i \(0.881601\pi\)
\(60\) 0 0
\(61\) 3.24737 + 12.1194i 0.415783 + 1.55172i 0.783262 + 0.621692i \(0.213555\pi\)
−0.367478 + 0.930032i \(0.619779\pi\)
\(62\) −7.88303 2.54121i −1.00115 0.322734i
\(63\) 0 0
\(64\) −2.36631 + 7.64203i −0.295789 + 0.955253i
\(65\) −0.0306545 + 0.0530952i −0.00380223 + 0.00658565i
\(66\) 0 0
\(67\) −11.8800 3.18324i −1.45137 0.388895i −0.554873 0.831935i \(-0.687233\pi\)
−0.896501 + 0.443041i \(0.853900\pi\)
\(68\) 0.308250 3.06932i 0.0373808 0.372210i
\(69\) 0 0
\(70\) −0.00100958 + 0.0201557i −0.000120667 + 0.00240907i
\(71\) 14.2363i 1.68954i −0.535129 0.844771i \(-0.679737\pi\)
0.535129 0.844771i \(-0.320263\pi\)
\(72\) 0 0
\(73\) 4.32091i 0.505724i −0.967502 0.252862i \(-0.918628\pi\)
0.967502 0.252862i \(-0.0813718\pi\)
\(74\) −1.84385 0.0923563i −0.214344 0.0107362i
\(75\) 0 0
\(76\) −7.28269 8.90879i −0.835382 1.02191i
\(77\) 2.23552 + 0.599006i 0.254761 + 0.0682630i
\(78\) 0 0
\(79\) −0.261880 + 0.453589i −0.0294638 + 0.0510328i −0.880381 0.474267i \(-0.842713\pi\)
0.850918 + 0.525299i \(0.176047\pi\)
\(80\) 0.0208352 0.0418439i 0.00232944 0.00467829i
\(81\) 0 0
\(82\) −1.60745 + 4.98643i −0.177513 + 0.550659i
\(83\) −2.91592 10.8824i −0.320064 1.19450i −0.919181 0.393834i \(-0.871148\pi\)
0.599117 0.800661i \(-0.295518\pi\)
\(84\) 0 0
\(85\) −0.00466503 + 0.0174101i −0.000505994 + 0.00188839i
\(86\) 3.84581 5.95212i 0.414704 0.641834i
\(87\) 0 0
\(88\) −4.18933 3.34459i −0.446584 0.356534i
\(89\) 10.7103i 1.13529i 0.823274 + 0.567644i \(0.192145\pi\)
−0.823274 + 0.567644i \(0.807855\pi\)
\(90\) 0 0
\(91\) −4.53005 4.53005i −0.474879 0.474879i
\(92\) −4.94142 10.9619i −0.515178 1.14285i
\(93\) 0 0
\(94\) 0.780042 + 3.62852i 0.0804551 + 0.374253i
\(95\) 0.0336169 + 0.0582262i 0.00344902 + 0.00597388i
\(96\) 0 0
\(97\) 8.78820 15.2216i 0.892306 1.54552i 0.0552025 0.998475i \(-0.482420\pi\)
0.837104 0.547044i \(-0.184247\pi\)
\(98\) 7.41493 + 2.39031i 0.749022 + 0.241458i
\(99\) 0 0
\(100\) 5.84021 8.11705i 0.584021 0.811705i
\(101\) −6.73117 + 1.80361i −0.669776 + 0.179466i −0.577654 0.816282i \(-0.696032\pi\)
−0.0921222 + 0.995748i \(0.529365\pi\)
\(102\) 0 0
\(103\) −2.20609 + 1.27369i −0.217373 + 0.125500i −0.604733 0.796428i \(-0.706720\pi\)
0.387360 + 0.921928i \(0.373387\pi\)
\(104\) 5.41379 + 13.8161i 0.530866 + 1.35478i
\(105\) 0 0
\(106\) −17.7479 0.888971i −1.72383 0.0863445i
\(107\) −3.52175 3.52175i −0.340460 0.340460i 0.516080 0.856540i \(-0.327391\pi\)
−0.856540 + 0.516080i \(0.827391\pi\)
\(108\) 0 0
\(109\) 3.14334 3.14334i 0.301077 0.301077i −0.540358 0.841435i \(-0.681711\pi\)
0.841435 + 0.540358i \(0.181711\pi\)
\(110\) 0.0210126 + 0.0232286i 0.00200347 + 0.00221476i
\(111\) 0 0
\(112\) 3.65998 + 3.23465i 0.345835 + 0.305646i
\(113\) −7.90904 13.6989i −0.744020 1.28868i −0.950651 0.310262i \(-0.899583\pi\)
0.206631 0.978419i \(-0.433750\pi\)
\(114\) 0 0
\(115\) 0.0181839 + 0.0678632i 0.00169566 + 0.00632828i
\(116\) −6.09142 + 0.993693i −0.565574 + 0.0922621i
\(117\) 0 0
\(118\) −5.86727 11.4496i −0.540126 1.05402i
\(119\) −1.63111 0.941721i −0.149523 0.0863274i
\(120\) 0 0
\(121\) −6.41543 + 3.70395i −0.583221 + 0.336723i
\(122\) −14.9037 9.62961i −1.34931 0.871824i
\(123\) 0 0
\(124\) 10.6784 4.81365i 0.958950 0.432278i
\(125\) −0.0826316 + 0.0826316i −0.00739079 + 0.00739079i
\(126\) 0 0
\(127\) −5.72603 −0.508103 −0.254052 0.967191i \(-0.581763\pi\)
−0.254052 + 0.967191i \(0.581763\pi\)
\(128\) −4.76843 10.2597i −0.421474 0.906841i
\(129\) 0 0
\(130\) −0.0182229 0.0847675i −0.00159825 0.00743460i
\(131\) −6.56224 1.75835i −0.573346 0.153628i −0.0395151 0.999219i \(-0.512581\pi\)
−0.533831 + 0.845591i \(0.679248\pi\)
\(132\) 0 0
\(133\) −6.78618 + 1.81835i −0.588436 + 0.157671i
\(134\) 15.4795 7.93233i 1.33722 0.685249i
\(135\) 0 0
\(136\) 2.58865 + 3.51147i 0.221975 + 0.301106i
\(137\) 3.64923 + 2.10688i 0.311775 + 0.180003i 0.647720 0.761878i \(-0.275722\pi\)
−0.335946 + 0.941881i \(0.609056\pi\)
\(138\) 0 0
\(139\) −4.19392 + 15.6519i −0.355724 + 1.32758i 0.523847 + 0.851812i \(0.324496\pi\)
−0.879571 + 0.475767i \(0.842170\pi\)
\(140\) −0.0180634 0.0220966i −0.00152663 0.00186750i
\(141\) 0 0
\(142\) 13.5063 + 14.9307i 1.13342 + 1.25296i
\(143\) −9.94332 −0.831502
\(144\) 0 0
\(145\) 0.0360627 0.00299485
\(146\) 4.09934 + 4.53165i 0.339264 + 0.375042i
\(147\) 0 0
\(148\) 2.02141 1.65244i 0.166159 0.135830i
\(149\) −1.00877 + 3.76477i −0.0826415 + 0.308422i −0.994857 0.101288i \(-0.967704\pi\)
0.912216 + 0.409710i \(0.134370\pi\)
\(150\) 0 0
\(151\) 13.0073 + 7.50979i 1.05852 + 0.611138i 0.925023 0.379911i \(-0.124045\pi\)
0.133499 + 0.991049i \(0.457379\pi\)
\(152\) 16.0899 + 2.43406i 1.30506 + 0.197428i
\(153\) 0 0
\(154\) −2.91284 + 1.49266i −0.234724 + 0.120282i
\(155\) −0.0661085 + 0.0177137i −0.00530996 + 0.00142280i
\(156\) 0 0
\(157\) −9.47288 2.53825i −0.756018 0.202574i −0.139832 0.990175i \(-0.544656\pi\)
−0.616186 + 0.787601i \(0.711323\pi\)
\(158\) −0.155677 0.724164i −0.0123850 0.0576114i
\(159\) 0 0
\(160\) 0.0178468 + 0.0636515i 0.00141092 + 0.00503209i
\(161\) −7.34150 −0.578591
\(162\) 0 0
\(163\) 5.22606 5.22606i 0.409336 0.409336i −0.472171 0.881507i \(-0.656529\pi\)
0.881507 + 0.472171i \(0.156529\pi\)
\(164\) −3.04488 6.75466i −0.237766 0.527450i
\(165\) 0 0
\(166\) 13.3825 + 8.64675i 1.03868 + 0.671118i
\(167\) 6.31476 3.64583i 0.488651 0.282123i −0.235364 0.971907i \(-0.575628\pi\)
0.724015 + 0.689785i \(0.242295\pi\)
\(168\) 0 0
\(169\) 12.5783 + 7.26211i 0.967565 + 0.558624i
\(170\) −0.0116248 0.0226851i −0.000891583 0.00173987i
\(171\) 0 0
\(172\) 1.61352 + 9.89103i 0.123030 + 0.754184i
\(173\) 6.14659 + 22.9394i 0.467317 + 1.74405i 0.649092 + 0.760710i \(0.275149\pi\)
