Properties

Label 432.2.u.c.49.1
Level $432$
Weight $2$
Character 432.49
Analytic conductor $3.450$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,2,Mod(49,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.u (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 49.1
Root \(0.500000 - 0.258654i\) of defining polynomial
Character \(\chi\) \(=\) 432.49
Dual form 432.2.u.c.97.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.159815 + 1.72466i) q^{3} +(-2.08159 + 0.757639i) q^{5} +(0.229151 + 1.29958i) q^{7} +(-2.94892 - 0.551252i) q^{9} +O(q^{10})\) \(q+(-0.159815 + 1.72466i) q^{3} +(-2.08159 + 0.757639i) q^{5} +(0.229151 + 1.29958i) q^{7} +(-2.94892 - 0.551252i) q^{9} +(-4.90067 - 1.78370i) q^{11} +(-0.0138336 - 0.0116078i) q^{13} +(-0.974001 - 3.71113i) q^{15} +(1.56640 - 2.71308i) q^{17} +(0.208676 + 0.361438i) q^{19} +(-2.27796 + 0.187516i) q^{21} +(0.179619 - 1.01867i) q^{23} +(-0.0712019 + 0.0597455i) q^{25} +(1.42200 - 4.99779i) q^{27} +(-5.98068 + 5.01839i) q^{29} +(-0.647649 + 3.67300i) q^{31} +(3.85948 - 8.16694i) q^{33} +(-1.46161 - 2.53159i) q^{35} +(-2.21238 + 3.83195i) q^{37} +(0.0222303 - 0.0220032i) q^{39} +(-2.81517 - 2.36221i) q^{41} +(-7.80685 - 2.84146i) q^{43} +(6.55610 - 1.08673i) q^{45} +(1.23254 + 6.99008i) q^{47} +(4.94145 - 1.79854i) q^{49} +(4.42881 + 3.13510i) q^{51} -1.30057 q^{53} +11.5526 q^{55} +(-0.656707 + 0.302133i) q^{57} +(-3.47856 + 1.26609i) q^{59} +(1.20064 + 6.80919i) q^{61} +(0.0406486 - 3.95868i) q^{63} +(0.0375905 + 0.0136818i) q^{65} +(8.44702 + 7.08789i) q^{67} +(1.72816 + 0.472581i) q^{69} +(-3.04214 + 5.26914i) q^{71} +(0.273486 + 0.473692i) q^{73} +(-0.0916617 - 0.132347i) q^{75} +(1.19507 - 6.77756i) q^{77} +(-0.374706 + 0.314416i) q^{79} +(8.39224 + 3.25120i) q^{81} +(-3.53428 + 2.96561i) q^{83} +(-1.20507 + 6.83430i) q^{85} +(-7.69922 - 11.1167i) q^{87} +(1.68653 + 2.92116i) q^{89} +(0.0119153 - 0.0206379i) q^{91} +(-6.23118 - 1.70398i) q^{93} +(-0.708218 - 0.594266i) q^{95} +(-9.34182 - 3.40014i) q^{97} +(13.4684 + 7.96149i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} - 3 q^{5} + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{3} - 3 q^{5} + 6 q^{7} - 3 q^{11} - 6 q^{13} - 9 q^{15} + 9 q^{17} + 3 q^{19} - 12 q^{21} + 12 q^{23} + 3 q^{25} + 9 q^{27} - 6 q^{29} - 3 q^{31} - 12 q^{35} - 3 q^{37} - 33 q^{39} + 15 q^{41} - 3 q^{43} - 9 q^{45} + 15 q^{47} + 12 q^{49} + 18 q^{51} - 18 q^{53} + 12 q^{55} - 3 q^{57} + 12 q^{59} + 12 q^{61} - 9 q^{63} + 3 q^{65} + 15 q^{67} + 9 q^{69} - 27 q^{71} + 6 q^{73} - 39 q^{75} + 15 q^{77} + 42 q^{79} + 36 q^{81} - 39 q^{83} - 27 q^{85} - 9 q^{87} + 9 q^{89} - 6 q^{91} - 39 q^{93} + 33 q^{95} + 3 q^{97} + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.159815 + 1.72466i −0.0922690 + 0.995734i
\(4\) 0 0
\(5\) −2.08159 + 0.757639i −0.930917 + 0.338826i −0.762573 0.646902i \(-0.776064\pi\)
−0.168344 + 0.985728i \(0.553842\pi\)
\(6\) 0 0
\(7\) 0.229151 + 1.29958i 0.0866110 + 0.491195i 0.996997 + 0.0774361i \(0.0246734\pi\)
−0.910386 + 0.413759i \(0.864216\pi\)
\(8\) 0 0
\(9\) −2.94892 0.551252i −0.982973 0.183751i
\(10\) 0 0
\(11\) −4.90067 1.78370i −1.47761 0.537805i −0.527454 0.849584i \(-0.676853\pi\)
−0.950155 + 0.311778i \(0.899075\pi\)
\(12\) 0 0
\(13\) −0.0138336 0.0116078i −0.00383676 0.00321942i 0.640867 0.767652i \(-0.278575\pi\)
−0.644704 + 0.764432i \(0.723019\pi\)
\(14\) 0 0
\(15\) −0.974001 3.71113i −0.251486 0.958209i
\(16\) 0 0
\(17\) 1.56640 2.71308i 0.379907 0.658019i −0.611141 0.791522i \(-0.709289\pi\)
0.991048 + 0.133503i \(0.0426226\pi\)
\(18\) 0 0
\(19\) 0.208676 + 0.361438i 0.0478736 + 0.0829195i 0.888969 0.457967i \(-0.151422\pi\)
−0.841096 + 0.540886i \(0.818089\pi\)
\(20\) 0 0
\(21\) −2.27796 + 0.187516i −0.497092 + 0.0409194i
\(22\) 0 0
\(23\) 0.179619 1.01867i 0.0374532 0.212408i −0.960338 0.278839i \(-0.910050\pi\)
