Properties

Label 432.2.v.a.179.3
Level $432$
Weight $2$
Character 432.179
Analytic conductor $3.450$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,2,Mod(35,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.v (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 179.3
Character \(\chi\) \(=\) 432.179
Dual form 432.2.v.a.251.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29365 + 0.571371i) q^{2} +(1.34707 - 1.47831i) q^{4} +(3.81396 - 1.02195i) q^{5} +(1.46715 + 2.54117i) q^{7} +(-0.897978 + 2.68210i) q^{8} +(-4.35003 + 3.50123i) q^{10} +(2.65006 + 0.710081i) q^{11} +(-2.34729 + 0.628955i) q^{13} +(-3.34993 - 2.44911i) q^{14} +(-0.370800 - 3.98278i) q^{16} -2.89808i q^{17} +(-1.99906 + 1.99906i) q^{19} +(3.62692 - 7.01485i) q^{20} +(-3.83397 + 0.595568i) q^{22} +(2.07141 + 1.19593i) q^{23} +(9.17180 - 5.29534i) q^{25} +(2.67721 - 2.15482i) q^{26} +(5.73299 + 1.25424i) q^{28} +(-8.46218 - 2.26743i) q^{29} +(-0.439075 - 0.253500i) q^{31} +(2.75533 + 4.94046i) q^{32} +(1.65588 + 3.74911i) q^{34} +(8.19258 + 8.19258i) q^{35} +(1.36407 - 1.36407i) q^{37} +(1.44388 - 3.72828i) q^{38} +(-0.683892 + 11.1471i) q^{40} +(-0.745739 + 1.29166i) q^{41} +(-1.27136 + 4.74478i) q^{43} +(4.61954 - 2.96108i) q^{44} +(-3.36300 - 0.363572i) q^{46} +(3.25802 + 5.64306i) q^{47} +(-0.805035 + 1.39436i) q^{49} +(-8.83951 + 12.0908i) q^{50} +(-2.23218 + 4.31727i) q^{52} +(5.17979 + 5.17979i) q^{53} +10.8329 q^{55} +(-8.13313 + 1.65311i) q^{56} +(12.2427 - 1.90177i) q^{58} +(-0.664781 - 2.48100i) q^{59} +(2.99657 - 11.1833i) q^{61} +(0.712853 + 0.0770663i) q^{62} +(-6.38727 - 4.81693i) q^{64} +(-8.30972 + 4.79762i) q^{65} +(-2.53505 - 9.46095i) q^{67} +(-4.28427 - 3.90393i) q^{68} +(-15.2794 - 5.91735i) q^{70} -4.65399i q^{71} +4.91897i q^{73} +(-0.985240 + 2.54402i) q^{74} +(0.262354 + 5.64809i) q^{76} +(2.08358 + 7.77604i) q^{77} +(-3.61263 + 2.08575i) q^{79} +(-5.48441 - 14.8112i) q^{80} +(0.226711 - 2.09705i) q^{82} +(3.37411 - 12.5924i) q^{83} +(-2.96169 - 11.0532i) q^{85} +(-1.06633 - 6.86451i) q^{86} +(-4.28420 + 6.47007i) q^{88} -7.33327 q^{89} +(-5.04210 - 5.04210i) q^{91} +(4.55828 - 1.45118i) q^{92} +(-7.43902 - 5.43861i) q^{94} +(-5.58139 + 9.66725i) q^{95} +(2.50134 + 4.33245i) q^{97} +(0.244738 - 2.26379i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{2} - 2 q^{4} + 6 q^{5} - 4 q^{7} - 8 q^{10} + 6 q^{11} - 2 q^{13} + 6 q^{14} - 2 q^{16} - 8 q^{19} + 48 q^{20} - 2 q^{22} + 12 q^{23} + 8 q^{28} + 6 q^{29} + 6 q^{32} + 2 q^{34} - 8 q^{37} + 6 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29365 + 0.571371i −0.914750 + 0.404020i
\(3\) 0 0
\(4\) 1.34707 1.47831i 0.673535 0.739155i
\(5\) 3.81396 1.02195i 1.70566 0.457029i 0.731302 0.682053i \(-0.238913\pi\)
0.974353 + 0.225024i \(0.0722462\pi\)
\(6\) 0 0
\(7\) 1.46715 + 2.54117i 0.554529 + 0.960473i 0.997940 + 0.0641541i \(0.0204349\pi\)
−0.443411 + 0.896318i \(0.646232\pi\)
\(8\) −0.897978 + 2.68210i −0.317483 + 0.948264i
\(9\) 0 0
\(10\) −4.35003 + 3.50123i −1.37560 + 1.10719i
\(11\) 2.65006 + 0.710081i 0.799022 + 0.214097i 0.635155 0.772385i \(-0.280936\pi\)
0.163868 + 0.986482i \(0.447603\pi\)
\(12\) 0 0
\(13\) −2.34729 + 0.628955i −0.651021 + 0.174441i −0.569191 0.822206i \(-0.692743\pi\)
−0.0818307 + 0.996646i \(0.526077\pi\)
\(14\) −3.34993 2.44911i −0.895306 0.654551i
\(15\) 0 0
\(16\) −0.370800 3.98278i −0.0926999 0.995694i
\(17\) 2.89808i 0.702889i −0.936209 0.351444i \(-0.885691\pi\)
0.936209 0.351444i \(-0.114309\pi\)
\(18\) 0 0
\(19\) −1.99906 + 1.99906i −0.458615 + 0.458615i −0.898201 0.439586i \(-0.855125\pi\)
0.439586 + 0.898201i \(0.355125\pi\)
\(20\) 3.62692 7.01485i 0.811004 1.56857i
\(21\) 0 0
\(22\) −3.83397 + 0.595568i −0.817406 + 0.126976i
\(23\) 2.07141 + 1.19593i 0.431918 + 0.249368i 0.700163 0.713983i \(-0.253110\pi\)
−0.268245 + 0.963351i \(0.586444\pi\)
\(24\) 0 0
\(25\) 9.17180 5.29534i 1.83436 1.05907i
\(26\) 2.67721 2.15482i 0.525044 0.422595i
\(27\) 0 0
\(28\) 5.73299 + 1.25424i 1.08343 + 0.237029i
\(29\) −8.46218 2.26743i −1.57139 0.421052i −0.635141 0.772396i \(-0.719058\pi\)
−0.936246 + 0.351344i \(0.885725\pi\)
\(30\) 0 0
\(31\) −0.439075 0.253500i −0.0788602 0.0455300i 0.460051 0.887892i \(-0.347831\pi\)
−0.538912 + 0.842362i \(0.681164\pi\)
\(32\) 2.75533 + 4.94046i 0.487078 + 0.873359i
\(33\) 0 0
\(34\) 1.65588 + 3.74911i 0.283981 + 0.642968i
\(35\) 8.19258 + 8.19258i 1.38480 + 1.38480i
\(36\) 0 0
\(37\) 1.36407 1.36407i 0.224251 0.224251i −0.586035 0.810286i \(-0.699312\pi\)
0.810286 + 0.586035i \(0.199312\pi\)
\(38\) 1.44388 3.72828i 0.234228 0.604808i
\(39\) 0 0
\(40\) −0.683892 + 11.1471i −0.108133 + 1.76251i
\(41\) −0.745739 + 1.29166i −0.116465 + 0.201723i −0.918364 0.395736i \(-0.870490\pi\)
0.801899 + 0.597459i \(0.203823\pi\)
\(42\) 0 0
\(43\) −1.27136 + 4.74478i −0.193881 + 0.723572i 0.798673 + 0.601765i \(0.205536\pi\)
−0.992554 + 0.121807i \(0.961131\pi\)
\(44\) 4.61954 2.96108i 0.696421 0.446399i
\(45\) 0 0
\(46\) −3.36300 0.363572i −0.495847 0.0536058i
\(47\) 3.25802 + 5.64306i 0.475231 + 0.823124i 0.999598 0.0283684i \(-0.00903115\pi\)
−0.524367 + 0.851493i \(0.675698\pi\)
\(48\) 0 0
\(49\) −0.805035 + 1.39436i −0.115005 + 0.199195i
\(50\) −8.83951 + 12.0908i −1.25010 + 1.70990i
\(51\) 0 0
\(52\) −2.23218 + 4.31727i −0.309547 + 0.598698i
\(53\) 5.17979 + 5.17979i 0.711499 + 0.711499i 0.966849 0.255349i \(-0.0821905\pi\)
−0.255349 + 0.966849i \(0.582191\pi\)
\(54\) 0 0
\(55\) 10.8329 1.46071
\(56\) −8.13313 + 1.65311i −1.08684 + 0.220906i
\(57\) 0 0
\(58\) 12.2427 1.90177i 1.60754 0.249715i
\(59\) −0.664781 2.48100i −0.0865472 0.322998i 0.909056 0.416675i \(-0.136805\pi\)
−0.995603 + 0.0936766i \(0.970138\pi\)
\(60\) 0 0
\(61\) 2.99657 11.1833i 0.383671 1.43188i −0.456580 0.889682i \(-0.650926\pi\)
0.840251 0.542198i \(-0.182408\pi\)
\(62\) 0.712853 + 0.0770663i 0.0905324 + 0.00978743i
\(63\) 0 0
\(64\) −6.38727 4.81693i −0.798409 0.602116i
\(65\) −8.30972 + 4.79762i −1.03069 + 0.595071i
\(66\) 0 0
\(67\) −2.53505 9.46095i −0.309706 1.15584i −0.928818 0.370536i \(-0.879174\pi\)
0.619112 0.785303i \(-0.287493\pi\)
\(68\) −4.28427 3.90393i −0.519544 0.473421i
\(69\) 0 0
\(70\) −15.2794 5.91735i −1.82623 0.707259i
\(71\) 4.65399i 0.552327i −0.961111 0.276164i \(-0.910937\pi\)
0.961111 0.276164i \(-0.0890632\pi\)
\(72\) 0 0