−0.181775 + 0.983340i \(0.558184\pi\)
\(174\) 0 0
\(175\) −3.05273 5.28749i −0.230765 0.399697i
\(176\) 7.56674 0.466790i 0.570365 0.0351856i
\(177\) 0 0
\(178\) −10.1611 11.2327i −0.761606 0.841925i
\(179\) −11.4489 + 11.4489i −0.855732 + 0.855732i −0.990832 0.135100i \(-0.956864\pi\)
0.135100 + 0.990832i \(0.456864\pi\)
\(180\) 0 0
\(181\) −3.01327 3.01327i −0.223974 0.223974i 0.586195 0.810170i \(-0.300625\pi\)
−0.810170 + 0.586195i \(0.800625\pi\)
\(182\) 9.04876 + 0.453241i 0.670739 + 0.0335965i
\(183\) 0 0
\(184\) 15.5822 + 6.80848i 1.14873 + 0.501927i
\(185\) −0.0132115 + 0.00762768i −0.000971331 + 0.000560798i
\(186\) 0 0
\(187\) −2.82364 + 0.756592i −0.206485 + 0.0553275i
\(188\) −4.26054 3.06545i −0.310732 0.223571i
\(189\) 0 0
\(190\) −0.0904970 0.0291730i −0.00656534 0.00211643i
\(191\) 2.25702 3.90928i 0.163313 0.282866i −0.772742 0.634720i \(-0.781115\pi\)
0.936055 + 0.351854i \(0.114449\pi\)
\(192\) 0 0
\(193\) −1.75793 3.04482i −0.126539 0.219171i 0.795795 0.605566i \(-0.207053\pi\)
−0.922333 + 0.386395i \(0.873720\pi\)
\(194\) 5.22424 + 24.3016i 0.375078 + 1.74475i
\(195\) 0 0
\(196\) −10.0443 + 4.52781i −0.717452 + 0.323415i
\(197\) 4.81922 + 4.81922i 0.343355 + 0.343355i 0.857627 0.514272i \(-0.171938\pi\)
−0.514272 + 0.857627i \(0.671938\pi\)
\(198\) 0 0
\(199\) 4.66322i 0.330567i 0.986246 + 0.165284i \(0.0528539\pi\)
−0.986246 + 0.165284i \(0.947146\pi\)
\(200\) 1.57577 + 14.0537i 0.111424 + 0.993746i
\(201\) 0 0
\(202\) 5.34835 8.27759i 0.376308 0.582409i
\(203\) −0.975324 + 3.63996i −0.0684543 + 0.255475i
\(204\) 0 0
\(205\) 0.0112049 + 0.0418171i 0.000782581 + 0.00292063i
\(206\) 1.10532 3.42878i 0.0770110 0.238894i
\(207\) 0 0
\(208\) −18.7855 9.35378i −1.30254 0.648568i
\(209\) −5.45211 + 9.44333i −0.377130 + 0.653209i
\(210\) 0 0
\(211\) −17.4452 4.67442i −1.20097 0.321800i −0.397760 0.917490i \(-0.630212\pi\)
−0.803215 + 0.595689i \(0.796879\pi\)
\(212\) 19.4569 15.9055i 1.33631 1.09239i
\(213\) 0 0
\(214\) 7.03468 + 0.352358i 0.480881 + 0.0240867i
\(215\) 0.0585574i 0.00399358i
\(216\) 0 0
\(217\) 7.15167i 0.485487i
\(218\) −0.314498 + 6.27881i −0.0213005 + 0.425254i
\(219\) 0 0
\(220\) −0.0440749 0.00442642i −0.00297153 0.000298429i
\(221\) 7.81615 + 2.09433i 0.525771 + 0.140880i
\(222\) 0 0
\(223\) 2.85769 4.94966i 0.191365 0.331454i −0.754338 0.656486i \(-0.772042\pi\)
0.945703 + 0.325032i \(0.105375\pi\)
\(224\) −6.90727 + 0.0798841i −0.461512 + 0.00533748i
\(225\) 0 0
\(226\) 21.2912 + 6.86353i 1.41627 + 0.456555i
\(227\) 5.27233 + 19.6766i 0.349937 + 1.30598i 0.886738 + 0.462272i \(0.152966\pi\)
−0.536802 + 0.843709i \(0.680368\pi\)
\(228\) 0 0
\(229\) −0.992819 + 3.70525i −0.0656073 + 0.244850i −0.990940 0.134307i \(-0.957119\pi\)
0.925332 + 0.379157i \(0.123786\pi\)
\(230\) −0.0834542 0.0539217i −0.00550280 0.00355549i
\(231\) 0 0
\(232\) 5.44579 6.82122i 0.357533 0.447835i
\(233\) 5.33043i 0.349208i −0.984639 0.174604i \(-0.944136\pi\)
0.984639 0.174604i \(-0.0558645\pi\)
\(234\) 0 0
\(235\) 0.0216859 + 0.0216859i 0.00141463 + 0.00141463i
\(236\) 17.0160 + 6.44166i 1.10764 + 0.419316i
\(237\) 0 0
\(238\) 2.60410 0.559816i 0.168798 0.0362875i
\(239\) 13.8380 + 23.9681i 0.895104 + 1.55037i 0.833676 + 0.552254i \(0.186232\pi\)
0.0614282 + 0.998112i \(0.480434\pi\)
\(240\) 0 0
\(241\) 0.847203 1.46740i 0.0545731 0.0945234i −0.837448 0.546517i \(-0.815954\pi\)
0.892021 + 0.451993i \(0.149287\pi\)
\(242\) 3.21432 9.97107i 0.206624 0.640965i
\(243\) 0 0
\(244\) 24.7664 4.04014i 1.58551 0.258643i
\(245\) 0.0621830 0.0166619i 0.00397273 0.00106449i
\(246\) 0 0
\(247\) 26.1402 15.0921i 1.66326 0.960284i
\(248\) −6.63243 + 15.1793i −0.421160 + 0.963885i
\(249\) 0 0
\(250\) 0.00826746 0.165056i 0.000522880 0.0104391i
\(251\) −0.987980 0.987980i −0.0623607 0.0623607i 0.675239 0.737599i \(-0.264041\pi\)
−0.737599 + 0.675239i \(0.764041\pi\)
\(252\) 0 0
\(253\) −8.05717 + 8.05717i −0.506550 + 0.506550i
\(254\) 6.00531 5.43241i 0.376807 0.340860i
\(255\) 0 0
\(256\) 14.7346 + 6.23623i 0.920915 + 0.389764i
\(257\) −11.8214 20.4753i −0.737401 1.27722i −0.953662 0.300881i \(-0.902719\pi\)
0.216260 0.976336i \(-0.430614\pi\)
\(258\) 0 0
\(259\) −0.412584 1.53978i −0.0256367 0.0956776i
\(260\) 0.0995325 + 0.0716134i 0.00617274 + 0.00444128i
\(261\) 0 0
\(262\) 8.55049 4.38163i 0.528251 0.270698i
\(263\) 22.2619 + 12.8529i 1.37273 + 0.792545i 0.991271 0.131841i \(-0.0420888\pi\)
0.381458 + 0.924386i \(0.375422\pi\)
\(264\) 0 0
\(265\) −0.127167 + 0.0734198i −0.00781180 + 0.00451015i
\(266\) 5.39206 8.34523i 0.330608 0.511679i
\(267\) 0 0
\(268\) −8.70888 + 23.0049i −0.531979 + 1.40525i
\(269\) 13.6891 13.6891i 0.834637 0.834637i −0.153510 0.988147i \(-0.549058\pi\)
0.988147 + 0.153510i \(0.0490577\pi\)
\(270\) 0 0
\(271\) −7.11000 −0.431902 −0.215951 0.976404i \(-0.569285\pi\)
−0.215951 + 0.976404i \(0.569285\pi\)
\(272\) −6.04631 1.22683i −0.366612 0.0743875i
\(273\) 0 0
\(274\) −5.82607 + 1.25246i −0.351966 + 0.0756639i
\(275\) −9.15326 2.45261i −0.551962 0.147898i
\(276\) 0 0
\(277\) −21.7174 + 5.81917i −1.30487 + 0.349640i −0.843291 0.537457i \(-0.819385\pi\)
−0.461583 + 0.887097i \(0.652718\pi\)
\(278\) −10.4509 20.3942i −0.626801 1.22316i
\(279\) 0 0
\(280\) 0.0399079 + 0.00603724i 0.00238496 + 0.000360794i
\(281\) −19.7952 11.4288i −1.18088 0.681783i −0.224664 0.974436i \(-0.572128\pi\)
−0.956218 + 0.292654i \(0.905462\pi\)
\(282\) 0 0
\(283\) 1.59958 5.96971i 0.0950851 0.354862i −0.901947 0.431846i \(-0.857862\pi\)
0.997032 + 0.0769838i \(0.0245290\pi\)
\(284\) −28.3301 2.84518i −1.68108 0.168830i
\(285\) 0 0
\(286\) 10.4283 9.43344i 0.616638 0.557811i
\(287\) −4.52381 −0.267032
\(288\) 0 0
\(289\) −14.6211 −0.860063
\(290\) −0.0378217 + 0.0342135i −0.00222096 + 0.00200909i