0.997791 + 0.0664316i \(0.0211614\pi\)
\(24\) 0 0
\(25\) −0.0712019 + 0.0597455i −0.0142404 + 0.0119491i
\(26\) 0 0
\(27\) 1.42200 4.99779i 0.273665 0.961825i
\(28\) 0 0
\(29\) −5.98068 + 5.01839i −1.11058 + 0.931891i −0.998091 0.0617615i \(-0.980328\pi\)
−0.112493 + 0.993652i \(0.535884\pi\)
\(30\) 0 0
\(31\) −0.647649 + 3.67300i −0.116321 + 0.659691i 0.869766 + 0.493464i \(0.164270\pi\)
−0.986088 + 0.166227i \(0.946842\pi\)
\(32\) 0 0
\(33\) 3.85948 8.16694i 0.671849 1.42168i
\(34\) 0 0
\(35\) −1.46161 2.53159i −0.247058 0.427916i
\(36\) 0 0
\(37\) −2.21238 + 3.83195i −0.363713 + 0.629969i −0.988569 0.150771i \(-0.951824\pi\)
0.624856 + 0.780740i \(0.285158\pi\)
\(38\) 0 0
\(39\) 0.0222303 0.0220032i 0.00355970 0.00352334i
\(40\) 0 0
\(41\) −2.81517 2.36221i −0.439655 0.368915i 0.395925 0.918283i \(-0.370424\pi\)
−0.835580 + 0.549368i \(0.814868\pi\)
\(42\) 0 0
\(43\) −7.80685 2.84146i −1.19053 0.433319i −0.330622 0.943763i \(-0.607259\pi\)
−0.859911 + 0.510445i \(0.829481\pi\)
\(44\) 0 0
\(45\) 6.55610 1.08673i 0.977326 0.162000i
\(46\) 0 0
\(47\) 1.23254 + 6.99008i 0.179784 + 1.01961i 0.932475 + 0.361234i \(0.117644\pi\)
−0.752691 + 0.658374i \(0.771245\pi\)
\(48\) 0 0
\(49\) 4.94145 1.79854i 0.705921 0.256934i
\(50\) 0 0
\(51\) 4.42881 + 3.13510i 0.620158 + 0.439001i
\(52\) 0 0
\(53\) −1.30057 −0.178648 −0.0893238 0.996003i \(-0.528471\pi\)
−0.0893238 + 0.996003i \(0.528471\pi\)
\(54\) 0 0
\(55\) 11.5526 1.55775
\(56\) 0 0
\(57\) −0.656707 + 0.302133i −0.0869830 + 0.0400185i
\(58\) 0 0
\(59\) −3.47856 + 1.26609i −0.452871 + 0.164831i −0.558377 0.829587i \(-0.688576\pi\)
0.105507 + 0.994419i \(0.466354\pi\)
\(60\) 0 0
\(61\) 1.20064 + 6.80919i 0.153727 + 0.871828i 0.959941 + 0.280204i \(0.0904020\pi\)
−0.806214 + 0.591624i \(0.798487\pi\)
\(62\) 0 0
\(63\) 0.0406486 3.95868i 0.00512125 0.498747i
\(64\) 0 0
\(65\) 0.0375905 + 0.0136818i 0.00466253 + 0.00169702i
\(66\) 0 0
\(67\) 8.44702 + 7.08789i 1.03197 + 0.865923i 0.991084 0.133241i \(-0.0425383\pi\)
0.0408835 + 0.999164i \(0.486983\pi\)
\(68\) 0 0
\(69\) 1.72816 + 0.472581i 0.208046 + 0.0568921i
\(70\) 0 0
\(71\) −3.04214 + 5.26914i −0.361035 + 0.625332i −0.988132 0.153610i \(-0.950910\pi\)
0.627096 + 0.778942i \(0.284243\pi\)
\(72\) 0 0
\(73\) 0.273486 + 0.473692i 0.0320092 + 0.0554415i 0.881586 0.472023i \(-0.156476\pi\)
−0.849577 + 0.527465i \(0.823143\pi\)
\(74\) 0 0
\(75\) −0.0916617 0.132347i −0.0105842 0.0152822i
\(76\) 0 0
\(77\) 1.19507 6.77756i 0.136190 0.772374i
\(78\) 0 0
\(79\) −0.374706 + 0.314416i −0.0421577 + 0.0353745i −0.663623 0.748067i \(-0.730982\pi\)
0.621465 + 0.783442i \(0.286538\pi\)
\(80\) 0 0
\(81\) 8.39224 + 3.25120i 0.932471 + 0.361244i
\(82\) 0 0
\(83\) −3.53428 + 2.96561i −0.387937 + 0.325518i −0.815809 0.578321i \(-0.803708\pi\)
0.427872 + 0.903839i \(0.359263\pi\)
\(84\) 0 0
\(85\) −1.20507 + 6.83430i −0.130708 + 0.741284i
\(86\) 0 0
\(87\) −7.69922 11.1167i −0.825443 1.19183i
\(88\) 0 0
\(89\) 1.68653 + 2.92116i 0.178772 + 0.309642i 0.941460 0.337124i \(-0.109454\pi\)
−0.762688 + 0.646766i \(0.776121\pi\)
\(90\) 0 0
\(91\) 0.0119153 0.0206379i 0.00124906 0.00216344i
\(92\) 0 0
\(93\) −6.23118 1.70398i −0.646144 0.176694i
\(94\) 0 0
\(95\) −0.708218 0.594266i −0.0726617 0.0609704i
\(96\) 0 0
\(97\) −9.34182 3.40014i −0.948518 0.345232i −0.178994 0.983850i \(-0.557284\pi\)
−0.769524 + 0.638618i \(0.779507\pi\)
\(98\) 0 0
\(99\) 13.4684 + 7.96149i 1.35363 + 0.800160i
\(100\) 0 0
\(101\) 2.39626 + 13.5898i 0.238436 + 1.35224i 0.835255 + 0.549863i \(0.185320\pi\)
−0.596818 + 0.802377i \(0.703569\pi\)
\(102\) 0 0
\(103\) 4.28981 1.56136i 0.422687 0.153846i −0.121914 0.992541i \(-0.538903\pi\)
0.544601 + 0.838695i \(0.316681\pi\)
\(104\) 0 0
\(105\) 4.59972 2.11620i 0.448887 0.206520i
\(106\) 0 0
\(107\) 11.2965 1.09207 0.546035 0.837762i \(-0.316136\pi\)