\(73\) 4.91897i 0.575722i 0.957672 + 0.287861i \(0.0929441\pi\)
−0.957672 + 0.287861i \(0.907056\pi\)
\(74\) −0.985240 + 2.54402i −0.114532 + 0.295736i
\(75\) 0 0
\(76\) 0.262354 + 5.64809i 0.0300940 + 0.647881i
\(77\) 2.08358 + 7.77604i 0.237446 + 0.886162i
\(78\) 0 0
\(79\) −3.61263 + 2.08575i −0.406453 + 0.234666i −0.689264 0.724510i \(-0.742066\pi\)
0.282812 + 0.959175i \(0.408733\pi\)
\(80\) −5.48441 14.8112i −0.613175 1.65594i
\(81\) 0 0
\(82\) 0.226711 2.09705i 0.0250361 0.231580i
\(83\) 3.37411 12.5924i 0.370357 1.38219i −0.489654 0.871917i \(-0.662877\pi\)
0.860011 0.510275i \(-0.170456\pi\)
\(84\) 0 0
\(85\) −2.96169 11.0532i −0.321241 1.19889i
\(86\) −1.06633 6.86451i −0.114985 0.740220i
\(87\) 0 0
\(88\) −4.28420 + 6.47007i −0.456697 + 0.689712i
\(89\) −7.33327 −0.777325 −0.388662 0.921380i \(-0.627063\pi\)
−0.388662 + 0.921380i \(0.627063\pi\)
\(90\) 0 0
\(91\) −5.04210 5.04210i −0.528556 0.528556i
\(92\) 4.55828 1.45118i 0.475234 0.151296i
\(93\) 0 0
\(94\) −7.43902 5.43861i −0.767276 0.560950i
\(95\) −5.58139 + 9.66725i −0.572639 + 0.991839i
\(96\) 0 0
\(97\) 2.50134 + 4.33245i 0.253973 + 0.439893i 0.964616 0.263659i \(-0.0849294\pi\)
−0.710643 + 0.703552i \(0.751596\pi\)
\(98\) 0.244738 2.26379i 0.0247222 0.228678i
\(99\) 0 0
\(100\) 4.52691 20.6920i 0.452691 2.06920i
\(101\) 2.82933 10.5592i 0.281529 1.05068i −0.669810 0.742533i \(-0.733624\pi\)
0.951339 0.308147i \(-0.0997090\pi\)
\(102\) 0 0
\(103\) −0.321949 + 0.557632i −0.0317226 + 0.0549451i −0.881451 0.472276i \(-0.843433\pi\)
0.849728 + 0.527221i \(0.176766\pi\)
\(104\) 0.420899 6.86044i 0.0412726 0.672722i
\(105\) 0 0
\(106\) −9.66043 3.74127i −0.938304 0.363384i
\(107\) −3.74155 + 3.74155i −0.361709 + 0.361709i −0.864442 0.502733i \(-0.832328\pi\)
0.502733 + 0.864442i \(0.332328\pi\)
\(108\) 0 0
\(109\) 6.00859 + 6.00859i 0.575518 + 0.575518i 0.933665 0.358147i \(-0.116591\pi\)
−0.358147 + 0.933665i \(0.616591\pi\)
\(110\) −14.0140 + 6.18959i −1.33618 + 0.590155i
\(111\) 0 0
\(112\) 9.57690 6.78558i 0.904932 0.641177i
\(113\) −14.4387 8.33620i −1.35828 0.784204i −0.368889 0.929474i \(-0.620262\pi\)
−0.989392 + 0.145270i \(0.953595\pi\)
\(114\) 0 0
\(115\) 9.12244 + 2.44435i 0.850672 + 0.227937i
\(116\) −14.7511 + 9.45533i −1.36961 + 0.877905i
\(117\) 0 0
\(118\) 2.27757 + 2.82971i 0.209667 + 0.260496i
\(119\) 7.36453 4.25191i 0.675105 0.389772i
\(120\) 0 0
\(121\) −3.00769 1.73649i −0.273426 0.157863i
\(122\) 2.51332 + 16.1795i 0.227545 + 1.46482i
\(123\) 0 0
\(124\) −0.966217 + 0.307606i −0.0867689 + 0.0276239i
\(125\) 15.6093 15.6093i 1.39613 1.39613i
\(126\) 0 0
\(127\) 17.9975i 1.59702i 0.601983 + 0.798509i \(0.294377\pi\)
−0.601983 + 0.798509i \(0.705623\pi\)
\(128\) 11.0152 + 2.58193i 0.973611 + 0.228212i
\(129\) 0 0
\(130\) 8.00866 10.9544i 0.702406 0.960762i
\(131\) −17.4121 + 4.66555i −1.52130 + 0.407631i −0.920170 0.391520i \(-0.871949\pi\)
−0.601131 + 0.799151i \(0.705283\pi\)
\(132\) 0 0
\(133\) −8.01285 2.14704i −0.694802 0.186172i
\(134\) 8.68519 + 10.7907i 0.750286 + 0.932176i
\(135\) 0 0
\(136\) 7.77294 + 2.60242i 0.666524 + 0.223155i
\(137\) 0.396155 + 0.686161i 0.0338458 + 0.0586227i 0.882452 0.470402i \(-0.155891\pi\)
−0.848606 + 0.529025i \(0.822558\pi\)
\(138\) 0 0
\(139\) −20.5134 + 5.49654i −1.73992 + 0.466211i −0.982430 0.186633i \(-0.940242\pi\)
−0.757492 + 0.652844i \(0.773576\pi\)
\(140\) 23.1472 1.07519i 1.95629 0.0908697i
\(141\) 0 0
\(142\) 2.65916 + 6.02065i 0.223151 + 0.505242i
\(143\) −6.66706 −0.557528
\(144\) 0 0
\(145\) −34.5916 −2.87268
\(146\) −2.81055 6.36343i −0.232603 0.526641i
\(147\) 0 0
\(148\) −0.179019 3.85401i −0.0147152 0.316798i
\(149\) 11.3030 3.02863i 0.925977 0.248115i 0.235839 0.971792i \(-0.424216\pi\)
0.690139 + 0.723677i \(0.257550\pi\)
\(150\) 0 0
\(151\) −4.24025 7.34432i −0.345066 0.597673i 0.640299 0.768125i \(-0.278810\pi\)
−0.985366 + 0.170453i \(0.945477\pi\)
\(152\) −3.56655 7.15677i −0.289285 0.580490i
\(153\) 0 0
\(154\) −7.13844 8.86899i −0.575232 0.714684i
\(155\) −1.93368 0.518128i −0.155317 0.0416170i
\(156\) 0 0
\(157\) 3.53516 0.947242i 0.282136 0.0755981i −0.114976 0.993368i \(-0.536679\pi\)
0.397112 + 0.917770i \(0.370012\pi\)
\(158\) 3.48175 4.76239i 0.276993 0.378875i
\(159\) 0 0
\(160\) 15.5576 + 16.0269i 1.22994 + 1.26704i
\(161\) 7.01840i 0.553127i
\(162\) 0 0
\(163\) −3.86060 + 3.86060i −0.302385 + 0.302385i −0.841946 0.539561i \(-0.818590\pi\)
0.539561 + 0.841946i \(0.318590\pi\)
\(164\) 0.904908 + 2.84239i 0.0706614 + 0.221953i
\(165\) 0 0
\(166\) 2.82998 + 18.2180i 0.219649 + 1.41399i
\(167\) 5.98224 + 3.45385i 0.462920 + 0.267267i 0.713271 0.700888i \(-0.247213\pi\)
−0.250351 + 0.968155i \(0.580546\pi\)
\(168\) 0 0
\(169\) −6.14414 + 3.54732i −0.472626 + 0.272871i
\(170\) 10.1469 + 12.6067i 0.778229 + 0.966894i
\(171\) 0 0
\(172\) 5.30164 + 8.27102i 0.404247 + 0.630659i
\(173\) −3.86859 1.03659i −0.294123 0.0788101i 0.108740 0.994070i \(-0.465318\pi\)
−0.402863 + 0.915260i \(0.631985\pi\)
\(174\) 0 0
\(175\) 26.9127 + 15.5381i 2.03441 + 1.17457i
\(176\) 1.84545 10.8179i 0.139106 0.815429i
\(177\) 0 0
\(178\) 9.48669 4.19001i 0.711058 0.314055i
\(179\) −10.0625 10.0625i −0.752109 0.752109i 0.222764 0.974872i \(-0.428492\pi\)
−0.974872 + 0.222764i \(0.928492\pi\)
\(180\) 0 0
\(181\) 15.0346 15.0346i 1.11751 1.11751i 0.125405 0.992106i \(-0.459977\pi\)
0.992106 0.125405i \(-0.0400229\pi\)
\(182\) 9.40363 + 3.64181i 0.697044 + 0.269949i
\(183\) 0 0
\(184\) −5.06767 + 4.48179i −0.373593 + 0.330402i
\(185\) 3.80849 6.59651i 0.280006 0.484985i
\(186\) 0 0
\(187\) 2.05787 7.68009i 0.150487 0.561624i
\(188\) 12.7310 + 2.78523i 0.928501 + 0.203134i
\(189\) 0 0
\(190\) 1.69679 15.6951i 0.123098 1.13864i
\(191\) 10.9007 + 18.8806i 0.788749 + 1.36615i 0.926734 + 0.375719i \(0.122604\pi\)
−0.137984 + 0.990434i \(0.544062\pi\)
\(192\) 0 0
\(193\) −2.34723 + 4.06553i −0.168958 + 0.292643i −0.938054 0.346490i \(-0.887373\pi\)
0.769096 + 0.639133i \(0.220707\pi\)
\(194\) −5.71130 4.17549i −0.410047 0.299782i
\(195\) 0 0
\(196\) 0.976859 + 3.06840i 0.0697757 + 0.219171i
\(197\) −14.3226 14.3226i −1.02044 1.02044i −0.999787 0.0206566i \(-0.993424\pi\)
−0.0206566 0.999787i \(-0.506576\pi\)
\(198\) 0 0
\(199\) −14.4965 −1.02763 −0.513816 0.857901i \(-0.671768\pi\)
−0.513816 + 0.857901i \(0.671768\pi\)
\(200\) 5.96653 + 29.3547i 0.421898 + 2.07569i