\(291\) 0 0
\(292\) −8.59856 0.863549i −0.503192 0.0505354i
\(293\) −1.00950 + 3.76752i −0.0589758 + 0.220101i −0.989124 0.147083i \(-0.953011\pi\)
0.930148 + 0.367184i \(0.119678\pi\)
\(294\) 0 0
\(295\) −0.0920675 0.0531552i −0.00536038 0.00309482i
\(296\) −0.552289 + 3.65079i −0.0321011 + 0.212198i
\(297\) 0 0
\(298\) −2.51375 4.90543i −0.145618 0.284164i
\(299\) 30.4667 8.16352i 1.76193 0.472109i
\(300\) 0 0
\(301\) 5.91043 + 1.58370i 0.340672 + 0.0912827i
\(302\) −20.7665 + 4.46427i −1.19498 + 0.256890i
\(303\) 0 0
\(304\) −19.1839 + 12.7120i −1.10027 + 0.729084i
\(305\) −0.146623 −0.00839562
\(306\) 0 0
\(307\) 10.8111 10.8111i 0.617023 0.617023i −0.327743 0.944767i \(-0.606288\pi\)
0.944767 + 0.327743i \(0.106288\pi\)
\(308\) 1.63879 4.32895i 0.0933788 0.246665i
\(309\) 0 0
\(310\) 0.0525275 0.0812963i 0.00298336 0.00461732i
\(311\) −19.5372 + 11.2798i −1.10785 + 0.639619i −0.938273 0.345897i \(-0.887575\pi\)
−0.169581 + 0.985516i \(0.554241\pi\)
\(312\) 0 0
\(313\) −5.17232 2.98624i −0.292357 0.168792i 0.346647 0.937996i \(-0.387320\pi\)
−0.639004 + 0.769203i \(0.720653\pi\)
\(314\) 12.3430 6.32508i 0.696556 0.356945i
\(315\) 0 0
\(316\) 0.850300 + 0.611789i 0.0478331 + 0.0344158i
\(317\) −4.81751 17.9792i −0.270579 1.00981i −0.958747 0.284262i \(-0.908252\pi\)
0.688168 0.725551i \(-0.258415\pi\)
\(318\) 0 0
\(319\) 2.92439 + 5.06520i 0.163735 + 0.283597i
\(320\) −0.0791049 0.0498244i −0.00442210 0.00278527i
\(321\) 0 0
\(322\) 7.69957 6.96504i 0.429080 0.388146i
\(323\) 6.27476 6.27476i 0.349137 0.349137i
\(324\) 0 0
\(325\) 18.5482 + 18.5482i 1.02887 + 1.02887i
\(326\) −0.522878 + 10.4390i −0.0289595 + 0.578164i
\(327\) 0 0
\(328\) 9.60169 + 4.19536i 0.530164 + 0.231650i
\(329\) −2.77534 + 1.60234i −0.153009 + 0.0883400i
\(330\) 0 0
\(331\) −10.1869 + 2.72957i −0.559923 + 0.150031i −0.527671 0.849449i \(-0.676935\pi\)
−0.0322521 + 0.999480i \(0.510268\pi\)
\(332\) −22.2386 + 3.62777i −1.22050 + 0.199100i
\(333\) 0 0
\(334\) −3.16388 + 9.81461i −0.173120 + 0.537031i
\(335\) 0.0718638 0.124472i 0.00392634 0.00680062i
\(336\) 0 0
\(337\) 12.1222 + 20.9962i 0.660336 + 1.14374i 0.980527 + 0.196382i \(0.0629194\pi\)
−0.320192 + 0.947353i \(0.603747\pi\)
\(338\) −20.0816 + 4.31704i −1.09229 + 0.234816i
\(339\) 0 0
\(340\) 0.0337137 + 0.0127628i 0.00182838 + 0.000692163i
\(341\) −7.84884 7.84884i −0.425038 0.425038i
\(342\) 0 0
\(343\) 15.2749i 0.824767i
\(344\) −11.0761 8.84267i −0.597181 0.476765i
\(345\) 0 0
\(346\) −28.2095 18.2268i −1.51655 0.979881i
\(347\) −4.97570 + 18.5696i −0.267110 + 0.996867i 0.693837 + 0.720132i \(0.255919\pi\)
−0.960946 + 0.276735i \(0.910748\pi\)
\(348\) 0 0
\(349\) −4.19134 15.6423i −0.224357 0.837313i −0.982661 0.185411i \(-0.940638\pi\)
0.758304 0.651901i \(-0.226028\pi\)
\(350\) 8.21798 + 2.64919i 0.439270 + 0.141605i
\(351\) 0 0
\(352\) −7.49295 + 7.66829i −0.399376 + 0.408721i
\(353\) 7.69391 13.3262i 0.409505 0.709284i −0.585329 0.810796i \(-0.699035\pi\)
0.994834 + 0.101512i \(0.0323680\pi\)
\(354\) 0 0
\(355\) 0.160697 + 0.0430587i 0.00852893 + 0.00228532i
\(356\) 21.3134 + 2.14049i 1.12961 + 0.113446i
\(357\) 0 0
\(358\) 1.14549 22.8692i 0.0605409 1.20867i
\(359\) 2.97883i 0.157217i 0.996906 + 0.0786083i \(0.0250476\pi\)
−0.996906 + 0.0786083i \(0.974952\pi\)
\(360\) 0 0
\(361\) 14.1010i 0.742159i
\(362\) 6.01899 + 0.301484i 0.316351 + 0.0158456i
\(363\) 0 0
\(364\) −9.92011 + 8.10941i −0.519955 + 0.425049i
\(365\) 0.0487737 + 0.0130689i 0.00255293 + 0.000684056i
\(366\) 0 0
\(367\) 12.5585 21.7519i 0.655547 1.13544i −0.326210 0.945297i \(-0.605772\pi\)
0.981756 0.190143i \(-0.0608952\pi\)
\(368\) −22.8015 + 7.64260i −1.18861 + 0.398398i
\(369\) 0 0
\(370\) 0.00661936 0.0205338i 0.000344124 0.00106750i
\(371\) −3.97131 14.8211i −0.206180 0.769474i
\(372\) 0 0
\(373\) 7.71816 28.8046i 0.399631 1.49144i −0.414116 0.910224i \(-0.635909\pi\)
0.813747 0.581220i \(-0.197424\pi\)
\(374\) 2.24356 3.47234i 0.116012 0.179551i
\(375\) 0 0
\(376\) 7.37661 0.827102i 0.380420 0.0426545i
\(377\) 16.1901i 0.833832i
\(378\) 0 0
\(379\) 10.1985 + 10.1985i 0.523864 + 0.523864i 0.918736 0.394872i \(-0.129211\pi\)
−0.394872 + 0.918736i \(0.629211\pi\)
\(380\) 0.122588 0.0552606i 0.00628863 0.00283481i
\(381\) 0 0
\(382\) 1.34171 + 6.24124i 0.0686479 + 0.319330i
\(383\) −10.5750 18.3164i −0.540356 0.935924i −0.998883 0.0472436i \(-0.984956\pi\)
0.458528 0.888680i \(-0.348377\pi\)
\(384\) 0 0
\(385\) −0.0135230 + 0.0234224i −0.000689194 + 0.00119372i
\(386\) 4.73236 + 1.52555i 0.240871 + 0.0776482i
\(387\) 0 0
\(388\) −28.5345 20.5305i −1.44862 1.04228i
\(389\) −30.3488 + 8.13193i −1.53874 + 0.412305i −0.925860 0.377867i \(-0.876658\pi\)
−0.612884 + 0.790173i \(0.709991\pi\)
\(390\) 0 0
\(391\) 8.03056 4.63645i 0.406123 0.234475i
\(392\) 6.23860 14.2779i 0.315097 0.721144i
\(393\) 0 0
\(394\) −9.62638 0.482173i −0.484970 0.0242915i
\(395\) −0.00432797 0.00432797i −0.000217764 0.000217764i
\(396\) 0 0
\(397\) −3.24113 + 3.24113i −0.162668 + 0.162668i −0.783747 0.621080i \(-0.786694\pi\)
0.621080 + 0.783747i \(0.286694\pi\)
\(398\) −4.42410 4.89067i −0.221760 0.245147i
\(399\) 0 0
\(400\) −14.9857 13.2442i −0.749283 0.662209i
\(401\) 10.7429 + 18.6073i 0.536476 + 0.929203i 0.999090 + 0.0426439i \(0.0135781\pi\)
−0.462614 + 0.886560i \(0.653089\pi\)
\(402\) 0 0
\(403\) 7.95244 + 29.6789i 0.396139 + 1.47841i
\(404\) 2.24392 + 13.7554i 0.111639 + 0.684357i
\(405\) 0 0
\(406\) −2.43041 4.74280i −0.120619 0.235381i
\(407\) −2.14269 1.23708i −0.106209 0.0613200i
\(408\) 0 0
\(409\) −23.1426 + 13.3614i −1.14433 + 0.660678i −0.947499 0.319760i \(-0.896398\pi\)
−0.196829 + 0.980438i \(0.563064\pi\)
\(410\) −0.0514242 0.0332264i −0.00253966 0.00164093i