0.546035 + 0.837762i \(0.316136\pi\)
\(108\) 0 0
\(109\) 14.5032 1.38915 0.694577 0.719419i \(-0.255592\pi\)
0.694577 + 0.719419i \(0.255592\pi\)
\(110\) 0 0
\(111\) −6.25525 4.42801i −0.593722 0.420288i
\(112\) 0 0
\(113\) −11.8011 + 4.29523i −1.11015 + 0.404062i −0.831049 0.556200i \(-0.812259\pi\)
−0.279102 + 0.960262i \(0.590037\pi\)
\(114\) 0 0
\(115\) 0.397890 + 2.25655i 0.0371035 + 0.210424i
\(116\) 0 0
\(117\) 0.0343954 + 0.0418563i 0.00317986 + 0.00386961i
\(118\) 0 0
\(119\) 3.88481 + 1.41395i 0.356120 + 0.129617i
\(120\) 0 0
\(121\) 12.4085 + 10.4120i 1.12805 + 0.946544i
\(122\) 0 0
\(123\) 4.52391 4.47770i 0.407907 0.403740i
\(124\) 0 0
\(125\) 5.64092 9.77035i 0.504539 0.873887i
\(126\) 0 0
\(127\) −4.19749 7.27027i −0.372467 0.645132i 0.617477 0.786589i \(-0.288155\pi\)
−0.989944 + 0.141456i \(0.954821\pi\)
\(128\) 0 0
\(129\) 6.14821 13.0101i 0.541319 1.14547i
\(130\) 0 0
\(131\) 2.69761 15.2989i 0.235691 1.33667i −0.605463 0.795874i \(-0.707012\pi\)
0.841154 0.540796i \(-0.181877\pi\)
\(132\) 0 0
\(133\) −0.421899 + 0.354015i −0.0365833 + 0.0306970i
\(134\) 0 0
\(135\) 0.826482 + 11.4807i 0.0711323 + 0.988105i
\(136\) 0 0
\(137\) 9.19820 7.71820i 0.785855 0.659411i −0.158861 0.987301i \(-0.550782\pi\)
0.944716 + 0.327890i \(0.106338\pi\)
\(138\) 0 0
\(139\) −1.06709 + 6.05176i −0.0905093 + 0.513304i 0.905522 + 0.424299i \(0.139480\pi\)
−0.996031 + 0.0890042i \(0.971632\pi\)
\(140\) 0 0
\(141\) −12.2525 + 1.00860i −1.03185 + 0.0849392i
\(142\) 0 0
\(143\) 0.0470893 + 0.0815610i 0.00393780 + 0.00682047i
\(144\) 0 0
\(145\) 8.64723 14.9774i 0.718113 1.24381i
\(146\) 0 0
\(147\) 2.31216 + 8.80976i 0.190704 + 0.726617i
\(148\) 0 0
\(149\) 0.676280 + 0.567466i 0.0554030 + 0.0464886i 0.670069 0.742299i \(-0.266265\pi\)
−0.614666 + 0.788788i \(0.710709\pi\)
\(150\) 0 0
\(151\) 7.72942 + 2.81328i 0.629011 + 0.228941i 0.636801 0.771028i \(-0.280257\pi\)
−0.00778980 + 0.999970i \(0.502480\pi\)
\(152\) 0 0
\(153\) −6.11477 + 7.13717i −0.494350 + 0.577006i
\(154\) 0 0
\(155\) −1.43466 8.13639i −0.115235 0.653530i
\(156\) 0 0
\(157\) −11.8024 + 4.29571i −0.941932 + 0.342835i −0.766928 0.641733i \(-0.778216\pi\)
−0.175003 + 0.984568i \(0.555994\pi\)
\(158\) 0 0
\(159\) 0.207851 2.24305i 0.0164836 0.177886i
\(160\) 0 0
\(161\) 1.36501 0.107578
\(162\) 0 0
\(163\) −3.31466 −0.259624 −0.129812 0.991539i \(-0.541437\pi\)
−0.129812 + 0.991539i \(0.541437\pi\)
\(164\) 0 0
\(165\) −1.84628 + 19.9244i −0.143732 + 1.55111i
\(166\) 0 0
\(167\) −19.3229 + 7.03295i −1.49525 + 0.544226i −0.954826 0.297167i \(-0.903958\pi\)
−0.540424 + 0.841393i \(0.681736\pi\)
\(168\) 0 0
\(169\) −2.25737 12.8022i −0.173644 0.984783i
\(170\) 0 0
\(171\) −0.416126 1.18088i −0.0318219 0.0903044i
\(172\) 0 0
\(173\) −13.1870 4.79966i −1.00259 0.364911i −0.212005 0.977269i \(-0.567999\pi\)
−0.790581 + 0.612357i \(0.790221\pi\)
\(174\) 0 0
\(175\) −0.0939601 0.0788419i −0.00710272 0.00595989i
\(176\) 0 0
\(177\) −1.62766 6.20169i −0.122342 0.466148i
\(178\) 0 0
\(179\) 5.09500 8.82479i 0.380818 0.659596i −0.610361 0.792123i \(-0.708976\pi\)
0.991179 + 0.132527i \(0.0423091\pi\)
\(180\) 0 0
\(181\) −12.0274 20.8320i −0.893987 1.54843i −0.835054 0.550169i \(-0.814563\pi\)
−0.0589331 0.998262i \(-0.518770\pi\)
\(182\) 0 0
\(183\) −11.9354 + 0.982498i −0.882293 + 0.0726283i
\(184\) 0 0
\(185\) 1.70204 9.65275i 0.125137 0.709685i
\(186\) 0 0
\(187\) −12.5157 + 10.5019i −0.915240 + 0.767978i
\(188\) 0 0
\(189\) 6.82089 + 0.702760i 0.496146 + 0.0511182i
\(190\) 0 0
\(191\) −8.38541 + 7.03619i −0.606747 + 0.509121i −0.893606 0.448852i \(-0.851833\pi\)
0.286860 + 0.957973i \(0.407389\pi\)
\(192\) 0 0
\(193\) −1.87644 + 10.6418i −0.135069 + 0.766013i 0.839743 + 0.542984i \(0.182706\pi\)
−0.974812 + 0.223029i \(0.928405\pi\)
\(194\) 0 0
\(195\) −0.0296040 + 0.0626444i −0.00211999 + 0.00448606i