\(201\) 0 0
\(202\) 2.37305 + 15.2765i 0.166967 + 1.07485i
\(203\) −6.65332 24.8305i −0.466971 1.74276i
\(204\) 0 0
\(205\) −1.52421 + 5.68844i −0.106456 + 0.397298i
\(206\) 0.0978753 0.905334i 0.00681930 0.0630776i
\(207\) 0 0
\(208\) 3.37536 + 9.11552i 0.234039 + 0.632047i
\(209\) −6.71710 + 3.87812i −0.464632 + 0.268255i
\(210\) 0 0
\(211\) −1.71268 6.39179i −0.117905 0.440029i 0.881582 0.472030i \(-0.156479\pi\)
−0.999488 + 0.0320010i \(0.989812\pi\)
\(212\) 14.6349 0.679790i 1.00513 0.0466882i
\(213\) 0 0
\(214\) 2.70245 6.97808i 0.184736 0.477012i
\(215\) 19.3957i 1.32277i
\(216\) 0 0
\(217\) 1.48769i 0.100991i
\(218\) −11.2062 4.33989i −0.758976 0.293934i
\(219\) 0 0
\(220\) 14.5927 16.0144i 0.983837 1.07969i
\(221\) 1.82276 + 6.80265i 0.122612 + 0.457596i
\(222\) 0 0
\(223\) 1.59599 0.921443i 0.106875 0.0617044i −0.445610 0.895227i \(-0.647013\pi\)
0.552485 + 0.833523i \(0.313680\pi\)
\(224\) −8.51209 + 14.2501i −0.568738 + 0.952128i
\(225\) 0 0
\(226\) 23.4417 + 2.53428i 1.55932 + 0.168578i
\(227\) 0.184084 0.687012i 0.0122181 0.0455986i −0.959548 0.281546i \(-0.909153\pi\)
0.971766 + 0.235948i \(0.0758194\pi\)
\(228\) 0 0
\(229\) 1.98433 + 7.40562i 0.131128 + 0.489377i 0.999984 0.00568843i \(-0.00181069\pi\)
−0.868856 + 0.495066i \(0.835144\pi\)
\(230\) −13.1979 + 2.05016i −0.870243 + 0.135183i
\(231\) 0 0
\(232\) 13.6803 20.6603i 0.898158 1.35641i
\(233\) −1.36925 −0.0897024 −0.0448512 0.998994i \(-0.514281\pi\)
−0.0448512 + 0.998994i \(0.514281\pi\)
\(234\) 0 0
\(235\) 18.1929 + 18.1929i 1.18677 + 1.18677i
\(236\) −4.56319 2.35933i −0.297038 0.153579i
\(237\) 0 0
\(238\) −7.09772 + 9.70837i −0.460077 + 0.629300i
\(239\) 0.773627 1.33996i 0.0500418 0.0866749i −0.839919 0.542711i \(-0.817398\pi\)
0.889961 + 0.456036i \(0.150731\pi\)
\(240\) 0 0
\(241\) 3.83660 + 6.64519i 0.247137 + 0.428054i 0.962730 0.270463i \(-0.0871769\pi\)
−0.715593 + 0.698517i \(0.753844\pi\)
\(242\) 4.88308 + 0.527908i 0.313896 + 0.0339352i
\(243\) 0 0
\(244\) −12.4959 19.4946i −0.799965 1.24801i
\(245\) −1.64541 + 6.14075i −0.105121 + 0.392318i
\(246\) 0 0
\(247\) 3.43505 5.94968i 0.218567 0.378569i
\(248\) 1.07419 0.950004i 0.0682112 0.0603253i
\(249\) 0 0
\(250\) −11.2743 + 29.1116i −0.713048 + 1.84118i
\(251\) 5.46632 5.46632i 0.345031 0.345031i −0.513224 0.858255i \(-0.671549\pi\)
0.858255 + 0.513224i \(0.171549\pi\)
\(252\) 0 0
\(253\) 4.64014 + 4.64014i 0.291723 + 0.291723i
\(254\) −10.2832 23.2825i −0.645227 1.46087i
\(255\) 0 0
\(256\) −15.7250 + 2.95362i −0.982813 + 0.184602i
\(257\) 20.5918 + 11.8887i 1.28448 + 0.741596i 0.977664 0.210172i \(-0.0674025\pi\)
0.306818 + 0.951768i \(0.400736\pi\)
\(258\) 0 0
\(259\) 5.46761 + 1.46504i 0.339741 + 0.0910333i
\(260\) −4.10141 + 18.7471i −0.254359 + 1.16264i
\(261\) 0 0
\(262\) 19.8594 15.9844i 1.22692 0.987517i
\(263\) 6.13704 3.54322i 0.378426 0.218484i −0.298707 0.954345i \(-0.596555\pi\)
0.677133 + 0.735860i \(0.263222\pi\)
\(264\) 0 0
\(265\) 25.0490 + 14.4621i 1.53875 + 0.888397i
\(266\) 11.5926 1.80079i 0.710788 0.110414i
\(267\) 0 0
\(268\) −17.4011 8.99698i −1.06294 0.549578i
\(269\) −20.6616 + 20.6616i −1.25976 + 1.25976i −0.308553 + 0.951207i \(0.599845\pi\)
−0.951207 + 0.308553i \(0.900155\pi\)
\(270\) 0 0
\(271\) 16.6901i 1.01385i −0.861989 0.506927i \(-0.830782\pi\)
0.861989 0.506927i \(-0.169218\pi\)
\(272\) −11.5424 + 1.07461i −0.699862 + 0.0651577i
\(273\) 0 0
\(274\) −0.904539 0.661302i −0.0546452 0.0399507i
\(275\) 28.0659 7.52024i 1.69244 0.453487i
\(276\) 0 0
\(277\) 4.49217 + 1.20367i 0.269908 + 0.0723217i 0.391235 0.920291i \(-0.372048\pi\)
−0.121326 + 0.992613i \(0.538715\pi\)
\(278\) 23.3966 18.8314i 1.40324 1.12943i
\(279\) 0 0
\(280\) −29.3301 + 14.6165i −1.75281 + 0.873505i
\(281\) 11.4153 + 19.7719i 0.680979 + 1.17949i 0.974682 + 0.223594i \(0.0717790\pi\)
−0.293703 + 0.955897i \(0.594888\pi\)
\(282\) 0 0
\(283\) −24.9438 + 6.68368i −1.48276 + 0.397303i −0.907284 0.420518i \(-0.861848\pi\)
−0.575472 + 0.817822i \(0.695182\pi\)
\(284\) −6.88004 6.26926i −0.408256 0.372012i
\(285\) 0 0
\(286\) 8.62486 3.80937i 0.509999 0.225253i
\(287\) −4.37643 −0.258333
\(288\) 0 0
\(289\) 8.60110 0.505947
\(290\) 44.7495 19.7646i 2.62778 1.16062i
\(291\) 0 0
\(292\) 7.27176 + 6.62620i 0.425547 + 0.387769i
\(293\) 2.76706 0.741431i 0.161653 0.0433149i −0.177085 0.984196i \(-0.556667\pi\)
0.338738 + 0.940881i \(0.390000\pi\)
\(294\) 0 0
\(295\) −5.07090 8.78306i −0.295239 0.511370i
\(296\) 2.43366 + 4.88346i 0.141453 + 0.283845i
\(297\) 0 0
\(298\) −12.8917 + 10.3762i −0.746794 + 0.601077i
\(299\) −5.61438 1.50437i −0.324688 0.0869998i
\(300\) 0 0
\(301\) −13.9226 + 3.73054i −0.802484 + 0.215025i
\(302\) 9.68174 + 7.07825i 0.557121 + 0.407307i
\(303\) 0 0
\(304\) 8.70304 + 7.22054i 0.499154 + 0.414127i
\(305\) 45.7152i 2.61764i
\(306\) 0 0
\(307\) −7.67329 + 7.67329i −0.437938 + 0.437938i −0.891317 0.453380i \(-0.850218\pi\)
0.453380 + 0.891317i \(0.350218\pi\)
\(308\) 14.3021 + 7.39470i 0.814940 + 0.421352i
\(309\) 0 0
\(310\) 2.79755 0.434571i 0.158890 0.0246820i
\(311\) −15.0777 8.70513i −0.854980 0.493623i 0.00734815 0.999973i \(-0.497661\pi\)
−0.862328 + 0.506350i \(0.830994\pi\)
\(312\) 0 0
\(313\) −21.3027 + 12.2991i −1.20410 + 0.695189i −0.961465 0.274928i \(-0.911346\pi\)
−0.242638 + 0.970117i \(0.578013\pi\)
\(314\) −4.03203 + 3.24529i −0.227541 + 0.183142i
\(315\) 0 0
\(316\) −1.78308 + 8.15024i −0.100306 + 0.458487i
\(317\) 7.99342 + 2.14183i 0.448955 + 0.120297i 0.476211 0.879331i \(-0.342010\pi\)
−0.0272552 + 0.999629i \(0.508677\pi\)
\(318\) 0 0
\(319\) −20.8152 12.0177i −1.16543 0.672860i
\(320\) −29.2835 11.8441i −1.63699 0.662106i
\(321\) 0 0
\(322\) −4.01011 9.07937i −0.223475 0.505973i
\(323\) 5.79343 + 5.79343i 0.322355 + 0.322355i
\(324\) 0 0
\(325\) −18.1983 + 18.1983i −1.00946 + 1.00946i
\(326\) 2.78844 7.20010i 0.154437 0.398777i
\(327\) 0 0
\(328\) −2.79469 3.16003i −0.154311 0.174483i
\(329\) −9.55998 + 16.5584i −0.527059 + 0.912893i
\(330\) 0 0
\(331\) 6.84245 25.5364i 0.376095 1.40361i −0.475643 0.879639i \(-0.657784\pi\)
0.851738 0.523968i \(-0.175549\pi\)
\(332\) −14.0702 21.9508i −0.772205 1.20471i
\(333\) 0 0
\(334\) −9.71236 1.05000i −0.531437 0.0574535i
\(335\) −19.3372 33.4930i −1.05650 1.82992i
\(336\) 0 0
\(337\) 12.3368 21.3679i 0.672026 1.16398i −0.305302 0.952256i \(-0.598757\pi\)