\(411\) 0 0
\(412\) 2.09373 + 4.64465i 0.103151 + 0.228825i
\(413\) 7.85515 7.85515i 0.386527 0.386527i
\(414\) 0 0
\(415\) 0.131658 0.00646283
\(416\) 28.5759 8.01219i 1.40105 0.392830i
\(417\) 0 0
\(418\) −3.24106 15.0765i −0.158526 0.737414i
\(419\) 8.83989 + 2.36864i 0.431857 + 0.115716i 0.468198 0.883624i \(-0.344903\pi\)
−0.0363407 + 0.999339i \(0.511570\pi\)
\(420\) 0 0
\(421\) −28.9344 + 7.75295i −1.41018 + 0.377856i −0.881988 0.471272i \(-0.843795\pi\)
−0.528188 + 0.849127i \(0.677128\pi\)
\(422\) 22.7308 11.6482i 1.10652 0.567026i
\(423\) 0 0
\(424\) −5.31603 + 35.1405i −0.258169 + 1.70657i
\(425\) 6.67852 + 3.85585i 0.323956 + 0.187036i
\(426\) 0 0
\(427\) 3.96545 14.7993i 0.191902 0.716187i
\(428\) −7.71208 + 6.30441i −0.372777 + 0.304735i
\(429\) 0 0
\(430\) 0.0555547 + 0.0614135i 0.00267908 + 0.00296162i
\(431\) 7.05544 0.339849 0.169924 0.985457i \(-0.445648\pi\)
0.169924 + 0.985457i \(0.445648\pi\)
\(432\) 0 0
\(433\) 13.1552 0.632201 0.316100 0.948726i \(-0.397626\pi\)
0.316100 + 0.948726i \(0.397626\pi\)
\(434\) 6.78494 + 7.50048i 0.325688 + 0.360035i
\(435\) 0 0
\(436\) −5.62700 6.88342i −0.269485 0.329656i
\(437\) 8.95243 33.4109i 0.428253 1.59826i
\(438\) 0 0
\(439\) −12.8757 7.43381i −0.614525 0.354796i 0.160209 0.987083i \(-0.448783\pi\)
−0.774734 + 0.632287i \(0.782116\pi\)
\(440\) 0.0504241 0.0371725i 0.00240387 0.00177213i
\(441\) 0 0
\(442\) −10.1843 + 5.21887i −0.484418 + 0.248236i
\(443\) 2.97678 0.797625i 0.141431 0.0378963i −0.187409 0.982282i \(-0.560009\pi\)
0.328840 + 0.944386i \(0.393342\pi\)
\(444\) 0 0
\(445\) −0.120896 0.0323940i −0.00573102 0.00153562i
\(446\) 1.69878 + 7.90223i 0.0804398 + 0.374182i
\(447\) 0 0
\(448\) 7.16838 6.63686i 0.338674 0.313562i
\(449\) 21.8550 1.03140 0.515701 0.856769i \(-0.327532\pi\)
0.515701 + 0.856769i \(0.327532\pi\)
\(450\) 0 0
\(451\) −4.96480 + 4.96480i −0.233783 + 0.233783i
\(452\) −28.8412 + 13.0011i −1.35658 + 0.611522i
\(453\) 0 0
\(454\) −24.1971 15.6343i −1.13563 0.733755i
\(455\) 0.0648360 0.0374331i 0.00303956 0.00175489i
\(456\) 0 0
\(457\) −2.32261 1.34096i −0.108647 0.0627275i 0.444692 0.895684i \(-0.353313\pi\)
−0.553339 + 0.832956i \(0.686647\pi\)
\(458\) −2.47401 4.82788i −0.115603 0.225592i
\(459\) 0 0
\(460\) 0.138681 0.0226231i 0.00646605 0.00105481i
\(461\) −2.74844 10.2573i −0.128008 0.477732i 0.871921 0.489646i \(-0.162874\pi\)
−0.999929 + 0.0119146i \(0.996207\pi\)
\(462\) 0 0
\(463\) 11.8249 + 20.4814i 0.549550 + 0.951849i 0.998305 + 0.0581943i \(0.0185343\pi\)
−0.448755 + 0.893655i \(0.648132\pi\)
\(464\) 0.760046 + 12.3205i 0.0352842 + 0.571963i
\(465\) 0 0
\(466\) 5.05709 + 5.59041i 0.234265 + 0.258971i
\(467\) −2.22540 + 2.22540i −0.102979 + 0.102979i −0.756719 0.653740i \(-0.773199\pi\)
0.653740 + 0.756719i \(0.273199\pi\)
\(468\) 0 0
\(469\) 10.6199 + 10.6199i 0.490380 + 0.490380i
\(470\) −0.0433174 0.00216972i −0.00199808 0.000100082i
\(471\) 0 0
\(472\) −23.9572 + 9.38756i −1.10272 + 0.432098i
\(473\) 8.22468 4.74852i 0.378171 0.218337i
\(474\) 0 0
\(475\) 27.7858 7.44518i 1.27490 0.341608i
\(476\) −2.20000 + 3.05768i −0.100837 + 0.140149i
\(477\) 0 0
\(478\) −37.2519 12.0087i −1.70386 0.549265i
\(479\) 6.23896 10.8062i 0.285066 0.493748i −0.687559 0.726128i \(-0.741318\pi\)
0.972625 + 0.232380i \(0.0746513\pi\)
\(480\) 0 0
\(481\) 3.42439 + 5.93121i 0.156139 + 0.270440i
\(482\) 0.503629 + 2.34273i 0.0229397 + 0.106708i
\(483\) 0 0
\(484\) 6.08868 + 13.5069i 0.276758 + 0.613950i
\(485\) 0.145238 + 0.145238i 0.00659494 + 0.00659494i
\(486\) 0 0
\(487\) 12.5314i 0.567853i 0.958846 + 0.283927i \(0.0916372\pi\)
−0.958846 + 0.283927i \(0.908363\pi\)
\(488\) −22.1414 + 27.7336i −1.00229 + 1.25544i
\(489\) 0 0
\(490\) −0.0494084 + 0.0764689i −0.00223204 + 0.00345451i
\(491\) 3.93613 14.6898i 0.177635 0.662942i −0.818453 0.574574i \(-0.805168\pi\)
0.996088 0.0883688i \(-0.0281654\pi\)
\(492\) 0 0
\(493\) −1.23191 4.59756i −0.0554825 0.207064i
\(494\) −13.0970 + 40.6279i −0.589262 + 1.82794i
\(495\) 0 0
\(496\) −7.44499 22.2120i −0.334290 0.997346i
\(497\) −8.69218 + 15.0553i −0.389898 + 0.675322i
\(498\) 0 0
\(499\) 29.4298 + 7.88570i 1.31746 + 0.353012i 0.848026 0.529955i \(-0.177791\pi\)
0.469434 + 0.882967i \(0.344458\pi\)
\(500\) 0.147922 + 0.180950i 0.00661526 + 0.00809234i
\(501\) 0 0
\(502\) 1.97349 + 0.0988495i 0.0880810 + 0.00441187i
\(503\) 1.90106i 0.0847639i 0.999101 + 0.0423820i \(0.0134946\pi\)
−0.999101 + 0.0423820i \(0.986505\pi\)
\(504\) 0 0
\(505\) 0.0814355i 0.00362383i
\(506\) 0.806137 16.0942i 0.0358372 0.715473i
\(507\) 0 0
\(508\) −1.14437 + 11.3947i −0.0507731 + 0.505560i
\(509\) −12.4896 3.34659i −0.553593 0.148335i −0.0288320 0.999584i \(-0.509179\pi\)
−0.524761 + 0.851249i \(0.675845\pi\)
\(510\) 0 0
\(511\) −2.63819 + 4.56947i −0.116706 + 0.202142i
\(512\) −21.3697 + 7.43868i −0.944418 + 0.328746i
\(513\) 0 0
\(514\) 31.8234 + 10.2587i 1.40367 + 0.452494i
\(515\) −0.00770471 0.0287544i −0.000339510 0.00126707i
\(516\) 0 0
\(517\) −1.28734 + 4.80444i −0.0566174 + 0.211299i
\(518\) 1.89353 + 1.22346i 0.0831971 + 0.0537557i
\(519\) 0 0
\(520\) −0.172328 + 0.0193223i −0.00755710 + 0.000847339i
\(521\) 1.24885i 0.0547130i 0.999626 + 0.0273565i \(0.00870893\pi\)
−0.999626 + 0.0273565i \(0.991291\pi\)
\(522\) 0 0
\(523\) 9.58031 + 9.58031i 0.418918 + 0.418918i 0.884831 0.465913i \(-0.154274\pi\)
−0.465913 + 0.884831i \(0.654274\pi\)
\(524\) −4.81058 + 12.7074i −0.210151 + 0.555125i
\(525\) 0 0
\(526\) −35.5416 + 7.64056i −1.54969 + 0.333144i
\(527\) 4.51656 + 7.82292i 0.196745 + 0.340772i
\(528\) 0 0
\(529\) 6.57248 11.3839i 0.285760 0.494951i
\(530\) 0.0637143 0.197647i 0.00276757 0.00858523i
\(531\) 0 0