\(196\) 0 0
\(197\) 11.0367 + 19.1161i 0.786331 + 1.36196i 0.928201 + 0.372080i \(0.121355\pi\)
−0.141870 + 0.989885i \(0.545311\pi\)
\(198\) 0 0
\(199\) 6.44338 11.1603i 0.456759 0.791130i −0.542028 0.840360i \(-0.682343\pi\)
0.998787 + 0.0492301i \(0.0156768\pi\)
\(200\) 0 0
\(201\) −13.5742 + 13.4355i −0.957448 + 0.947667i
\(202\) 0 0
\(203\) −7.89228 6.62241i −0.553929 0.464802i
\(204\) 0 0
\(205\) 7.64974 + 2.78428i 0.534281 + 0.194462i
\(206\) 0 0
\(207\) −1.09123 + 2.90496i −0.0758456 + 0.201909i
\(208\) 0 0
\(209\) −0.377957 2.14350i −0.0261439 0.148269i
\(210\) 0 0
\(211\) −22.5485 + 8.20699i −1.55230 + 0.564992i −0.968957 0.247230i \(-0.920480\pi\)
−0.583347 + 0.812223i \(0.698257\pi\)
\(212\) 0 0
\(213\) −8.60131 6.08875i −0.589352 0.417194i
\(214\) 0 0
\(215\) 18.4035 1.25511
\(216\) 0 0
\(217\) −4.92177 −0.334112
\(218\) 0 0
\(219\) −0.860667 + 0.395969i −0.0581585 + 0.0267571i
\(220\) 0 0
\(221\) −0.0531618 + 0.0193493i −0.00357605 + 0.00130158i
\(222\) 0 0
\(223\) −3.76160 21.3331i −0.251895 1.42857i −0.803918 0.594740i \(-0.797255\pi\)
0.552023 0.833829i \(-0.313856\pi\)
\(224\) 0 0
\(225\) 0.242903 0.136934i 0.0161936 0.00912896i
\(226\) 0 0
\(227\) 20.3367 + 7.40196i 1.34979 + 0.491285i 0.912884 0.408220i \(-0.133850\pi\)
0.436911 + 0.899505i \(0.356072\pi\)
\(228\) 0 0
\(229\) −8.27739 6.94555i −0.546985 0.458975i 0.326934 0.945047i \(-0.393985\pi\)
−0.873919 + 0.486072i \(0.838429\pi\)
\(230\) 0 0
\(231\) 11.4980 + 3.14424i 0.756513 + 0.206876i
\(232\) 0 0
\(233\) −3.81950 + 6.61557i −0.250224 + 0.433400i −0.963587 0.267394i \(-0.913838\pi\)
0.713364 + 0.700794i \(0.247171\pi\)
\(234\) 0 0
\(235\) −7.86160 13.6167i −0.512834 0.888255i
\(236\) 0 0
\(237\) −0.482377 0.696490i −0.0313338 0.0452419i
\(238\) 0 0
\(239\) 0.561143 3.18240i 0.0362973 0.205852i −0.961266 0.275623i \(-0.911116\pi\)
0.997563 + 0.0697711i \(0.0222269\pi\)
\(240\) 0 0
\(241\) −20.3346 + 17.0628i −1.30987 + 1.09911i −0.321518 + 0.946903i \(0.604193\pi\)
−0.988349 + 0.152206i \(0.951362\pi\)
\(242\) 0 0
\(243\) −6.94842 + 13.9542i −0.445741 + 0.895162i
\(244\) 0 0
\(245\) −8.92345 + 7.48766i −0.570098 + 0.478369i
\(246\) 0 0
\(247\) 0.00130875 0.00742226i 8.32735e−5 0.000472267i
\(248\) 0 0
\(249\) −4.54985 6.56938i −0.288335 0.416318i
\(250\) 0 0
\(251\) −2.24965 3.89651i −0.141997 0.245945i 0.786252 0.617906i \(-0.212019\pi\)
−0.928248 + 0.371961i \(0.878686\pi\)
\(252\) 0 0
\(253\) −2.69726 + 4.67179i −0.169575 + 0.293713i
\(254\) 0 0
\(255\) −11.5943 3.17056i −0.726061 0.198548i
\(256\) 0 0
\(257\) 10.5219 + 8.82895i 0.656340 + 0.550735i 0.908987 0.416824i \(-0.136857\pi\)
−0.252647 + 0.967559i \(0.581301\pi\)
\(258\) 0 0
\(259\) −5.48690 1.99707i −0.340939 0.124092i
\(260\) 0 0
\(261\) 20.4029 11.5020i 1.26291 0.711953i
\(262\) 0 0
\(263\) 4.20273 + 23.8349i 0.259151 + 1.46972i 0.785187 + 0.619258i \(0.212567\pi\)
−0.526036 + 0.850462i \(0.676322\pi\)
\(264\) 0 0
\(265\) 2.70727 0.985365i 0.166306 0.0605305i
\(266\) 0 0
\(267\) −5.30755 + 2.44185i −0.324817 + 0.149439i
\(268\) 0 0
\(269\) 12.0062 0.732032 0.366016 0.930609i \(-0.380722\pi\)
0.366016 + 0.930609i \(0.380722\pi\)
\(270\) 0 0
\(271\) −3.71777 −0.225839 −0.112919 0.993604i \(-0.536020\pi\)
−0.112919 + 0.993604i \(0.536020\pi\)
\(272\) 0 0
\(273\) 0.0336891 + 0.0238481i 0.00203896 + 0.00144335i
\(274\) 0 0
\(275\) 0.455505 0.165790i 0.0274680 0.00999753i
\(276\) 0 0
\(277\) −4.07780 23.1264i −0.245011 1.38953i −0.820466 0.571695i \(-0.806286\pi\)
0.575455 0.817833i \(-0.304825\pi\)
\(278\) 0 0
\(279\) 3.93462 10.4744i 0.235559 0.627084i
\(280\) 0 0
\(281\) 19.1432 + 6.96754i 1.14199 + 0.415649i 0.842630 0.538493i \(-0.181006\pi\)
0.299356 + 0.954142i \(0.403228\pi\)
\(282\) 0 0
\(283\) −8.88607 7.45630i −0.528222 0.443231i 0.339265 0.940691i \(-0.389822\pi\)