0.977329 0.211728i \(-0.0679092\pi\)
\(338\) 5.92154 8.09958i 0.322090 0.440559i
\(339\) 0 0
\(340\) −20.3296 10.5111i −1.10253 0.570046i
\(341\) −0.983569 0.983569i −0.0532632 0.0532632i
\(342\) 0 0
\(343\) 15.8156 0.853964
\(344\) −11.5843 7.67062i −0.624584 0.413572i
\(345\) 0 0
\(346\) 5.59688 0.869418i 0.300890 0.0467402i
\(347\) −6.16895 23.0228i −0.331166 1.23593i −0.907966 0.419044i \(-0.862365\pi\)
0.576799 0.816886i \(-0.304301\pi\)
\(348\) 0 0
\(349\) 6.94337 25.9130i 0.371670 1.38709i −0.486479 0.873692i \(-0.661719\pi\)
0.858149 0.513400i \(-0.171614\pi\)
\(350\) −43.6937 4.72371i −2.33553 0.252493i
\(351\) 0 0
\(352\) 3.79365 + 15.0490i 0.202202 + 0.802115i
\(353\) −5.54075 + 3.19895i −0.294904 + 0.170263i −0.640151 0.768249i \(-0.721128\pi\)
0.345247 + 0.938512i \(0.387795\pi\)
\(354\) 0 0
\(355\) −4.75614 17.7502i −0.252430 0.942080i
\(356\) −9.87843 + 10.8408i −0.523556 + 0.574563i
\(357\) 0 0
\(358\) 18.7668 + 7.26798i 0.991859 + 0.384125i
\(359\) 17.2363i 0.909697i 0.890569 + 0.454849i \(0.150307\pi\)
−0.890569 + 0.454849i \(0.849693\pi\)
\(360\) 0 0
\(361\) 11.0076i 0.579345i
\(362\) −10.8592 + 28.0398i −0.570746 + 1.47374i
\(363\) 0 0
\(364\) −14.2459 + 0.661719i −0.746686 + 0.0346835i
\(365\) 5.02693 + 18.7608i 0.263121 + 0.981983i
\(366\) 0 0
\(367\) −1.26366 + 0.729575i −0.0659625 + 0.0380835i −0.532619 0.846355i \(-0.678792\pi\)
0.466656 + 0.884439i \(0.345459\pi\)
\(368\) 3.99503 8.69340i 0.208255 0.453175i
\(369\) 0 0
\(370\) −1.15782 + 10.7096i −0.0601920 + 0.556768i
\(371\) −5.56323 + 20.7623i −0.288829 + 1.07792i
\(372\) 0 0
\(373\) −2.08247 7.77189i −0.107826 0.402413i 0.890824 0.454348i \(-0.150128\pi\)
−0.998650 + 0.0519349i \(0.983461\pi\)
\(374\) 1.72601 + 11.1112i 0.0892497 + 0.574545i
\(375\) 0 0
\(376\) −18.0608 + 3.67098i −0.931417 + 0.189316i
\(377\) 21.2893 1.09646
\(378\) 0 0
\(379\) −16.4748 16.4748i −0.846255 0.846255i 0.143409 0.989664i \(-0.454194\pi\)
−0.989664 + 0.143409i \(0.954194\pi\)
\(380\) 6.77266 + 21.2735i 0.347430 + 1.09131i
\(381\) 0 0
\(382\) −24.8896 18.1966i −1.27346 0.931019i
\(383\) 5.19654 9.00067i 0.265531 0.459913i −0.702172 0.712008i \(-0.747786\pi\)
0.967703 + 0.252095i \(0.0811195\pi\)
\(384\) 0 0
\(385\) 15.8934 + 27.5282i 0.810004 + 1.40297i
\(386\) 0.713580 6.60052i 0.0363203 0.335958i
\(387\) 0 0
\(388\) 9.77418 + 2.13836i 0.496209 + 0.108559i
\(389\) −6.24292 + 23.2989i −0.316529 + 1.18130i 0.606029 + 0.795442i \(0.292761\pi\)
−0.922558 + 0.385859i \(0.873905\pi\)
\(390\) 0 0
\(391\) 3.46590 6.00311i 0.175278 0.303590i
\(392\) −3.01691 3.41129i −0.152377 0.172296i
\(393\) 0 0
\(394\) 26.7120 + 10.3449i 1.34573 + 0.521171i
\(395\) −11.6469 + 11.6469i −0.586019 + 0.586019i
\(396\) 0 0
\(397\) 8.37131 + 8.37131i 0.420144 + 0.420144i 0.885253 0.465109i \(-0.153985\pi\)
−0.465109 + 0.885253i \(0.653985\pi\)
\(398\) 18.7535 8.28289i 0.940026 0.415184i
\(399\) 0 0
\(400\) −24.4911 34.5657i −1.22455 1.72829i
\(401\) 3.16266 + 1.82596i 0.157936 + 0.0911842i 0.576885 0.816825i \(-0.304268\pi\)
−0.418949 + 0.908010i \(0.637601\pi\)
\(402\) 0 0
\(403\) 1.19008 + 0.318880i 0.0592820 + 0.0158846i
\(404\) −11.7985 18.4066i −0.586996 0.915764i
\(405\) 0 0
\(406\) 22.7945 + 28.3205i 1.13127 + 1.40552i
\(407\) 4.58345 2.64626i 0.227193 0.131170i
\(408\) 0 0
\(409\) −12.1263 7.00113i −0.599607 0.346184i 0.169280 0.985568i \(-0.445856\pi\)
−0.768887 + 0.639385i \(0.779189\pi\)
\(410\) −1.27841 8.22976i −0.0631361 0.406439i
\(411\) 0 0
\(412\) 0.390665 + 1.22711i 0.0192467 + 0.0604554i
\(413\) 5.32931 5.32931i 0.262238 0.262238i
\(414\) 0 0
\(415\) 51.4750i 2.52681i
\(416\) −9.57488 9.86373i −0.469447 0.483609i
\(417\) 0 0
\(418\) 6.47375 8.85490i 0.316641 0.433107i
\(419\) −0.601258 + 0.161107i −0.0293734 + 0.00787057i −0.273476 0.961879i \(-0.588173\pi\)
0.244102 + 0.969749i \(0.421507\pi\)
\(420\) 0 0
\(421\) 17.3705 + 4.65440i 0.846585 + 0.226842i 0.655936 0.754816i \(-0.272274\pi\)
0.190649 + 0.981658i \(0.438941\pi\)
\(422\) 5.86769 + 7.29018i 0.285635 + 0.354881i
\(423\) 0 0
\(424\) −18.5440 + 9.24136i −0.900578 + 0.448800i
\(425\) −15.3463 26.5806i −0.744407 1.28935i
\(426\) 0 0
\(427\) 32.8152 8.79280i 1.58804 0.425514i
\(428\) 0.491037 + 10.5713i 0.0237352 + 0.510983i
\(429\) 0 0
\(430\) −11.0821 25.0913i −0.534427 1.21001i
\(431\) −6.34380 −0.305570 −0.152785 0.988259i \(-0.548824\pi\)
−0.152785 + 0.988259i \(0.548824\pi\)
\(432\) 0 0
\(433\) 26.7319 1.28465 0.642327 0.766430i \(-0.277969\pi\)
0.642327 + 0.766430i \(0.277969\pi\)
\(434\) 0.850021 + 1.92455i 0.0408023 + 0.0923813i
\(435\) 0 0
\(436\) 16.9765 0.788560i 0.813029 0.0377652i
\(437\) −6.53158 + 1.75013i −0.312448 + 0.0837202i
\(438\) 0 0
\(439\) 0.347800 + 0.602407i 0.0165996 + 0.0287513i 0.874206 0.485555i \(-0.161383\pi\)
−0.857606 + 0.514307i \(0.828049\pi\)
\(440\) −9.72769 + 29.0548i −0.463750 + 1.38513i
\(441\) 0 0
\(442\) −6.24486 7.75878i −0.297037 0.369048i
\(443\) 15.8656 + 4.25119i 0.753800 + 0.201980i 0.615203 0.788369i \(-0.289074\pi\)
0.138597 + 0.990349i \(0.455741\pi\)
\(444\) 0 0
\(445\) −27.9688 + 7.49422i −1.32585 + 0.355260i
\(446\) −1.53816 + 2.10393i −0.0728342 + 0.0996238i
\(447\) 0 0
\(448\) 2.86957 23.2983i 0.135575 1.10074i
\(449\) 12.0759i 0.569896i 0.958543 + 0.284948i \(0.0919763\pi\)
−0.958543 + 0.284948i \(0.908024\pi\)
\(450\) 0 0
\(451\) −2.89343 + 2.89343i −0.136247 + 0.136247i
\(452\) −31.7735 + 10.1155i −1.49450 + 0.475791i
\(453\) 0 0
\(454\) 0.154398 + 0.993935i 0.00724624 + 0.0466477i
\(455\) −24.3831 14.0776i −1.14310 0.659969i
\(456\) 0 0
\(457\) −10.6069 + 6.12391i −0.496171 + 0.286464i −0.727131 0.686499i \(-0.759147\pi\)
0.230960 + 0.972963i \(0.425813\pi\)
\(458\) −6.79839 8.44651i −0.317668 0.394679i
\(459\) 0 0
\(460\) 15.9021 10.1931i 0.741438 0.475255i
\(461\) 30.3154 + 8.12298i 1.41193 + 0.378325i 0.882613 0.470101i \(-0.155783\pi\)
0.529314 + 0.848426i \(0.322449\pi\)
\(462\) 0 0
\(463\) 30.9163 + 17.8495i 1.43680 + 0.829538i 0.997626 0.0688633i \(-0.0219372\pi\)
0.439176 + 0.898401i \(0.355271\pi\)
\(464\) −5.89291 + 34.5437i −0.273572 + 1.60365i
\(465\) 0 0
\(466\) 1.77133 0.782348i 0.0820553 0.0362416i
\(467\) 7.64586 + 7.64586i 0.353808 + 0.353808i 0.861524 0.507716i \(-0.169510\pi\)
−0.507716 + 0.861524i \(0.669510\pi\)
\(468\) 0 0