\(532\) 2.26226 + 13.8678i 0.0980813 + 0.601247i
\(533\) 18.7735 5.03034i 0.813169 0.217888i
\(534\) 0 0
\(535\) 0.0504047 0.0291012i 0.00217918 0.00125815i
\(536\) −12.6916 32.3893i −0.548195 1.39900i
\(537\) 0 0
\(538\) −1.36962 + 27.3439i −0.0590485 + 1.17888i
\(539\) 7.38278 + 7.38278i 0.317999 + 0.317999i
\(540\) 0 0
\(541\) 13.0165 13.0165i 0.559622 0.559622i −0.369578 0.929200i \(-0.620498\pi\)
0.929200 + 0.369578i \(0.120498\pi\)
\(542\) 7.45678 6.74541i 0.320296 0.289740i
\(543\) 0 0
\(544\) 7.50513 4.44960i 0.321780 0.190775i
\(545\) 0.0259743 + 0.0449887i 0.00111262 + 0.00192711i
\(546\) 0 0
\(547\) 2.61540 + 9.76080i 0.111826 + 0.417341i 0.999030 0.0440366i \(-0.0140218\pi\)
−0.887204 + 0.461378i \(0.847355\pi\)
\(548\) 4.92199 6.84086i 0.210257 0.292227i
\(549\) 0 0
\(550\) 11.9265 6.11167i 0.508550 0.260602i
\(551\) −15.3760 8.87733i −0.655039 0.378187i
\(552\) 0 0
\(553\) 0.553890 0.319788i 0.0235538 0.0135988i
\(554\) 17.2559 26.7068i 0.733133 1.13466i
\(555\) 0 0
\(556\) 30.3090 + 11.4740i 1.28539 + 0.486604i
\(557\) −26.6259 + 26.6259i −1.12818 + 1.12818i −0.137702 + 0.990474i \(0.543971\pi\)
−0.990474 + 0.137702i \(0.956029\pi\)
\(558\) 0 0
\(559\) −26.2889 −1.11190
\(560\) −0.0475821 + 0.0315298i −0.00201071 + 0.00133238i
\(561\) 0 0
\(562\) 31.6034 6.79395i 1.33311 0.286585i
\(563\) 21.1660 + 5.67141i 0.892039 + 0.239021i 0.675594 0.737274i \(-0.263887\pi\)
0.216445 + 0.976295i \(0.430554\pi\)
\(564\) 0 0
\(565\) 0.178552 0.0478429i 0.00751174 0.00201276i
\(566\) 3.98600 + 7.77843i 0.167544 + 0.326952i
\(567\) 0 0
\(568\) 32.4112 23.8935i 1.35994 1.00255i
\(569\) −8.15901 4.71061i −0.342044 0.197479i 0.319132 0.947710i \(-0.396609\pi\)
−0.661175 + 0.750231i \(0.729942\pi\)
\(570\) 0 0
\(571\) 7.61666 28.4258i 0.318747 1.18958i −0.601702 0.798720i \(-0.705511\pi\)
0.920450 0.390861i \(-0.127823\pi\)
\(572\) −1.98721 + 19.7871i −0.0830894 + 0.827340i
\(573\) 0 0
\(574\) 4.74445 4.29183i 0.198029 0.179138i
\(575\) 30.0595 1.25357
\(576\) 0 0
\(577\) −42.9309 −1.78724 −0.893618 0.448828i \(-0.851842\pi\)
−0.893618 + 0.448828i \(0.851842\pi\)
\(578\) 15.3342 13.8713i 0.637818 0.576971i
\(579\) 0 0
\(580\) 0.00720727 0.0717645i 0.000299266 0.00297986i
\(581\) −3.56071 + 13.2888i −0.147723 + 0.551310i
\(582\) 0 0
\(583\) −20.6244 11.9075i −0.854175 0.493158i
\(584\) 9.83721 7.25197i 0.407067 0.300089i
\(585\) 0 0
\(586\) −2.51559 4.90901i −0.103918 0.202789i
\(587\) −30.3611 + 8.13523i −1.25314 + 0.335777i −0.823548 0.567247i \(-0.808008\pi\)
−0.429589 + 0.903024i \(0.641342\pi\)
\(588\) 0 0
\(589\) 32.5470 + 8.72095i 1.34108 + 0.359340i
\(590\) 0.146988 0.0315987i 0.00605138 0.00130090i
\(591\) 0 0
\(592\) −2.88436 4.35282i −0.118546 0.178900i
\(593\) −0.434128 −0.0178275 −0.00891374 0.999960i \(-0.502837\pi\)
−0.00891374 + 0.999960i \(0.502837\pi\)
\(594\) 0 0
\(595\) 0.0155634 0.0155634i 0.000638037 0.000638037i
\(596\) 7.29025 + 2.75984i 0.298620 + 0.113047i
\(597\) 0 0
\(598\) −24.2078 + 37.4661i −0.989929 + 1.53210i
\(599\) −3.46143 + 1.99846i −0.141430 + 0.0816547i −0.569045 0.822306i \(-0.692687\pi\)
0.427615 + 0.903961i \(0.359354\pi\)
\(600\) 0 0
\(601\) −3.54563 2.04707i −0.144629 0.0835019i 0.425939 0.904752i \(-0.359944\pi\)
−0.570569 + 0.821250i \(0.693277\pi\)
\(602\) −7.70119 + 3.94642i −0.313877 + 0.160844i
\(603\) 0 0
\(604\) 17.5440 24.3836i 0.713854 0.992155i
\(605\) −0.0224057 0.0836192i −0.000910922 0.00339961i
\(606\) 0 0
\(607\) 16.8996 + 29.2709i 0.685932 + 1.18807i 0.973143 + 0.230202i \(0.0739386\pi\)
−0.287211 + 0.957867i \(0.592728\pi\)
\(608\) 8.05937 31.5322i 0.326851 1.27880i
\(609\) 0 0
\(610\) 0.153775 0.139105i 0.00622615 0.00563218i
\(611\) 9.73570 9.73570i 0.393864 0.393864i
\(612\) 0 0
\(613\) 1.73094 + 1.73094i 0.0699119 + 0.0699119i 0.741198 0.671286i \(-0.234258\pi\)
−0.671286 + 0.741198i \(0.734258\pi\)
\(614\) −1.08168 + 21.5952i −0.0436529 + 0.871510i
\(615\) 0 0
\(616\) 2.38824 + 6.09484i 0.0962251 + 0.245568i
\(617\) 14.9093 8.60788i 0.600225 0.346540i −0.168905 0.985632i \(-0.554023\pi\)
0.769130 + 0.639092i \(0.220690\pi\)
\(618\) 0 0
\(619\) 6.34645 1.70053i 0.255085 0.0683499i −0.129010 0.991643i \(-0.541180\pi\)
0.384095 + 0.923293i \(0.374513\pi\)
\(620\) 0.0220381 + 0.135095i 0.000885071 + 0.00542556i
\(621\) 0 0
\(622\) 9.78871 30.3653i 0.392491 1.21754i
\(623\) 6.53931 11.3264i 0.261992 0.453783i
\(624\) 0 0
\(625\) 12.4990 + 21.6489i 0.499959 + 0.865954i
\(626\) 8.25771 1.77520i 0.330045 0.0709514i
\(627\) 0 0
\(628\) −6.94428 + 18.3437i −0.277107 + 0.731992i
\(629\) 1.42374 + 1.42374i 0.0567684 + 0.0567684i
\(630\) 0 0
\(631\) 13.3295i 0.530639i −0.964161 0.265319i \(-0.914523\pi\)
0.964161 0.265319i \(-0.0854774\pi\)
\(632\) −1.47219 + 0.165069i −0.0585606 + 0.00656610i
\(633\) 0 0
\(634\) 22.1098 + 14.2856i 0.878091 + 0.567355i
\(635\) 0.0173188 0.0646345i 0.000687274 0.00256494i
\(636\) 0 0
\(637\) −7.48023 27.9166i −0.296377 1.10610i
\(638\) −7.87249 2.53781i −0.311675 0.100473i
\(639\) 0 0
\(640\) 0.130233 0.0227940i 0.00514790 0.000901012i
\(641\) −8.26044 + 14.3075i −0.326268 + 0.565113i −0.981768 0.190082i \(-0.939124\pi\)
0.655500 + 0.755195i \(0.272458\pi\)
\(642\) 0 0
\(643\) −24.0050 6.43213i −0.946667 0.253659i −0.247719 0.968832i \(-0.579681\pi\)
−0.698947 + 0.715173i \(0.746348\pi\)
\(644\) −1.46722 + 14.6095i −0.0578168 + 0.575695i
\(645\) 0 0
\(646\) −0.627803 + 12.5338i −0.0247006 + 0.493136i
\(647\) 26.9660i 1.06014i 0.847954 + 0.530071i \(0.177835\pi\)
−0.847954 + 0.530071i \(0.822165\pi\)
\(648\) 0 0
\(649\) 17.2418i 0.676800i
\(650\) −37.0499 1.85578i −1.45322 0.0727897i
\(651\) 0 0
\(652\) −9.35535 11.4442i −0.366384 0.448191i
\(653\) −5.27782 1.41419i −0.206537 0.0553414i 0.154067 0.988060i \(-0.450763\pi\)