−0.867487 + 0.497460i \(0.834266\pi\)
\(284\) 0 0
\(285\) 1.13809 1.12646i 0.0674147 0.0667260i
\(286\) 0 0
\(287\) 2.42478 4.19984i 0.143130 0.247909i
\(288\) 0 0
\(289\) 3.59280 + 6.22291i 0.211341 + 0.366053i
\(290\) 0 0
\(291\) 7.35706 15.5681i 0.431279 0.912618i
\(292\) 0 0
\(293\) 5.48280 31.0945i 0.320308 1.81656i −0.220470 0.975394i \(-0.570759\pi\)
0.540779 0.841165i \(-0.318130\pi\)
\(294\) 0 0
\(295\) 6.28172 5.27099i 0.365736 0.306889i
\(296\) 0 0
\(297\) −15.8833 + 21.9561i −0.921644 + 1.27402i
\(298\) 0 0
\(299\) −0.0143093 + 0.0120069i −0.000827529 + 0.000694379i
\(300\) 0 0
\(301\) 1.90376 10.7968i 0.109731 0.622315i
\(302\) 0 0
\(303\) −23.8208 + 1.96088i −1.36847 + 0.112649i
\(304\) 0 0
\(305\) −7.65816 13.2643i −0.438505 0.759513i
\(306\) 0 0
\(307\) −4.06027 + 7.03259i −0.231732 + 0.401371i −0.958318 0.285704i \(-0.907773\pi\)
0.726586 + 0.687075i \(0.241106\pi\)
\(308\) 0 0
\(309\) 2.00725 + 7.64800i 0.114188 + 0.435079i
\(310\) 0 0
\(311\) 18.2691 + 15.3296i 1.03594 + 0.869259i 0.991546 0.129754i \(-0.0414189\pi\)
0.0443970 + 0.999014i \(0.485863\pi\)
\(312\) 0 0
\(313\) −25.2876 9.20392i −1.42934 0.520236i −0.492596 0.870258i \(-0.663952\pi\)
−0.936742 + 0.350022i \(0.886174\pi\)
\(314\) 0 0
\(315\) 2.91463 + 8.27116i 0.164221 + 0.466027i
\(316\) 0 0
\(317\) −1.44689 8.20574i −0.0812657 0.460881i −0.998100 0.0616130i \(-0.980376\pi\)
0.916834 0.399268i \(-0.130736\pi\)
\(318\) 0 0
\(319\) 38.2606 13.9257i 2.14218 0.779692i
\(320\) 0 0
\(321\) −1.80534 + 19.4826i −0.100764 + 1.08741i
\(322\) 0 0
\(323\) 1.30748 0.0727501
\(324\) 0 0
\(325\) 0.00167849 9.31061e−5
\(326\) 0 0
\(327\) −2.31782 + 25.0131i −0.128176 + 1.38323i
\(328\) 0 0
\(329\) −8.80173 + 3.20357i −0.485255 + 0.176618i
\(330\) 0 0
\(331\) 1.11487 + 6.32272i 0.0612786 + 0.347528i 0.999996 + 0.00284030i \(0.000904096\pi\)
−0.938717 + 0.344688i \(0.887985\pi\)
\(332\) 0 0
\(333\) 8.63650 10.0805i 0.473277 0.552410i
\(334\) 0 0
\(335\) −22.9533 8.35432i −1.25407 0.456446i
\(336\) 0 0
\(337\) 5.72610 + 4.80477i 0.311921 + 0.261732i 0.785285 0.619134i \(-0.212516\pi\)
−0.473365 + 0.880867i \(0.656961\pi\)
\(338\) 0 0
\(339\) −5.52185 21.0393i −0.299906 1.14270i
\(340\) 0 0
\(341\) 9.72545 16.8450i 0.526663 0.912206i
\(342\) 0 0
\(343\) 8.08839 + 14.0095i 0.436732 + 0.756442i
\(344\) 0 0
\(345\) −3.95537 + 0.325597i −0.212950 + 0.0175296i
\(346\) 0 0
\(347\) 5.46202 30.9766i 0.293216 1.66291i −0.381148 0.924514i \(-0.624471\pi\)
0.674364 0.738399i \(-0.264418\pi\)
\(348\) 0 0
\(349\) 9.07988 7.61893i 0.486035 0.407832i −0.366568 0.930391i \(-0.619467\pi\)
0.852603 + 0.522560i \(0.175023\pi\)
\(350\) 0 0
\(351\) −0.0776848 + 0.0526312i −0.00414651 + 0.00280925i
\(352\) 0 0
\(353\) −6.28699 + 5.27541i −0.334623 + 0.280782i −0.794580 0.607159i \(-0.792309\pi\)
0.459958 + 0.887941i \(0.347865\pi\)
\(354\) 0 0
\(355\) 2.34040 13.2731i 0.124215 0.704461i
\(356\) 0 0
\(357\) −3.05944 + 6.47401i −0.161923 + 0.342641i
\(358\) 0 0
\(359\) 8.86365 + 15.3523i 0.467806 + 0.810263i 0.999323 0.0367840i \(-0.0117114\pi\)
−0.531517 + 0.847047i \(0.678378\pi\)
\(360\) 0 0
\(361\) 9.41291 16.3036i 0.495416 0.858086i
\(362\) 0 0
\(363\) −19.9402 + 19.7365i −1.04659 + 1.03590i
\(364\) 0 0
\(365\) −0.928176 0.778832i −0.0485829 0.0407659i
\(366\) 0 0
\(367\) −19.0941 6.94969i −0.996704 0.362771i −0.208392 0.978045i \(-0.566823\pi\)
−0.788313 + 0.615275i \(0.789045\pi\)
\(368\) 0 0
\(369\) 6.99953 + 8.51782i 0.364381 + 0.443420i
\(370\) 0 0
\(371\) −0.298028 1.69020i −0.0154728 0.0877509i
\(372\) 0 0
\(373\) 9.09758 3.31125i 0.471055 0.171450i −0.0955754 0.995422i \(-0.530469\pi\)
0.566630 + 0.823972i \(0.308247\pi\)
\(374\) 0 0
\(375\) 15.9491 + 11.2901i 0.823606 + 0.583019i
\(376\) 0 0
\(377\) 0.140987 0.00726119
\(378\) 0 0
\(379\) 4.12905 0.212095 0.106048 0.994361i \(-0.466180\pi\)