\(469\) 20.3226 20.3226i 0.938411 0.938411i
\(470\) −33.9301 13.1404i −1.56508 0.606120i
\(471\) 0 0
\(472\) 7.25123 + 0.444875i 0.333765 + 0.0204770i
\(473\) −6.73836 + 11.6712i −0.309830 + 0.536641i
\(474\) 0 0
\(475\) −7.74926 + 28.9206i −0.355560 + 1.32697i
\(476\) 3.63490 16.6147i 0.166605 0.761533i
\(477\) 0 0
\(478\) −0.235189 + 2.17547i −0.0107573 + 0.0995038i
\(479\) 3.03628 + 5.25898i 0.138731 + 0.240289i 0.927017 0.375020i \(-0.122364\pi\)
−0.788286 + 0.615310i \(0.789031\pi\)
\(480\) 0 0
\(481\) −2.34393 + 4.05980i −0.106874 + 0.185111i
\(482\) −8.76009 6.40444i −0.399011 0.291714i
\(483\) 0 0
\(484\) −6.61864 + 2.10712i −0.300847 + 0.0957782i
\(485\) 13.9675 + 13.9675i 0.634234 + 0.634234i
\(486\) 0 0
\(487\) −7.15811 −0.324365 −0.162183 0.986761i \(-0.551853\pi\)
−0.162183 + 0.986761i \(0.551853\pi\)
\(488\) 27.3039 + 18.0795i 1.23599 + 0.818419i
\(489\) 0 0
\(490\) −1.38006 8.88413i −0.0623446 0.401344i
\(491\) 7.24226 + 27.0285i 0.326838 + 1.21978i 0.912451 + 0.409187i \(0.134187\pi\)
−0.585612 + 0.810591i \(0.699146\pi\)
\(492\) 0 0
\(493\) −6.57122 + 24.5241i −0.295953 + 1.10451i
\(494\) −1.04429 + 9.65950i −0.0469846 + 0.434602i
\(495\) 0 0
\(496\) −0.846826 + 1.84274i −0.0380236 + 0.0827413i
\(497\) 11.8266 6.82809i 0.530495 0.306282i
\(498\) 0 0
\(499\) 11.4708 + 42.8097i 0.513505 + 1.91643i 0.378568 + 0.925573i \(0.376416\pi\)
0.134937 + 0.990854i \(0.456917\pi\)
\(500\) −2.04854 44.1021i −0.0916135 1.97231i
\(501\) 0 0
\(502\) −3.94822 + 10.1948i −0.176218 + 0.455017i
\(503\) 3.93000i 0.175230i −0.996154 0.0876151i \(-0.972075\pi\)
0.996154 0.0876151i \(-0.0279245\pi\)
\(504\) 0 0
\(505\) 43.1638i 1.92077i
\(506\) −8.65397 3.35149i −0.384716 0.148992i
\(507\) 0 0
\(508\) 26.6058 + 24.2439i 1.18044 + 1.07565i
\(509\) −10.8415 40.4609i −0.480539 1.79340i −0.599358 0.800481i \(-0.704577\pi\)
0.118819 0.992916i \(-0.462089\pi\)
\(510\) 0 0
\(511\) −12.4999 + 7.21684i −0.552965 + 0.319254i
\(512\) 18.6551 12.8058i 0.824446 0.565941i
\(513\) 0 0
\(514\) −33.4315 3.61427i −1.47460 0.159418i
\(515\) −0.658030 + 2.45580i −0.0289963 + 0.108216i
\(516\) 0 0
\(517\) 4.62691 + 17.2679i 0.203491 + 0.759441i
\(518\) −7.91027 + 1.22878i −0.347557 + 0.0539895i
\(519\) 0 0
\(520\) −5.40572 26.5956i −0.237057 1.16629i
\(521\) 26.1826 1.14708 0.573540 0.819178i \(-0.305570\pi\)
0.573540 + 0.819178i \(0.305570\pi\)
\(522\) 0 0
\(523\) 7.29036 + 7.29036i 0.318785 + 0.318785i 0.848300 0.529515i \(-0.177626\pi\)
−0.529515 + 0.848300i \(0.677626\pi\)
\(524\) −16.5582 + 32.0253i −0.723347 + 1.39903i
\(525\) 0 0
\(526\) −5.91470 + 8.09022i −0.257893 + 0.352750i
\(527\) −0.734665 + 1.27248i −0.0320025 + 0.0554300i
\(528\) 0 0
\(529\) −8.63952 14.9641i −0.375631 0.650612i
\(530\) −40.6679 4.39659i −1.76650 0.190976i
\(531\) 0 0
\(532\) −13.9679 + 8.95326i −0.605584 + 0.388173i
\(533\) 0.938073 3.50093i 0.0406324 0.151642i
\(534\) 0 0
\(535\) −10.4465 + 18.0938i −0.451640 + 0.782263i
\(536\) 27.6516 + 1.69647i 1.19437 + 0.0732763i
\(537\) 0 0
\(538\) 14.9235 38.5344i 0.643397 1.66133i
\(539\) −3.12350 + 3.12350i −0.134539 + 0.134539i
\(540\) 0 0
\(541\) 13.6906 + 13.6906i 0.588607 + 0.588607i 0.937254 0.348647i \(-0.113359\pi\)
−0.348647 + 0.937254i \(0.613359\pi\)
\(542\) 9.53625 + 21.5912i 0.409617 + 0.927422i
\(543\) 0 0
\(544\) 14.3179 7.98517i 0.613874 0.342361i
\(545\) 29.0570 + 16.7761i 1.24466 + 0.718607i
\(546\) 0 0
\(547\) 29.0133 + 7.77408i 1.24052 + 0.332396i 0.818666 0.574269i \(-0.194714\pi\)
0.421851 + 0.906665i \(0.361380\pi\)
\(548\) 1.54801 + 0.338667i 0.0661276 + 0.0144672i
\(549\) 0 0
\(550\) −32.0107 + 25.7646i −1.36494 + 1.09861i
\(551\) 21.4491 12.3836i 0.913762 0.527561i
\(552\) 0 0
\(553\) −10.6005 6.12021i −0.450780 0.260258i
\(554\) −6.49904 + 1.00956i −0.276118 + 0.0428921i
\(555\) 0 0
\(556\) −19.5074 + 37.7294i −0.827297 + 1.60008i
\(557\) 1.85284 1.85284i 0.0785074 0.0785074i −0.666763 0.745270i \(-0.732321\pi\)
0.745270 + 0.666763i \(0.232321\pi\)
\(558\) 0 0
\(559\) 11.9370i 0.504882i
\(560\) 29.5914 35.6670i 1.25047 1.50721i
\(561\) 0 0
\(562\) −26.0645 19.0556i −1.09946 0.803810i
\(563\) −26.1400 + 7.00420i −1.10167 + 0.295192i −0.763445 0.645873i \(-0.776494\pi\)
−0.338226 + 0.941065i \(0.609827\pi\)
\(564\) 0 0
\(565\) −63.5879 17.0383i −2.67516 0.716808i
\(566\) 28.4498 22.8985i 1.19583 0.962496i
\(567\) 0 0
\(568\) 12.4825 + 4.17918i 0.523752 + 0.175355i
\(569\) −5.84691 10.1271i −0.245115 0.424552i 0.717049 0.697023i \(-0.245492\pi\)
−0.962164 + 0.272471i \(0.912159\pi\)
\(570\) 0 0
\(571\) 44.1127 11.8200i 1.84606 0.494650i 0.846756 0.531982i \(-0.178553\pi\)
0.999303 + 0.0373319i \(0.0118859\pi\)
\(572\) −8.98101 + 9.85599i −0.375515 + 0.412100i
\(573\) 0 0
\(574\) 5.66158 2.50057i 0.236310 0.104372i
\(575\) 25.3314 1.05639
\(576\) 0 0
\(577\) −32.6884 −1.36083 −0.680417 0.732825i \(-0.738202\pi\)
−0.680417 + 0.732825i \(0.738202\pi\)
\(578\) −11.1268 + 4.91442i −0.462815 + 0.204413i
\(579\) 0 0
\(580\) −46.5974 + 51.1372i −1.93485 + 2.12335i
\(581\) 36.9497 9.90064i 1.53293 0.410748i
\(582\) 0 0
\(583\) 10.0487 + 17.4048i 0.416174 + 0.720834i
\(584\) −13.1931 4.41713i −0.545936 0.182782i
\(585\) 0 0
\(586\) −3.15598 + 2.54017i −0.130372 + 0.104933i
\(587\) −28.3101 7.58567i −1.16848 0.313094i −0.378134 0.925751i \(-0.623434\pi\)
−0.790349 + 0.612657i \(0.790101\pi\)
\(588\) 0 0
\(589\) 1.38450 0.370975i 0.0570472 0.0152858i
\(590\) 11.5784 + 8.46486i 0.476674 + 0.348493i
\(591\) 0 0
\(592\) −5.93857 4.92698i −0.244074 0.202498i
\(593\) 43.9681i 1.80555i 0.430111 + 0.902776i \(0.358474\pi\)
−0.430111 + 0.902776i \(0.641526\pi\)
\(594\) 0 0
\(595\) 23.7428 23.7428i 0.973360 0.973360i
\(596\) 10.7487 20.7891i 0.440283 0.851555i
\(597\) 0 0
\(598\) 8.12260 1.26176i 0.332158 0.0515973i
\(599\) −2.81411 1.62473i −0.114982 0.0663846i 0.441406 0.897307i \(-0.354480\pi\)
−0.556388 + 0.830923i \(0.687813\pi\)
\(600\) 0 0
\(601\) 12.6206 7.28651i 0.514806 0.297223i −0.220001 0.975500i \(-0.570606\pi\)
0.734807 + 0.678276i \(0.237273\pi\)
\(602\) 15.8794 12.7810i 0.647198 0.520914i
\(603\) 0 0
\(604\) −16.5691 3.62493i −0.674187 0.147496i
\(605\) −13.2458 3.54920i −0.538519 0.144296i
\(606\) 0 0
\(607\) 32.0317 + 18.4935i 1.30013 + 0.750629i 0.980426 0.196889i \(-0.0630838\pi\)
0.319702 + 0.947518i \(0.396417\pi\)