−0.360604 + 0.932719i \(0.617429\pi\)
\(654\) 0 0
\(655\) 0.0396959 0.0687553i 0.00155105 0.00268649i
\(656\) −14.0502 + 4.70935i −0.548569 + 0.183869i
\(657\) 0 0
\(658\) 1.39053 4.31352i 0.0542083 0.168159i
\(659\) 0.184661 + 0.689165i 0.00719337 + 0.0268460i 0.969429 0.245371i \(-0.0789098\pi\)
−0.962236 + 0.272217i \(0.912243\pi\)
\(660\) 0 0
\(661\) 9.89344 36.9228i 0.384810 1.43613i −0.453656 0.891177i \(-0.649880\pi\)
0.838466 0.544954i \(-0.183453\pi\)
\(662\) 8.09416 12.5272i 0.314588 0.486885i
\(663\) 0 0
\(664\) 19.8815 24.9029i 0.771551 0.966421i
\(665\) 0.0821010i 0.00318374i
\(666\) 0 0
\(667\) −13.1190 13.1190i −0.507970 0.507970i
\(668\) −5.99314 13.2949i −0.231881 0.514397i
\(669\) 0 0
\(670\) 0.0427202 + 0.198721i 0.00165042 + 0.00767728i
\(671\) −11.8899 20.5940i −0.459006 0.795022i
\(672\) 0 0
\(673\) −6.39173 + 11.0708i −0.246383 + 0.426748i −0.962520 0.271212i \(-0.912575\pi\)
0.716137 + 0.697960i \(0.245909\pi\)
\(674\) −32.6329 10.5197i −1.25697 0.405204i
\(675\) 0 0
\(676\) 16.9654 23.5794i 0.652514 0.906901i
\(677\) 25.4595 6.82184i 0.978487 0.262185i 0.266079 0.963951i \(-0.414272\pi\)
0.712407 + 0.701766i \(0.247605\pi\)
\(678\) 0 0
\(679\) −18.5875 + 10.7315i −0.713323 + 0.411837i
\(680\) −0.0474664 + 0.0185996i −0.00182025 + 0.000713261i
\(681\) 0 0
\(682\) 15.6780 + 0.785293i 0.600343 + 0.0300704i
\(683\) −9.42670 9.42670i −0.360703 0.360703i 0.503369 0.864072i \(-0.332094\pi\)
−0.864072 + 0.503369i \(0.832094\pi\)
\(684\) 0 0
\(685\) −0.0348195 + 0.0348195i −0.00133039 + 0.00133039i
\(686\) −14.4916 16.0199i −0.553293 0.611643i
\(687\) 0 0
\(688\) 20.0055 1.23413i 0.762703 0.0470509i
\(689\) 32.9613 + 57.0906i 1.25572 + 2.17498i
\(690\) 0 0
\(691\) 4.07041 + 15.1910i 0.154846 + 0.577891i 0.999119 + 0.0419780i \(0.0133660\pi\)
−0.844273 + 0.535913i \(0.819967\pi\)
\(692\) 46.8776 7.64714i 1.78202 0.290700i
\(693\) 0 0
\(694\) −12.3990 24.1958i −0.470659 0.918462i
\(695\) −0.163992 0.0946807i −0.00622056 0.00359144i
\(696\) 0 0
\(697\) 4.94841 2.85696i 0.187434 0.108215i
\(698\) 19.2360 + 12.4288i 0.728091 + 0.470437i
\(699\) 0 0
\(700\) −11.1321 + 5.01818i −0.420756 + 0.189670i
\(701\) −9.62303 + 9.62303i −0.363457 + 0.363457i −0.865084 0.501627i \(-0.832735\pi\)
0.501627 + 0.865084i \(0.332735\pi\)
\(702\) 0 0
\(703\) 7.51063 0.283269
\(704\) 0.583333 15.1510i 0.0219852 0.571026i
\(705\) 0 0
\(706\) 4.57372 + 21.2756i 0.172134 + 0.800717i
\(707\) 8.21961 + 2.20244i 0.309130 + 0.0828312i
\(708\) 0 0
\(709\) 40.3893 10.8223i 1.51685 0.406439i 0.598148 0.801386i \(-0.295904\pi\)
0.918704 + 0.394947i \(0.129237\pi\)
\(710\) −0.209386 + 0.107298i −0.00785812 + 0.00402683i
\(711\) 0 0
\(712\) −24.3836 + 17.9756i −0.913816 + 0.673663i
\(713\) 30.4931 + 17.6052i 1.14197 + 0.659319i
\(714\) 0 0
\(715\) 0.0300742 0.112239i 0.00112471 0.00419749i
\(716\) 20.4951 + 25.0713i 0.765938 + 0.936959i
\(717\) 0 0
\(718\) −2.82608 3.12412i −0.105468 0.116591i
\(719\) −48.7757 −1.81903 −0.909514 0.415674i \(-0.863546\pi\)
−0.909514 + 0.415674i \(0.863546\pi\)
\(720\) 0 0
\(721\) 3.11067 0.115847
\(722\) 13.3780 + 14.7888i 0.497876 + 0.550382i
\(723\) 0 0
\(724\) −6.59858 + 5.39416i −0.245234 + 0.200472i
\(725\) 3.99343 14.9037i 0.148312 0.553509i
\(726\) 0 0
\(727\) −34.9918 20.2025i −1.29777 0.749270i −0.317755 0.948173i \(-0.602929\pi\)
−0.980019 + 0.198902i \(0.936262\pi\)
\(728\) 2.71037 17.9164i 0.100453 0.664024i
\(729\) 0 0
\(730\) −0.0635513 + 0.0325664i −0.00235214 + 0.00120534i
\(731\) −7.46535 + 2.00033i −0.276116 + 0.0739850i
\(732\) 0 0
\(733\) −28.4006 7.60991i −1.04900 0.281078i −0.307161 0.951658i \(-0.599379\pi\)
−0.741838 + 0.670579i \(0.766046\pi\)
\(734\) 7.46552 + 34.7273i 0.275557 + 1.28181i
\(735\) 0 0
\(736\) 16.6630 29.6477i 0.614205 1.09283i
\(737\) 23.3102 0.858644
\(738\) 0 0
\(739\) 15.4222 15.4222i 0.567316 0.567316i −0.364060 0.931376i \(-0.618610\pi\)
0.931376 + 0.364060i \(0.118610\pi\)
\(740\) 0.0125386 + 0.0278152i 0.000460929 + 0.00102251i
\(741\) 0 0
\(742\) 18.2261 + 11.7763i 0.669102 + 0.432323i
\(743\) 21.5896 12.4647i 0.792045 0.457287i −0.0486373 0.998817i \(-0.515488\pi\)
0.840682 + 0.541529i \(0.182155\pi\)
\(744\) 0 0
\(745\) −0.0394451 0.0227736i −0.00144515 0.000834361i
\(746\) 19.2329 + 37.5319i 0.704167 + 1.37414i
\(747\) 0 0
\(748\) 0.941295 + 5.77022i 0.0344172 + 0.210980i
\(749\) 1.57409 + 5.87459i 0.0575161 + 0.214653i
\(750\) 0 0
\(751\) −21.2809 36.8596i −0.776551 1.34503i −0.933919 0.357486i \(-0.883634\pi\)
0.157368 0.987540i \(-0.449699\pi\)
\(752\) −6.95171 + 7.86579i −0.253503 + 0.286836i
\(753\) 0 0
\(754\) 15.3599 + 16.9797i 0.559374 + 0.618366i
\(755\) −0.124111 + 0.124111i −0.00451686 + 0.00451686i
\(756\) 0 0
\(757\) 1.80855 + 1.80855i 0.0657328 + 0.0657328i 0.739209 0.673476i \(-0.235200\pi\)
−0.673476 + 0.739209i \(0.735200\pi\)
\(758\) −20.3715 1.02038i −0.739927 0.0370621i
\(759\) 0 0
\(760\) −0.0761402 + 0.174258i −0.00276189 + 0.00632099i
\(761\) −18.5805 + 10.7275i −0.673543 + 0.388870i −0.797418 0.603428i \(-0.793801\pi\)
0.123875 + 0.992298i \(0.460468\pi\)
\(762\) 0 0
\(763\) −5.24337 + 1.40496i −0.189823 + 0.0508629i
\(764\) −7.32835 5.27274i −0.265130 0.190761i
\(765\) 0 0
\(766\) 28.4679 + 9.17705i 1.02859 + 0.331580i
\(767\) −23.8636 + 41.3330i −0.861665 + 1.49245i
\(768\) 0 0
\(769\) −9.98382 17.2925i −0.360026 0.623583i 0.627939 0.778263i \(-0.283899\pi\)
−0.987965 + 0.154680i \(0.950565\pi\)
\(770\) −0.00803886 0.0373944i −0.000289701 0.00134760i
\(771\) 0 0
\(772\) −6.41050 + 2.88974i −0.230719 + 0.104004i
\(773\) −24.8049 24.8049i −0.892171 0.892171i 0.102557 0.994727i \(-0.467298\pi\)
−0.994727 + 0.102557i \(0.967298\pi\)
\(774\) 0 0
\(775\) 29.2823i 1.05185i