0.106048 + 0.994361i \(0.466180\pi\)
\(380\) 0 0
\(381\) 13.2096 6.07736i 0.676748 0.311353i
\(382\) 0 0
\(383\) 4.46371 1.62466i 0.228085 0.0830162i −0.225450 0.974255i \(-0.572385\pi\)
0.453535 + 0.891239i \(0.350163\pi\)
\(384\) 0 0
\(385\) 2.64729 + 15.0136i 0.134919 + 0.765162i
\(386\) 0 0
\(387\) 21.4554 + 12.6828i 1.09064 + 0.644702i
\(388\) 0 0
\(389\) 20.4978 + 7.46059i 1.03928 + 0.378267i 0.804607 0.593807i \(-0.202376\pi\)
0.234673 + 0.972074i \(0.424598\pi\)
\(390\) 0 0
\(391\) −2.48238 2.08297i −0.125539 0.105340i
\(392\) 0 0
\(393\) 25.9543 + 7.09745i 1.30922 + 0.358019i
\(394\) 0 0
\(395\) 0.541773 0.938378i 0.0272595 0.0472149i
\(396\) 0 0
\(397\) 17.4245 + 30.1802i 0.874512 + 1.51470i 0.857282 + 0.514847i \(0.172151\pi\)
0.0172294 + 0.999852i \(0.494515\pi\)
\(398\) 0 0
\(399\) −0.543131 0.784210i −0.0271906 0.0392596i
\(400\) 0 0
\(401\) −3.26911 + 18.5401i −0.163252 + 0.925847i 0.787597 + 0.616191i \(0.211325\pi\)
−0.950849 + 0.309656i \(0.899786\pi\)
\(402\) 0 0
\(403\) 0.0515948 0.0432932i 0.00257012 0.00215659i
\(404\) 0 0
\(405\) −19.9325 0.409386i −0.990453 0.0203426i
\(406\) 0 0
\(407\) 17.6772 14.8329i 0.876226 0.735241i
\(408\) 0 0
\(409\) −1.10439 + 6.26334i −0.0546088 + 0.309702i −0.999862 0.0166371i \(-0.994704\pi\)
0.945253 + 0.326339i \(0.105815\pi\)
\(410\) 0 0
\(411\) 11.8413 + 17.0973i 0.584088 + 0.843346i
\(412\) 0 0
\(413\) −2.44251 4.23055i −0.120188 0.208172i
\(414\) 0 0
\(415\) 5.11007 8.85090i 0.250843 0.434474i
\(416\) 0 0
\(417\) −10.2667 2.80753i −0.502763 0.137485i
\(418\) 0 0
\(419\) 18.6286 + 15.6313i 0.910069 + 0.763638i 0.972132 0.234434i \(-0.0753236\pi\)
−0.0620632 + 0.998072i \(0.519768\pi\)
\(420\) 0 0
\(421\) 7.50818 + 2.73275i 0.365926 + 0.133186i 0.518438 0.855115i \(-0.326514\pi\)
−0.152511 + 0.988302i \(0.548736\pi\)
\(422\) 0 0
\(423\) 0.218637 21.2926i 0.0106305 1.03528i
\(424\) 0 0
\(425\) 0.0505638 + 0.286762i 0.00245271 + 0.0139100i
\(426\) 0 0
\(427\) −8.57397 + 3.12067i −0.414924 + 0.151020i
\(428\) 0 0
\(429\) −0.148191 + 0.0681784i −0.00715472 + 0.00329169i
\(430\) 0 0
\(431\) −9.87124 −0.475481 −0.237740 0.971329i \(-0.576407\pi\)
−0.237740 + 0.971329i \(0.576407\pi\)
\(432\) 0 0
\(433\) −6.10369 −0.293325 −0.146662 0.989187i \(-0.546853\pi\)
−0.146662 + 0.989187i \(0.546853\pi\)
\(434\) 0 0
\(435\) 24.4491 + 17.3072i 1.17224 + 0.829815i
\(436\) 0 0
\(437\) 0.405669 0.147651i 0.0194058 0.00706312i
\(438\) 0 0
\(439\) 2.62800 + 14.9041i 0.125427 + 0.711334i 0.981053 + 0.193739i \(0.0620615\pi\)
−0.855626 + 0.517595i \(0.826827\pi\)
\(440\) 0 0
\(441\) −15.5634 + 2.57976i −0.741113 + 0.122846i
\(442\) 0 0
\(443\) −0.679204 0.247210i −0.0322699 0.0117453i 0.325835 0.945427i \(-0.394355\pi\)
−0.358105 + 0.933681i \(0.616577\pi\)
\(444\) 0 0
\(445\) −5.72386 4.80289i −0.271337 0.227679i
\(446\) 0 0
\(447\) −1.08677 + 1.07566i −0.0514023 + 0.0508772i
\(448\) 0 0
\(449\) −0.834224 + 1.44492i −0.0393695 + 0.0681899i −0.885039 0.465517i \(-0.845868\pi\)
0.845669 + 0.533707i \(0.179202\pi\)
\(450\) 0 0
\(451\) 9.58275 + 16.5978i 0.451234 + 0.781560i
\(452\) 0 0
\(453\) −6.08723 + 12.8810i −0.286003 + 0.605204i
\(454\) 0 0
\(455\) −0.00916673 + 0.0519871i −0.000429743 + 0.00243719i
\(456\) 0 0
\(457\) 8.49041 7.12430i 0.397165 0.333261i −0.422232 0.906488i \(-0.638753\pi\)
0.819397 + 0.573227i \(0.194309\pi\)
\(458\) 0 0
\(459\) −11.3320 11.6865i −0.528932 0.545481i
\(460\) 0 0
\(461\) −16.7644 + 14.0670i −0.780797 + 0.655166i −0.943449 0.331517i \(-0.892439\pi\)
0.162653 + 0.986683i \(0.447995\pi\)
\(462\) 0 0
\(463\) −4.31546 + 24.4742i −0.200556 + 1.13741i 0.703724 + 0.710473i \(0.251519\pi\)
−0.904281 + 0.426938i \(0.859592\pi\)
\(464\) 0 0
\(465\) 14.2618 1.17400i 0.661375 0.0544429i
\(466\) 0 0
\(467\) −5.91777 10.2499i −0.273842 0.474308i 0.696001 0.718041i \(-0.254961\pi\)