\(608\) −15.3843 4.36821i −0.623916 0.177154i
\(609\) 0 0
\(610\) 26.1203 + 59.1395i 1.05758 + 2.39449i
\(611\) −11.1967 11.1967i −0.452972 0.452972i
\(612\) 0 0
\(613\) 3.34985 3.34985i 0.135299 0.135299i −0.636214 0.771513i \(-0.719500\pi\)
0.771513 + 0.636214i \(0.219500\pi\)
\(614\) 5.54227 14.3109i 0.223668 0.577539i
\(615\) 0 0
\(616\) −22.7271 1.39434i −0.915701 0.0561797i
\(617\) 4.04358 7.00369i 0.162789 0.281958i −0.773079 0.634309i \(-0.781285\pi\)
0.935868 + 0.352352i \(0.114618\pi\)
\(618\) 0 0
\(619\) 11.6692 43.5499i 0.469023 1.75042i −0.174171 0.984715i \(-0.555725\pi\)
0.643194 0.765703i \(-0.277609\pi\)
\(620\) −3.37076 + 2.16062i −0.135373 + 0.0867727i
\(621\) 0 0
\(622\) 24.4792 + 2.64644i 0.981526 + 0.106112i
\(623\) −10.7590 18.6351i −0.431049 0.746599i
\(624\) 0 0
\(625\) 17.1046 29.6260i 0.684182 1.18504i
\(626\) 20.5310 28.0826i 0.820583 1.12241i
\(627\) 0 0
\(628\) 3.36179 6.50206i 0.134150 0.259460i
\(629\) −3.95318 3.95318i −0.157624 0.157624i
\(630\) 0 0
\(631\) −3.49919 −0.139300 −0.0696502 0.997571i \(-0.522188\pi\)
−0.0696502 + 0.997571i \(0.522188\pi\)
\(632\) −2.35013 11.5624i −0.0934830 0.459927i
\(633\) 0 0
\(634\) −11.5645 + 1.79642i −0.459284 + 0.0713451i
\(635\) 18.3925 + 68.6417i 0.729883 + 2.72396i
\(636\) 0 0
\(637\) 1.01266 3.77930i 0.0401231 0.149741i
\(638\) 33.7942 + 3.65348i 1.33792 + 0.144643i
\(639\) 0 0
\(640\) 44.6500 1.40955i 1.76495 0.0557174i
\(641\) −4.01739 + 2.31944i −0.158677 + 0.0916125i −0.577236 0.816577i \(-0.695869\pi\)
0.418559 + 0.908190i \(0.362535\pi\)
\(642\) 0 0
\(643\) −10.6535 39.7595i −0.420134 1.56796i −0.774324 0.632789i \(-0.781910\pi\)
0.354190 0.935173i \(-0.384757\pi\)
\(644\) 10.3754 + 9.45428i 0.408847 + 0.372551i
\(645\) 0 0
\(646\) −10.8049 4.18449i −0.425112 0.164636i
\(647\) 2.08960i 0.0821505i −0.999156 0.0410752i \(-0.986922\pi\)
0.999156 0.0410752i \(-0.0130783\pi\)
\(648\) 0 0
\(649\) 7.04684i 0.276613i
\(650\) 13.1443 33.9403i 0.515563 1.33125i
\(651\) 0 0
\(652\) 0.506660 + 10.9077i 0.0198423 + 0.427177i
\(653\) −4.75454 17.7442i −0.186059 0.694383i −0.994401 0.105670i \(-0.966301\pi\)
0.808342 0.588713i \(-0.200365\pi\)
\(654\) 0 0
\(655\) −61.6410 + 35.5885i −2.40851 + 1.39056i
\(656\) 5.42091 + 2.49117i 0.211651 + 0.0972637i
\(657\) 0 0
\(658\) 2.90632 26.8831i 0.113300 1.04801i
\(659\) 7.84088 29.2626i 0.305437 1.13991i −0.627131 0.778914i \(-0.715771\pi\)
0.932568 0.360994i \(-0.117562\pi\)
\(660\) 0 0
\(661\) 12.5011 + 46.6546i 0.486235 + 1.81465i 0.574434 + 0.818551i \(0.305222\pi\)
−0.0881985 + 0.996103i \(0.528111\pi\)
\(662\) 5.73899 + 36.9448i 0.223052 + 1.43590i
\(663\) 0 0
\(664\) 30.7440 + 20.3574i 1.19310 + 0.790019i
\(665\) −32.7549 −1.27018
\(666\) 0 0
\(667\) −14.8169 14.8169i −0.573714 0.573714i
\(668\) 13.1644 4.19103i 0.509344 0.162156i
\(669\) 0 0
\(670\) 44.1525 + 32.2796i 1.70576 + 1.24707i
\(671\) 15.8822 27.5087i 0.613124 1.06196i
\(672\) 0 0
\(673\) 8.92590 + 15.4601i 0.344068 + 0.595944i 0.985184 0.171500i \(-0.0548615\pi\)
−0.641116 + 0.767444i \(0.721528\pi\)
\(674\) −3.75049 + 34.6915i −0.144463 + 1.33627i
\(675\) 0 0
\(676\) −3.03255 + 13.8614i −0.116637 + 0.533132i
\(677\) −0.575049 + 2.14611i −0.0221009 + 0.0824818i −0.976095 0.217342i \(-0.930261\pi\)
0.953995 + 0.299824i \(0.0969279\pi\)
\(678\) 0 0
\(679\) −7.33966 + 12.7127i −0.281670 + 0.487867i
\(680\) 32.3052 + 1.98198i 1.23885 + 0.0760053i
\(681\) 0 0
\(682\) 1.83438 + 0.710413i 0.0702420 + 0.0272031i
\(683\) −0.857818 + 0.857818i −0.0328235 + 0.0328235i −0.723328 0.690505i \(-0.757389\pi\)
0.690505 + 0.723328i \(0.257389\pi\)
\(684\) 0 0
\(685\) 2.21214 + 2.21214i 0.0845216 + 0.0845216i
\(686\) −20.4599 + 9.03659i −0.781163 + 0.345019i
\(687\) 0 0
\(688\) 19.3688 + 3.30418i 0.738429 + 0.125971i
\(689\) −15.4163 8.90063i −0.587316 0.339087i
\(690\) 0 0
\(691\) −37.8791 10.1497i −1.44099 0.386112i −0.548109 0.836407i \(-0.684652\pi\)
−0.892880 + 0.450295i \(0.851319\pi\)
\(692\) −6.74366 + 4.32262i −0.256355 + 0.164321i
\(693\) 0 0
\(694\) 21.1350 + 26.2588i 0.802275 + 0.996769i
\(695\) −72.6201 + 41.9272i −2.75464 + 1.59039i
\(696\) 0 0
\(697\) 3.74334 + 2.16122i 0.141789 + 0.0818619i
\(698\) 5.82363 + 37.4897i 0.220428 + 1.41900i
\(699\) 0 0
\(700\) 59.2235 18.8545i 2.23844 0.712632i
\(701\) 14.3403 14.3403i 0.541627 0.541627i −0.382379 0.924006i \(-0.624895\pi\)
0.924006 + 0.382379i \(0.124895\pi\)
\(702\) 0 0
\(703\) 5.45369i 0.205690i
\(704\) −13.5062 17.3006i −0.509035 0.652041i
\(705\) 0 0
\(706\) 5.34001 7.30415i 0.200974 0.274895i
\(707\) 30.9838 8.30208i 1.16527 0.312232i
\(708\) 0 0
\(709\) −4.26177 1.14194i −0.160054 0.0428864i 0.177902 0.984048i \(-0.443069\pi\)
−0.337956 + 0.941162i \(0.609736\pi\)
\(710\) 16.2947 + 20.2450i 0.611529 + 0.759781i
\(711\) 0 0
\(712\) 6.58511 19.6685i 0.246787 0.737109i
\(713\) −0.606335 1.05020i −0.0227074 0.0393304i
\(714\) 0 0
\(715\) −25.4279 + 6.81339i −0.950951 + 0.254806i
\(716\) −28.4305 + 1.32059i −1.06250 + 0.0493530i
\(717\) 0 0
\(718\) −9.84832 22.2978i −0.367536 0.832146i
\(719\) 49.2509 1.83675 0.918374 0.395714i \(-0.129503\pi\)
0.918374 + 0.395714i \(0.129503\pi\)
\(720\) 0 0
\(721\) −1.88938 −0.0703644
\(722\) −6.28939 14.2399i −0.234067 0.529956i
\(723\) 0 0
\(724\) −1.97312 42.4784i −0.0733304 1.57870i
\(725\) −89.6203 + 24.0137i −3.32841 + 0.891846i
\(726\) 0 0
\(727\) −2.18154 3.77855i −0.0809090 0.140139i 0.822732 0.568430i \(-0.192449\pi\)
−0.903641 + 0.428291i \(0.859116\pi\)
\(728\) 18.0511 8.99570i 0.669018 0.333403i
\(729\) 0 0
\(730\) −17.2224 21.3976i −0.637431 0.791962i
\(731\) 13.7508 + 3.68451i 0.508591 + 0.136277i
\(732\) 0 0
\(733\) 30.7314 8.23445i 1.13509 0.304146i 0.358114 0.933678i \(-0.383420\pi\)
0.776975 + 0.629532i \(0.216753\pi\)
\(734\) 1.21788 1.66583i 0.0449527 0.0614871i
\(735\) 0 0
\(736\) −0.201029 + 13.5289i −0.00741003 + 0.498681i
\(737\) 26.8722i 0.989849i
\(738\) 0 0
\(739\) −32.4463 + 32.4463i −1.19356 + 1.19356i −0.217495 + 0.976061i \(0.569789\pi\)
−0.976061 + 0.217495i \(0.930211\pi\)
\(740\) −4.62137 14.5161i −0.169885 0.533622i
\(741\) 0 0
\(742\) −4.66606 30.0378i −0.171297 1.10272i
\(743\) 10.8406 + 6.25880i 0.397702 + 0.229613i 0.685492 0.728080i \(-0.259587\pi\)
−0.287790 + 0.957693i \(0.592921\pi\)
\(744\) 0 0
\(745\) 40.0141 23.1021i 1.46600 0.846397i
\(746\) 7.13463 + 8.86426i 0.261217 + 0.324544i