\(776\) 49.4040 5.53942i 1.77350 0.198853i
\(777\) 0 0
\(778\) 24.1141 37.3211i 0.864531 1.33803i
\(779\) 5.51646 20.5877i 0.197648 0.737631i
\(780\) 0 0
\(781\) 6.98342 + 26.0625i 0.249886 + 0.932589i
\(782\) −4.02355 + 12.4814i −0.143882 + 0.446332i
\(783\) 0 0
\(784\) 7.00291 + 20.8930i 0.250104 + 0.746179i
\(785\) 0.0573027 0.0992512i 0.00204522 0.00354243i
\(786\) 0 0
\(787\) 10.3344 + 2.76911i 0.368383 + 0.0987080i 0.438261 0.898848i \(-0.355594\pi\)
−0.0698783 + 0.997556i \(0.522261\pi\)
\(788\) 10.5533 8.62706i 0.375947 0.307326i
\(789\) 0 0
\(790\) 0.00864510 0.000433022i 0.000307579 1.54062e-5i
\(791\) 19.3159i 0.686794i
\(792\) 0 0
\(793\) 65.8254i 2.33753i
\(794\) 0.324282 6.47414i 0.0115083 0.229759i
\(795\) 0 0
\(796\) 9.27977 + 0.931962i 0.328913 + 0.0330325i
\(797\) −46.8027 12.5408i −1.65784 0.444216i −0.696046 0.717997i \(-0.745059\pi\)
−0.961792 + 0.273781i \(0.911726\pi\)
\(798\) 0 0
\(799\) 2.02389 3.50547i 0.0716000 0.124015i
\(800\) 28.2816 0.327083i 0.999906 0.0115641i
\(801\) 0 0
\(802\) −28.9200 9.32279i −1.02120 0.329199i
\(803\) 2.11956 + 7.91029i 0.0747975 + 0.279148i
\(804\) 0 0
\(805\) 0.0222048 0.0828696i 0.000782618 0.00292077i
\(806\) −36.4973 23.5818i −1.28556 0.830634i
\(807\) 0 0
\(808\) −15.4034 12.2975i −0.541890 0.432623i
\(809\) 51.3577i 1.80564i 0.430019 + 0.902820i \(0.358507\pi\)
−0.430019 + 0.902820i \(0.641493\pi\)
\(810\) 0 0
\(811\) −2.55652 2.55652i −0.0897715 0.0897715i 0.660795 0.750566i \(-0.270219\pi\)
−0.750566 + 0.660795i \(0.770219\pi\)
\(812\) 7.04855 + 2.66834i 0.247356 + 0.0936405i
\(813\) 0 0
\(814\) 3.42085 0.735398i 0.119901 0.0257757i
\(815\) 0.0431843 + 0.0747975i 0.00151268 + 0.00262004i
\(816\) 0 0
\(817\) −14.4147 + 24.9670i −0.504306 + 0.873484i
\(818\) 11.5951 35.9690i 0.405414 1.25763i
\(819\) 0 0
\(820\) 0.0854549 0.0139403i 0.00298422 0.000486815i
\(821\) −0.179113 + 0.0479933i −0.00625110 + 0.00167498i −0.261943 0.965083i \(-0.584363\pi\)
0.255692 + 0.966758i \(0.417697\pi\)
\(822\) 0 0
\(823\) −16.8590 + 9.73353i −0.587667 + 0.339290i −0.764174 0.645010i \(-0.776853\pi\)
0.176508 + 0.984299i \(0.443520\pi\)
\(824\) −6.60233 2.88482i −0.230003 0.100497i
\(825\) 0 0
\(826\) −0.785924 + 15.6906i −0.0273458 + 0.545947i
\(827\) −7.70731 7.70731i −0.268009 0.268009i 0.560288 0.828298i \(-0.310690\pi\)
−0.828298 + 0.560288i \(0.810690\pi\)
\(828\) 0 0
\(829\) −23.8166 + 23.8166i −0.827184 + 0.827184i −0.987126 0.159942i \(-0.948869\pi\)
0.159942 + 0.987126i \(0.448869\pi\)
\(830\) −0.138079 + 0.124907i −0.00479280 + 0.00433557i
\(831\) 0 0
\(832\) −22.3683 + 35.5135i −0.775480 + 1.23121i
\(833\) −4.24837 7.35839i −0.147197 0.254953i
\(834\) 0 0
\(835\) 0.0220541 + 0.0823071i 0.000763214 + 0.00284835i
\(836\) 17.7025 + 12.7369i 0.612254 + 0.440516i
\(837\) 0 0
\(838\) −11.5182 + 5.90243i −0.397891 + 0.203896i
\(839\) −18.6769 10.7831i −0.644799 0.372275i 0.141662 0.989915i \(-0.454755\pi\)
−0.786461 + 0.617640i \(0.788089\pi\)
\(840\) 0 0
\(841\) 16.8674 9.73839i 0.581634 0.335807i
\(842\) 22.9903 35.5818i 0.792296 1.22623i
\(843\) 0 0
\(844\) −12.7885 + 33.7815i −0.440199 + 1.16281i
\(845\) −0.120018 + 0.120018i −0.00412873 + 0.00412873i
\(846\) 0 0
\(847\) 9.04599 0.310824
\(848\) −27.7633 41.8979i −0.953394 1.43878i
\(849\) 0 0
\(850\) −10.6624 + 2.29215i −0.365717 + 0.0786200i
\(851\) 7.58094 + 2.03131i 0.259871 + 0.0696323i
\(852\) 0 0
\(853\) 38.5967 10.3419i 1.32153 0.354102i 0.471976 0.881611i \(-0.343541\pi\)
0.849549 + 0.527510i \(0.176874\pi\)
\(854\) 9.88153 + 19.2832i 0.338139 + 0.659857i
\(855\) 0 0
\(856\) 2.10709 13.9285i 0.0720190 0.476067i
\(857\) −14.5777 8.41643i −0.497964 0.287500i 0.229908 0.973212i \(-0.426157\pi\)
−0.727872 + 0.685713i \(0.759491\pi\)
\(858\) 0 0
\(859\) −5.55582 + 20.7346i −0.189562 + 0.707455i 0.804046 + 0.594568i \(0.202677\pi\)
−0.993608 + 0.112888i \(0.963990\pi\)
\(860\) −0.116529 0.0117029i −0.00397359 0.000399066i
\(861\) 0 0
\(862\) −7.39956 + 6.69365i −0.252030 + 0.227987i
\(863\) −20.3421 −0.692455 −0.346227 0.938151i \(-0.612537\pi\)
−0.346227 + 0.938151i \(0.612537\pi\)
\(864\) 0 0
\(865\) −0.277527 −0.00943620
\(866\) −13.7969 + 12.4807i −0.468837 + 0.424110i
\(867\) 0 0
\(868\) −14.2317 1.42929i −0.483057 0.0485132i
\(869\) 0.256922 0.958848i 0.00871550 0.0325267i
\(870\) 0 0
\(871\) −55.8806 32.2627i −1.89344 1.09318i
\(872\) 12.4319 + 1.88069i 0.420997 + 0.0636882i
\(873\) 0 0
\(874\) 22.3086 + 43.5339i 0.754599 + 1.47255i
\(875\) 0.137837 0.0369333i 0.00465974 0.00124857i
\(876\) 0 0
\(877\) −18.6156 4.98805i −0.628606 0.168434i −0.0695688 0.997577i \(-0.522162\pi\)
−0.559037 + 0.829143i \(0.688829\pi\)
\(878\) 20.5563 4.41911i 0.693743 0.149138i
\(879\) 0 0
\(880\) −0.0176171 + 0.0868240i −0.000593871 + 0.00292684i
\(881\) −37.3378 −1.25794 −0.628972 0.777428i \(-0.716524\pi\)
−0.628972 + 0.777428i \(0.716524\pi\)
\(882\) 0 0
\(883\) −16.7468 + 16.7468i −0.563576 + 0.563576i −0.930321 0.366745i \(-0.880472\pi\)
0.366745 + 0.930321i \(0.380472\pi\)
\(884\) 5.72978 15.1355i 0.192713 0.509062i
\(885\) 0 0
\(886\) −2.36524 + 3.66066i −0.0794619 + 0.122982i
\(887\) −36.4841 + 21.0641i −1.22502 + 0.707263i −0.965983 0.258606i \(-0.916737\pi\)
−0.259033 + 0.965869i \(0.583404\pi\)
\(888\) 0 0
\(889\) 6.05543 + 3.49611i 0.203093 + 0.117256i
\(890\) 0.157526 0.0807228i 0.00528027 0.00270583i
\(891\) 0 0
\(892\) −9.27866 6.67598i −0.310673 0.223528i
\(893\) −3.90788 14.5844i −0.130772 0.488049i
\(894\) 0 0
\(895\) −0.0946055 0.163862i −0.00316231 0.00547729i
\(896\) −1.22148 + 13.7614i −0.0408066 + 0.459735i
\(897\) 0 0
\(898\) −22.9210 + 20.7343i −0.764882 + 0.691913i
\(899\) 12.7798 12.7798i 0.426229 0.426229i
\(900\) 0 0
\(901\) 13.7042 + 13.7042i 0.456552 + 0.456552i