−0.969842 + 0.243734i \(0.921628\pi\)
\(468\) 0 0
\(469\) −7.27564 + 12.6018i −0.335958 + 0.581896i
\(470\) 0 0
\(471\) −5.52246 21.0416i −0.254462 0.969547i
\(472\) 0 0
\(473\) 33.1905 + 27.8501i 1.52610 + 1.28055i
\(474\) 0 0
\(475\) −0.0364524 0.0132676i −0.00167255 0.000608759i
\(476\) 0 0
\(477\) 3.83529 + 0.716944i 0.175606 + 0.0328266i
\(478\) 0 0
\(479\) −0.501383 2.84349i −0.0229088 0.129922i 0.971209 0.238231i \(-0.0765676\pi\)
−0.994117 + 0.108309i \(0.965456\pi\)
\(480\) 0 0
\(481\) 0.0750857 0.0273290i 0.00342361 0.00124609i
\(482\) 0 0
\(483\) −0.218148 + 2.35417i −0.00992607 + 0.107119i
\(484\) 0 0
\(485\) 22.0220 0.999966
\(486\) 0 0
\(487\) −8.75903 −0.396910 −0.198455 0.980110i \(-0.563592\pi\)
−0.198455 + 0.980110i \(0.563592\pi\)
\(488\) 0 0
\(489\) 0.529731 5.71667i 0.0239553 0.258517i
\(490\) 0 0
\(491\) −21.2117 + 7.72044i −0.957272 + 0.348418i −0.772964 0.634450i \(-0.781227\pi\)
−0.184308 + 0.982869i \(0.559004\pi\)
\(492\) 0 0
\(493\) 4.24716 + 24.0869i 0.191283 + 1.08482i
\(494\) 0 0
\(495\) −34.0677 6.36840i −1.53123 0.286238i
\(496\) 0 0
\(497\) −7.54478 2.74608i −0.338430 0.123178i
\(498\) 0 0
\(499\) 19.4061 + 16.2836i 0.868734 + 0.728955i 0.963831 0.266513i \(-0.0858716\pi\)
−0.0950968 + 0.995468i \(0.530316\pi\)
\(500\) 0 0
\(501\) −9.04139 34.4494i −0.403940 1.53909i
\(502\) 0 0
\(503\) 1.87207 3.24252i 0.0834714 0.144577i −0.821267 0.570543i \(-0.806733\pi\)
0.904739 + 0.425967i \(0.140066\pi\)
\(504\) 0 0
\(505\) −15.2842 26.4731i −0.680139 1.17804i
\(506\) 0 0
\(507\) 22.4402 1.84723i 0.996604 0.0820382i
\(508\) 0 0
\(509\) 4.22831 23.9800i 0.187417 1.06289i −0.735394 0.677640i \(-0.763003\pi\)
0.922811 0.385253i \(-0.125886\pi\)
\(510\) 0 0
\(511\) −0.552932 + 0.463965i −0.0244603 + 0.0205246i
\(512\) 0 0
\(513\) 2.10313 0.528954i 0.0928554 0.0233539i
\(514\) 0 0
\(515\) −7.74669 + 6.50025i −0.341360 + 0.286435i
\(516\) 0 0
\(517\) 6.42792 36.4546i 0.282700 1.60327i
\(518\) 0 0
\(519\) 10.3853 21.9760i 0.455862 0.964639i
\(520\) 0 0
\(521\) −9.81046 16.9922i −0.429804 0.744443i 0.567051 0.823682i \(-0.308084\pi\)
−0.996856 + 0.0792397i \(0.974751\pi\)
\(522\) 0 0
\(523\) 10.4077 18.0267i 0.455097 0.788251i −0.543597 0.839346i \(-0.682938\pi\)
0.998694 + 0.0510956i \(0.0162713\pi\)
\(524\) 0 0
\(525\) 0.150992 0.149449i 0.00658982 0.00652251i
\(526\) 0 0
\(527\) 8.95067 + 7.51051i 0.389897 + 0.327163i
\(528\) 0 0
\(529\) 20.6075 + 7.50052i 0.895978 + 0.326109i
\(530\) 0 0
\(531\) 10.9559 1.81604i 0.475447 0.0788095i
\(532\) 0 0
\(533\) 0.0115240 + 0.0653558i 0.000499159 + 0.00283087i
\(534\) 0 0
\(535\) −23.5147 + 8.55864i −1.01663 + 0.370022i
\(536\) 0 0
\(537\) 14.4055 + 10.1975i 0.621645 + 0.440054i
\(538\) 0 0
\(539\) −27.4245 −1.18126
\(540\) 0 0
\(541\) −30.6272 −1.31676 −0.658382 0.752684i \(-0.728759\pi\)
−0.658382 + 0.752684i \(0.728759\pi\)
\(542\) 0 0
\(543\) 37.8503 17.4139i 1.62431 0.747301i
\(544\) 0 0
\(545\) −30.1898 + 10.9882i −1.29319 + 0.470682i
\(546\) 0 0
\(547\) −3.93273 22.3036i −0.168151 0.953633i −0.945756 0.324879i \(-0.894676\pi\)
0.777604 0.628754i \(-0.216435\pi\)
\(548\) 0 0
\(549\) 0.212980 20.7416i 0.00908976 0.885231i
\(550\) 0 0
\(551\) −3.06186 1.11443i −0.130440 0.0474761i
\(552\) 0 0
\(553\) −0.494473 0.414912i −0.0210271 0.0176439i
\(554\) 0 0
\(555\) 16.3757 + 4.47810i 0.695111 + 0.190085i
\(556\) 0 0
\(557\) −18.2259 + 31.5682i −0.772256 + 1.33759i 0.164067 + 0.986449i \(0.447539\pi\)
−0.936324 + 0.351138i \(0.885795\pi\)
\(558\) 0 0
\(559\) 0.0750139 + 0.129928i 0.00317275 + 0.00549537i
\(560\) 0 0
\(561\) −16.1121 23.2637i −0.680253 0.982196i
\(562\) 0 0
\(563\) −4.60450 + 26.1134i −0.194056 + 1.10055i 0.719700 + 0.694285i \(0.244279\pi\)
−0.913756 + 0.406263i \(0.866832\pi\)
\(564\) 0 0
\(565\) 21.3108 17.8819i 0.896552 0.752296i
\(566\) 0 0