\(747\) 0 0
\(748\) −8.58145 13.3878i −0.313769 0.489507i
\(749\) −14.9973 4.01852i −0.547990 0.146834i
\(750\) 0 0
\(751\) −34.0479 19.6575i −1.24242 0.717314i −0.272837 0.962060i \(-0.587962\pi\)
−0.969587 + 0.244747i \(0.921295\pi\)
\(752\) 21.2670 15.0684i 0.775526 0.549488i
\(753\) 0 0
\(754\) −27.5410 + 12.1641i −1.00298 + 0.442990i
\(755\) −23.6777 23.6777i −0.861718 0.861718i
\(756\) 0 0
\(757\) −25.3026 + 25.3026i −0.919640 + 0.919640i −0.997003 0.0773631i \(-0.975350\pi\)
0.0773631 + 0.997003i \(0.475350\pi\)
\(758\) 30.7259 + 11.8995i 1.11602 + 0.432208i
\(759\) 0 0
\(760\) −20.9165 23.6508i −0.758722 0.857905i
\(761\) −11.0907 + 19.2097i −0.402039 + 0.696352i −0.993972 0.109635i \(-0.965032\pi\)
0.591933 + 0.805987i \(0.298365\pi\)
\(762\) 0 0
\(763\) −6.45338 + 24.0843i −0.233628 + 0.871911i
\(764\) 42.5955 + 9.31888i 1.54105 + 0.337145i
\(765\) 0 0
\(766\) −1.57979 + 14.6129i −0.0570803 + 0.527985i
\(767\) 3.12087 + 5.40551i 0.112688 + 0.195182i
\(768\) 0 0
\(769\) 0.792978 1.37348i 0.0285955 0.0495289i −0.851374 0.524560i \(-0.824230\pi\)
0.879969 + 0.475031i \(0.157563\pi\)
\(770\) −36.2894 26.5309i −1.30778 0.956107i
\(771\) 0 0
\(772\) 2.84822 + 8.94650i 0.102510 + 0.321991i
\(773\) 0.198602 + 0.198602i 0.00714323 + 0.00714323i 0.710669 0.703526i \(-0.248392\pi\)
−0.703526 + 0.710669i \(0.748392\pi\)
\(774\) 0 0
\(775\) −5.36948 −0.192877
\(776\) −13.8662 + 2.81839i −0.497767 + 0.101174i
\(777\) 0 0
\(778\) −5.23614 33.7077i −0.187725 1.20848i
\(779\) −1.09132 4.07287i −0.0391007 0.145926i
\(780\) 0 0
\(781\) 3.30471 12.3334i 0.118252 0.441322i
\(782\) −1.05366 + 9.74625i −0.0376789 + 0.348525i
\(783\) 0 0
\(784\) 5.85194 + 2.68925i 0.208998 + 0.0960445i
\(785\) 12.5149 7.22549i 0.446676 0.257889i
\(786\) 0 0
\(787\) −3.76684 14.0581i −0.134274 0.501116i −1.00000 0.000597888i \(-0.999810\pi\)
0.865726 0.500518i \(-0.166857\pi\)
\(788\) −40.4668 + 1.87968i −1.44157 + 0.0669609i
\(789\) 0 0
\(790\) 8.41234 21.7217i 0.299298 0.772825i
\(791\) 48.9217i 1.73946i
\(792\) 0 0
\(793\) 28.1353i 0.999112i
\(794\) −15.6127 6.04644i −0.554073 0.214580i
\(795\) 0 0
\(796\) −19.5278 + 21.4304i −0.692146 + 0.759579i
\(797\) 3.12214 + 11.6520i 0.110592 + 0.412734i 0.998919 0.0464762i \(-0.0147992\pi\)
−0.888328 + 0.459210i \(0.848132\pi\)
\(798\) 0 0
\(799\) 16.3541 9.44202i 0.578565 0.334035i
\(800\) 51.4327 + 30.7225i 1.81842 + 1.08621i
\(801\) 0 0
\(802\) −5.13468 0.555109i −0.181312 0.0196016i
\(803\) −3.49286 + 13.0355i −0.123261 + 0.460015i
\(804\) 0 0
\(805\) 7.17244 + 26.7679i 0.252795 + 0.943445i
\(806\) −1.72174 + 0.267455i −0.0606459 + 0.00942071i
\(807\) 0 0
\(808\) 25.7801 + 17.0705i 0.906941 + 0.600537i
\(809\) 5.40097 0.189888 0.0949441 0.995483i \(-0.469733\pi\)
0.0949441 + 0.995483i \(0.469733\pi\)
\(810\) 0 0
\(811\) 19.4041 + 19.4041i 0.681371 + 0.681371i 0.960309 0.278938i \(-0.0899823\pi\)
−0.278938 + 0.960309i \(0.589982\pi\)
\(812\) −45.6697 23.6128i −1.60269 0.828647i
\(813\) 0 0
\(814\) −4.41740 + 6.04219i −0.154830 + 0.211779i
\(815\) −10.7788 + 18.6695i −0.377566 + 0.653964i
\(816\) 0 0
\(817\) −6.94356 12.0266i −0.242924 0.420758i
\(818\) 19.6875 + 2.12840i 0.688356 + 0.0744179i
\(819\) 0 0
\(820\) 6.35606 + 9.91600i 0.221963 + 0.346282i
\(821\) 5.53178 20.6449i 0.193061 0.720512i −0.799700 0.600400i \(-0.795008\pi\)
0.992760 0.120112i \(-0.0383253\pi\)
\(822\) 0 0
\(823\) −15.8047 + 27.3746i −0.550918 + 0.954217i 0.447291 + 0.894389i \(0.352389\pi\)
−0.998209 + 0.0598289i \(0.980944\pi\)
\(824\) −1.20652 1.36424i −0.0420311 0.0475255i
\(825\) 0 0
\(826\) −3.84926 + 9.93929i −0.133933 + 0.345832i
\(827\) 11.4058 11.4058i 0.396617 0.396617i −0.480421 0.877038i \(-0.659516\pi\)
0.877038 + 0.480421i \(0.159516\pi\)
\(828\) 0 0
\(829\) −15.8083 15.8083i −0.549043 0.549043i 0.377121 0.926164i \(-0.376914\pi\)
−0.926164 + 0.377121i \(0.876914\pi\)
\(830\) 29.4113 + 66.5907i 1.02088 + 2.31140i
\(831\) 0 0
\(832\) 18.0224 + 7.28942i 0.624815 + 0.252715i
\(833\) 4.04098 + 2.33306i 0.140012 + 0.0808357i
\(834\) 0 0
\(835\) 26.3457 + 7.05931i 0.911730 + 0.244297i
\(836\) −3.31535 + 15.1541i −0.114664 + 0.524114i
\(837\) 0 0
\(838\) 0.685767 0.551957i 0.0236894 0.0190670i
\(839\) 28.2922 16.3345i 0.976755 0.563930i 0.0754662 0.997148i \(-0.475956\pi\)
0.901289 + 0.433219i \(0.142622\pi\)
\(840\) 0 0
\(841\) 41.3525 + 23.8749i 1.42595 + 0.823272i
\(842\) −25.1307 + 3.90380i −0.866062 + 0.134534i
\(843\) 0 0
\(844\) −11.7561 6.07833i −0.404663 0.209225i
\(845\) −19.8083 + 19.8083i −0.681428 + 0.681428i
\(846\) 0 0
\(847\) 10.1907i 0.350158i
\(848\) 18.7093 22.5506i 0.642480 0.774392i
\(849\) 0 0
\(850\) 35.0402 + 25.6177i 1.20187 + 0.878678i
\(851\) 4.45686 1.19421i 0.152779 0.0409371i
\(852\) 0 0
\(853\) 38.7224 + 10.3756i 1.32583 + 0.355255i 0.851159 0.524907i \(-0.175900\pi\)
0.474672 + 0.880163i \(0.342567\pi\)
\(854\) −37.4275 + 30.1245i −1.28074 + 1.03084i
\(855\) 0 0
\(856\) −6.67537 13.3950i −0.228159 0.457833i
\(857\) 0.0140657 + 0.0243624i 0.000480474 + 0.000832205i 0.866266 0.499584i \(-0.166514\pi\)
−0.865785 + 0.500416i \(0.833180\pi\)
\(858\) 0 0
\(859\) 11.7598 3.15104i 0.401240 0.107512i −0.0525549 0.998618i \(-0.516736\pi\)
0.453795 + 0.891106i \(0.350070\pi\)
\(860\) 28.6728 + 26.1274i 0.977735 + 0.890935i
\(861\) 0 0
\(862\) 8.20667 3.62466i 0.279520 0.123457i
\(863\) −40.1140 −1.36550 −0.682748 0.730654i \(-0.739215\pi\)
−0.682748 + 0.730654i \(0.739215\pi\)
\(864\) 0 0
\(865\) −15.8140 −0.537692
\(866\) −34.5818 + 15.2738i −1.17514 + 0.519026i
\(867\) 0 0
\(868\) −2.19926 2.00402i −0.0746478 0.0680209i
\(869\) −11.0547 + 2.96211i −0.375006 + 0.100483i
\(870\) 0 0
\(871\) 11.9010 + 20.6132i 0.403251 + 0.698451i
\(872\) −21.5112 + 10.7200i −0.728461 + 0.363026i
\(873\) 0 0
\(874\) 7.44962 5.99602i 0.251987 0.202818i
\(875\) 62.5669 + 16.7647i 2.11515 + 0.566752i
\(876\) 0 0
\(877\) −45.8849 + 12.2948i −1.54942 + 0.415167i −0.929297 0.369334i \(-0.879586\pi\)
−0.620127 + 0.784501i \(0.712919\pi\)
\(878\) −0.794129 0.580582i −0.0268006 0.0195937i
\(879\) 0 0
\(880\) −4.01683 43.1450i −0.135407 1.45442i
\(881\) 20.6694i 0.696371i 0.937426 + 0.348186i \(0.113202\pi\)
−0.937426 + 0.348186i \(0.886798\pi\)
\(882\) 0 0
\(883\) −37.7611 + 37.7611i −1.27076 + 1.27076i −0.325075 + 0.945688i \(0.605390\pi\)