\(902\) 0.496739 9.91717i 0.0165396 0.330206i
\(903\) 0 0
\(904\) 17.9135 40.9976i 0.595793 1.36356i
\(905\) 0.0431271 0.0248994i 0.00143359 0.000827685i
\(906\) 0 0
\(907\) 1.02635 0.275009i 0.0340794 0.00913154i −0.241739 0.970341i \(-0.577718\pi\)
0.275818 + 0.961210i \(0.411051\pi\)
\(908\) 40.2099 6.55943i 1.33441 0.217682i
\(909\) 0 0
\(910\) −0.0324847 + 0.100770i −0.00107686 + 0.00334050i
\(911\) −1.91307 + 3.31354i −0.0633829 + 0.109782i −0.895976 0.444103i \(-0.853522\pi\)
0.832593 + 0.553886i \(0.186856\pi\)
\(912\) 0 0
\(913\) 10.6764 + 18.4920i 0.353336 + 0.611996i
\(914\) 3.70809 0.797148i 0.122653 0.0263673i
\(915\) 0 0
\(916\) 7.17499 + 2.71621i 0.237068 + 0.0897460i
\(917\) 5.86616 + 5.86616i 0.193718 + 0.193718i
\(918\) 0 0
\(919\) 5.73779i 0.189272i 0.995512 + 0.0946361i \(0.0301688\pi\)
−0.995512 + 0.0946361i \(0.969831\pi\)
\(920\) −0.123982 + 0.155296i −0.00408758 + 0.00511997i
\(921\) 0 0
\(922\) 12.6139 + 8.15011i 0.415415 + 0.268410i
\(923\) 19.3309 72.1438i 0.636284 2.37464i
\(924\) 0 0
\(925\) 1.68931 + 6.30460i 0.0555442 + 0.207294i
\(926\) −31.8328 10.2618i −1.04609 0.337222i
\(927\) 0 0
\(928\) −12.4858 12.2003i −0.409867 0.400495i
\(929\) 20.2911 35.1451i 0.665728 1.15307i −0.313359 0.949635i \(-0.601454\pi\)
0.979087 0.203440i \(-0.0652122\pi\)
\(930\) 0 0
\(931\) −30.6144 8.20310i −1.00335 0.268846i
\(932\) −10.6075 1.06531i −0.347460 0.0348952i
\(933\) 0 0
\(934\) 0.222656 4.44522i 0.00728552 0.145452i
\(935\) 0.0341611i 0.00111719i
\(936\) 0 0
\(937\) 27.9974i 0.914635i −0.889304 0.457317i \(-0.848810\pi\)
0.889304 0.457317i \(-0.151190\pi\)
\(938\) −21.2131 1.06254i −0.692633 0.0346931i
\(939\) 0 0
\(940\) 0.0474886 0.0388206i 0.00154891 0.00126619i
\(941\) 36.1343 + 9.68215i 1.17794 + 0.315629i 0.794111 0.607773i \(-0.207937\pi\)
0.383833 + 0.923402i \(0.374604\pi\)
\(942\) 0 0
\(943\) 11.1362 19.2885i 0.362645 0.628119i
\(944\) 16.2195 32.5742i 0.527901 1.06020i
\(945\) 0 0
\(946\) −4.12081 + 12.7831i −0.133979 + 0.415613i
\(947\) 4.92887 + 18.3948i 0.160167 + 0.597751i 0.998607 + 0.0527575i \(0.0168010\pi\)
−0.838441 + 0.544993i \(0.816532\pi\)
\(948\) 0 0
\(949\) 5.86717 21.8966i 0.190456 0.710793i
\(950\) −22.0776 + 34.1693i −0.716292 + 1.10860i
\(951\) 0 0
\(952\) −0.593590 5.29400i −0.0192384 0.171580i
\(953\) 2.49861i 0.0809380i −0.999181 0.0404690i \(-0.987115\pi\)
0.999181 0.0404690i \(-0.0128852\pi\)
\(954\) 0 0
\(955\) 0.0373008 + 0.0373008i 0.00120703 + 0.00120703i
\(956\) 50.4618 22.7473i 1.63205 0.735701i
\(957\) 0 0
\(958\) 3.70882 + 17.2523i 0.119826 + 0.557397i
\(959\) −2.57277 4.45617i −0.0830792 0.143897i
\(960\) 0 0
\(961\) −1.64996 + 2.85782i −0.0532246 + 0.0921877i
\(962\) −9.21848 2.97171i −0.297216 0.0958118i
\(963\) 0 0
\(964\) −2.75079 1.97919i −0.0885970 0.0637454i
\(965\) 0.0396865 0.0106340i 0.00127755 0.000342319i
\(966\) 0 0
\(967\) −3.08638 + 1.78192i −0.0992513 + 0.0573028i −0.548804 0.835951i \(-0.684917\pi\)
0.449553 + 0.893254i \(0.351583\pi\)
\(968\) −19.1999 8.38922i −0.617109 0.269640i
\(969\) 0 0
\(970\) −0.290113 0.0145314i −0.00931498 0.000466576i
\(971\) 0.578866 + 0.578866i 0.0185767 + 0.0185767i 0.716334 0.697757i \(-0.245819\pi\)
−0.697757 + 0.716334i \(0.745819\pi\)
\(972\) 0 0
\(973\) 13.9917 13.9917i 0.448553 0.448553i
\(974\) −11.8888 13.1426i −0.380943 0.421117i
\(975\) 0 0
\(976\) −3.09018 50.0923i −0.0989142 1.60342i
\(977\) −10.3841 17.9859i −0.332218 0.575418i 0.650728 0.759310i \(-0.274464\pi\)
−0.982946 + 0.183892i \(0.941130\pi\)
\(978\) 0 0
\(979\) −5.25377 19.6074i −0.167911 0.626654i
\(980\) −0.0207295 0.127073i −0.000662179 0.00405921i
\(981\) 0 0
\(982\) 9.80845 + 19.1406i 0.313000 + 0.610801i
\(983\) −9.13353 5.27325i −0.291314 0.168190i 0.347220 0.937784i \(-0.387126\pi\)
−0.638534 + 0.769593i \(0.720459\pi\)
\(984\) 0 0
\(985\) −0.0689747 + 0.0398225i −0.00219772 + 0.00126885i
\(986\) 5.65380 + 3.65306i 0.180054 + 0.116337i
\(987\) 0 0
\(988\) −24.8088 55.0349i −0.789273 1.75089i
\(989\) −21.3022 + 21.3022i −0.677369 + 0.677369i
\(990\) 0 0
\(991\) −24.1374 −0.766749 −0.383374 0.923593i \(-0.625238\pi\)
−0.383374 + 0.923593i \(0.625238\pi\)
\(992\) 28.8811 + 16.2321i 0.916975 + 0.515370i
\(993\) 0 0
\(994\) −5.16716 24.0361i −0.163892 0.762378i
\(995\) −0.0526377 0.0141042i −0.00166873 0.000447134i
\(996\) 0 0
\(997\) −22.4986 + 6.02848i −0.712538 + 0.190924i −0.596840 0.802361i \(-0.703577\pi\)
−0.115698 + 0.993284i \(0.536910\pi\)
\(998\) −38.3466 + 19.6504i −1.21384 + 0.622023i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.y.e.181.6 72
3.2 odd 2 144.2.x.e.133.13 yes 72
4.3 odd 2 1728.2.bc.e.1585.10 72
9.4 even 3 inner 432.2.y.e.37.7 72
9.5 odd 6 144.2.x.e.85.12 yes 72
12.11 even 2 576.2.bb.e.241.14 72
16.3 odd 4 1728.2.bc.e.721.9 72
16.13 even 4 inner 432.2.y.e.397.7 72
36.23 even 6 576.2.bb.e.49.4 72
36.31 odd 6 1728.2.bc.e.1009.9 72
48.29 odd 4 144.2.x.e.61.12 yes 72
48.35 even 4 576.2.bb.e.529.4 72
144.13 even 12 inner 432.2.y.e.253.6 72
144.67 odd 12 1728.2.bc.e.145.10 72
144.77 odd 12 144.2.x.e.13.13 72
144.131 even 12 576.2.bb.e.337.14 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.x.e.13.13 72 144.77 odd 12
144.2.x.e.61.12 yes 72 48.29 odd 4
144.2.x.e.85.12 yes 72 9.5 odd 6
144.2.x.e.133.13 yes 72 3.2 odd 2
432.2.y.e.37.7 72 9.4 even 3 inner
432.2.y.e.181.6 72 1.1 even 1 trivial
432.2.y.e.253.6 72 144.13 even 12 inner
432.2.y.e.397.7 72 16.13 even 4 inner
576.2.bb.e.49.4 72 36.23 even 6
576.2.bb.e.241.14 72 12.11 even 2
576.2.bb.e.337.14 72 144.131 even 12
576.2.bb.e.529.4 72 48.35 even 4
1728.2.bc.e.145.10 72 144.67 odd 12
1728.2.bc.e.721.9 72 16.3 odd 4
1728.2.bc.e.1009.9 72 36.31 odd 6
1728.2.bc.e.1585.10 72 4.3 odd 2