−0.945688 + 0.325075i \(0.894610\pi\)
\(884\) 12.5118 + 6.46904i 0.420818 + 0.217577i
\(885\) 0 0
\(886\) −22.9536 + 3.56561i −0.771142 + 0.119789i
\(887\) 24.4908 + 14.1398i 0.822322 + 0.474768i 0.851216 0.524815i \(-0.175865\pi\)
−0.0288948 + 0.999582i \(0.509199\pi\)
\(888\) 0 0
\(889\) −45.7347 + 26.4049i −1.53389 + 0.885593i
\(890\) 31.8999 25.6755i 1.06929 0.860643i
\(891\) 0 0
\(892\) 0.787728 3.60061i 0.0263751 0.120557i
\(893\) −17.7937 4.76782i −0.595445 0.159549i
\(894\) 0 0
\(895\) −48.6615 28.0947i −1.62657 0.939103i
\(896\) 9.59973 + 31.7795i 0.320704 + 1.06168i
\(897\) 0 0
\(898\) −6.89980 15.6220i −0.230249 0.521312i
\(899\) 3.14074 + 3.14074i 0.104750 + 0.104750i
\(900\) 0 0
\(901\) 15.0115 15.0115i 0.500105 0.500105i
\(902\) 2.08987 5.39632i 0.0695852 0.179678i
\(903\) 0 0
\(904\) 35.3241 31.2403i 1.17486 1.03904i
\(905\) 41.9767 72.7058i 1.39535 2.41682i
\(906\) 0 0
\(907\) −9.12179 + 34.0430i −0.302884 + 1.13038i 0.631867 + 0.775077i \(0.282289\pi\)
−0.934751 + 0.355302i \(0.884378\pi\)
\(908\) −0.767642 1.19759i −0.0254751 0.0397434i
\(909\) 0 0
\(910\) 39.5868 + 4.27972i 1.31229 + 0.141871i
\(911\) 8.81619 + 15.2701i 0.292093 + 0.505921i 0.974305 0.225235i \(-0.0723149\pi\)
−0.682211 + 0.731155i \(0.738982\pi\)
\(912\) 0 0
\(913\) 17.8832 30.9746i 0.591847 1.02511i
\(914\) 10.2226 13.9827i 0.338135 0.462506i
\(915\) 0 0
\(916\) 13.6208 + 7.04244i 0.450045 + 0.232689i
\(917\) −37.4020 37.4020i −1.23512 1.23512i
\(918\) 0 0
\(919\) 40.6483 1.34086 0.670431 0.741972i \(-0.266109\pi\)
0.670431 + 0.741972i \(0.266109\pi\)
\(920\) −14.7477 + 22.2723i −0.486218 + 0.734295i
\(921\) 0 0
\(922\) −43.8588 + 6.81301i −1.44441 + 0.224374i
\(923\) 2.92715 + 10.9243i 0.0963483 + 0.359577i
\(924\) 0 0
\(925\) 5.28775 19.7341i 0.173860 0.648855i
\(926\) −50.1936 5.42641i −1.64946 0.178323i
\(927\) 0 0
\(928\) −12.1139 48.0546i −0.397658 1.57747i
\(929\) 46.7331 26.9814i 1.53326 0.885230i 0.534055 0.845450i \(-0.320667\pi\)
0.999208 0.0397807i \(-0.0126659\pi\)
\(930\) 0 0
\(931\) −1.17810 4.39672i −0.0386106 0.144097i
\(932\) −1.84447 + 2.02417i −0.0604177 + 0.0663040i
\(933\) 0 0
\(934\) −14.2597 5.52246i −0.466592 0.180701i
\(935\) 31.3946i 1.02671i
\(936\) 0 0
\(937\) 47.0464i 1.53694i −0.639886 0.768470i \(-0.721018\pi\)
0.639886 0.768470i \(-0.278982\pi\)
\(938\) −14.6786 + 37.9021i −0.479274 + 1.23755i
\(939\) 0 0
\(940\) 51.4018 2.38761i 1.67654 0.0778753i
\(941\) −0.645083 2.40748i −0.0210291 0.0784816i 0.954614 0.297846i \(-0.0962683\pi\)
−0.975643 + 0.219365i \(0.929602\pi\)
\(942\) 0 0
\(943\) −3.08946 + 1.78370i −0.100607 + 0.0580853i
\(944\) −9.63476 + 3.56763i −0.313585 + 0.116116i
\(945\) 0 0
\(946\) 2.04852 18.9485i 0.0666031 0.616070i
\(947\) −13.4692 + 50.2676i −0.437689 + 1.63348i 0.296859 + 0.954921i \(0.404061\pi\)
−0.734548 + 0.678557i \(0.762606\pi\)
\(948\) 0 0
\(949\) −3.09381 11.5462i −0.100429 0.374807i
\(950\) −6.49955 41.8409i −0.210873 1.35750i
\(951\) 0 0
\(952\) 4.79085 + 23.5705i 0.155272 + 0.763924i
\(953\) −61.2734 −1.98484 −0.992420 0.122896i \(-0.960782\pi\)
−0.992420 + 0.122896i \(0.960782\pi\)
\(954\) 0 0
\(955\) 60.8700 + 60.8700i 1.96971 + 1.96971i
\(956\) −0.938748 2.94868i −0.0303613 0.0953673i
\(957\) 0 0
\(958\) −6.93271 5.06846i −0.223986 0.163754i
\(959\) −1.16244 + 2.01340i −0.0375370 + 0.0650160i
\(960\) 0 0
\(961\) −15.3715 26.6242i −0.495854 0.858844i
\(962\) 0.712574 6.59122i 0.0229743 0.212509i
\(963\) 0 0
\(964\) 14.9918 + 3.27985i 0.482854 + 0.105637i
\(965\) −4.79750 + 17.9045i −0.154437 + 0.576367i
\(966\) 0 0
\(967\) −3.75805 + 6.50913i −0.120851 + 0.209319i −0.920103 0.391676i \(-0.871896\pi\)
0.799253 + 0.600995i \(0.205229\pi\)
\(968\) 7.35827 6.50758i 0.236504 0.209161i
\(969\) 0 0
\(970\) −26.0498 10.0885i −0.836409 0.323922i
\(971\) 20.5494 20.5494i 0.659461 0.659461i −0.295791 0.955253i \(-0.595583\pi\)
0.955253 + 0.295791i \(0.0955833\pi\)
\(972\) 0 0
\(973\) −44.0638 44.0638i −1.41262 1.41262i
\(974\) 9.26011 4.08994i 0.296713 0.131050i
\(975\) 0 0
\(976\) −45.6519 7.78788i −1.46128 0.249284i
\(977\) −48.8661 28.2129i −1.56337 0.902610i −0.996913 0.0785154i \(-0.974982\pi\)
−0.566453 0.824094i \(-0.691685\pi\)
\(978\) 0 0
\(979\) −19.4336 5.20721i −0.621100 0.166423i
\(980\) 6.86144 + 10.7044i 0.219181 + 0.341941i
\(981\) 0 0
\(982\) −24.8122 30.8274i −0.791790 0.983743i
\(983\) −5.17882 + 2.98999i −0.165179 + 0.0953660i −0.580311 0.814395i \(-0.697069\pi\)
0.415132 + 0.909761i \(0.363735\pi\)
\(984\) 0 0
\(985\) −69.2628 39.9889i −2.20690 1.27415i
\(986\) −5.51150 35.4803i −0.175522 1.12992i
\(987\) 0 0
\(988\) −4.16822 13.0927i −0.132609 0.416535i
\(989\) −8.30792 + 8.30792i −0.264176 + 0.264176i
\(990\) 0 0
\(991\) 20.2358i 0.642812i 0.946942 + 0.321406i \(0.104155\pi\)
−0.946942 + 0.321406i \(0.895845\pi\)
\(992\) 0.0426121 2.86771i 0.00135293 0.0910499i
\(993\) 0 0
\(994\) −11.3981 + 15.5905i −0.361527 + 0.494502i
\(995\) −55.2892 + 14.8147i −1.75278 + 0.469657i
\(996\) 0 0
\(997\) 0.647795 + 0.173576i 0.0205159 + 0.00549721i 0.269062 0.963123i \(-0.413286\pi\)
−0.248547 + 0.968620i \(0.579953\pi\)
\(998\) −39.2995 48.8268i −1.24400 1.54559i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.v.a.179.3 88
3.2 odd 2 144.2.u.a.131.20 yes 88
4.3 odd 2 1728.2.z.a.1583.22 88
9.2 odd 6 inner 432.2.v.a.35.5 88
9.7 even 3 144.2.u.a.83.18 yes 88
12.11 even 2 576.2.y.a.239.3 88
16.5 even 4 1728.2.z.a.719.22 88
16.11 odd 4 inner 432.2.v.a.395.5 88
36.7 odd 6 576.2.y.a.47.9 88
36.11 even 6 1728.2.z.a.1007.22 88
48.5 odd 4 576.2.y.a.527.9 88
48.11 even 4 144.2.u.a.59.18 yes 88
144.11 even 12 inner 432.2.v.a.251.3 88
144.43 odd 12 144.2.u.a.11.20 88
144.101 odd 12 1728.2.z.a.143.22 88
144.133 even 12 576.2.y.a.335.3 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.20 88 144.43 odd 12
144.2.u.a.59.18 yes 88 48.11 even 4
144.2.u.a.83.18 yes 88 9.7 even 3
144.2.u.a.131.20 yes 88 3.2 odd 2
432.2.v.a.35.5 88 9.2 odd 6 inner
432.2.v.a.179.3 88 1.1 even 1 trivial
432.2.v.a.251.3 88 144.11 even 12 inner
432.2.v.a.395.5 88 16.11 odd 4 inner
576.2.y.a.47.9 88 36.7 odd 6
576.2.y.a.239.3 88 12.11 even 2
576.2.y.a.335.3 88 144.133 even 12
576.2.y.a.527.9 88 48.5 odd 4
1728.2.z.a.143.22 88 144.101 odd 12
1728.2.z.a.719.22 88 16.5 even 4
1728.2.z.a.1007.22 88 36.11 even 6
1728.2.z.a.1583.22 88 4.3 odd 2