\(567\) −2.30210 + 11.6514i −0.0966791 + 0.489313i
\(568\) 0 0
\(569\) 17.5941 14.7632i 0.737581 0.618904i −0.194606 0.980882i \(-0.562343\pi\)
0.932187 + 0.361978i \(0.117898\pi\)
\(570\) 0 0
\(571\) 0.833165 4.72511i 0.0348669 0.197740i −0.962399 0.271641i \(-0.912434\pi\)
0.997266 + 0.0739009i \(0.0235449\pi\)
\(572\) 0 0
\(573\) −10.7949 15.5865i −0.450965 0.651134i
\(574\) 0 0
\(575\) 0.0480718 + 0.0832628i 0.00200473 + 0.00347230i
\(576\) 0 0
\(577\) 2.15666 3.73545i 0.0897831 0.155509i −0.817636 0.575735i \(-0.804716\pi\)
0.907419 + 0.420226i \(0.138049\pi\)
\(578\) 0 0
\(579\) −18.0536 4.93693i −0.750283 0.205172i
\(580\) 0 0
\(581\) −4.66393 3.91351i −0.193493 0.162360i
\(582\) 0 0
\(583\) 6.37369 + 2.31983i 0.263971 + 0.0960777i
\(584\) 0 0
\(585\) −0.103309 0.0610685i −0.00427131 0.00252487i
\(586\) 0 0
\(587\) −7.26235 41.1868i −0.299749 1.69996i −0.647246 0.762281i \(-0.724079\pi\)
0.347497 0.937681i \(-0.387032\pi\)
\(588\) 0 0
\(589\) −1.46271 + 0.532383i −0.0602699 + 0.0219365i
\(590\) 0 0
\(591\) −34.7326 + 15.9795i −1.42871 + 0.657309i
\(592\) 0 0
\(593\) −31.5370 −1.29507 −0.647536 0.762035i \(-0.724200\pi\)
−0.647536 + 0.762035i \(0.724200\pi\)
\(594\) 0 0
\(595\) −9.15786 −0.375436
\(596\) 0 0
\(597\) 18.2179 + 12.8962i 0.745611 + 0.527807i
\(598\) 0 0
\(599\) −11.8686 + 4.31982i −0.484938 + 0.176503i −0.572907 0.819620i \(-0.694184\pi\)
0.0879695 + 0.996123i \(0.471962\pi\)
\(600\) 0 0
\(601\) 3.56725 + 20.2309i 0.145511 + 0.825235i 0.966955 + 0.254946i \(0.0820577\pi\)
−0.821444 + 0.570289i \(0.806831\pi\)
\(602\) 0 0
\(603\) −21.0023 25.5580i −0.855282 1.04080i
\(604\) 0 0
\(605\) −33.7180 12.2724i −1.37083 0.498942i
\(606\) 0 0
\(607\) −9.89160 8.30003i −0.401487 0.336888i 0.419581 0.907718i \(-0.362177\pi\)
−0.821068 + 0.570830i \(0.806622\pi\)
\(608\) 0 0
\(609\) 12.6827 12.5532i 0.513930 0.508680i
\(610\) 0 0
\(611\) 0.0640889 0.111005i 0.00259276 0.00449079i
\(612\) 0 0
\(613\) 15.5799 + 26.9851i 0.629265 + 1.08992i 0.987699 + 0.156364i \(0.0499774\pi\)
−0.358434 + 0.933555i \(0.616689\pi\)
\(614\) 0 0
\(615\) −6.02447 + 12.7482i −0.242930 + 0.514059i
\(616\) 0 0
\(617\) −1.23998 + 7.03230i −0.0499199 + 0.283110i −0.999541 0.0302901i \(-0.990357\pi\)
0.949621 + 0.313400i \(0.101468\pi\)
\(618\) 0 0
\(619\) 7.68412 6.44774i 0.308851 0.259157i −0.475166 0.879896i \(-0.657612\pi\)
0.784017 + 0.620740i \(0.213168\pi\)
\(620\) 0 0
\(621\) −4.83569 2.34625i −0.194049 0.0941520i
\(622\) 0 0
\(623\) −3.40981 + 2.86117i −0.136611 + 0.114630i
\(624\) 0 0
\(625\) −4.25900 + 24.1540i −0.170360 + 0.966160i
\(626\) 0 0
\(627\) 3.75722 0.309286i 0.150049 0.0123517i
\(628\) 0 0
\(629\) 6.93093 + 12.0047i 0.276354 + 0.478660i
\(630\) 0 0
\(631\) −3.53780 + 6.12765i −0.140838 + 0.243938i −0.927812 0.373047i \(-0.878313\pi\)
0.786975 + 0.616985i \(0.211646\pi\)
\(632\) 0 0
\(633\) −10.5507 40.2002i −0.419353 1.59781i
\(634\) 0 0
\(635\) 14.2457 + 11.9536i 0.565324 + 0.474363i
\(636\) 0 0
\(637\) −0.0892352 0.0324790i −0.00353563 0.00128686i
\(638\) 0 0
\(639\) 11.8756 13.8613i 0.469793 0.548344i
\(640\) 0 0
\(641\) −0.870188 4.93508i −0.0343704 0.194924i 0.962788 0.270258i \(-0.0871089\pi\)
−0.997158 + 0.0753337i \(0.975998\pi\)
\(642\) 0 0
\(643\) 1.53960 0.560367i 0.0607157 0.0220987i −0.311484 0.950251i \(-0.600826\pi\)
0.372199 + 0.928153i \(0.378604\pi\)
\(644\) 0 0
\(645\) −2.94115 + 31.7398i −0.115807 + 1.24975i
\(646\) 0 0
\(647\) −34.4927 −1.35605 −0.678024 0.735040i \(-0.737164\pi\)
−0.678024 + 0.735040i \(0.737164\pi\)
\(648\) 0 0
\(649\) 19.3056 0.757813
\(650\) 0 0
\(651\) 0.786571 8.48840i 0.0308282 0.332687i
\(652\) 0 0
\(653\) −36.4230 + 13.2569i −1.42534 + 0.518783i −0.935593 0.353080i \(-0.885134\pi\)
−0.489751 + 0.871862i \(0.662912\pi\)
\(654\) 0 0
\(655\) 5.97570 + 33.8899i 0.233490 + 1.32419i
\(656\) 0 0
\(657\) −0.545365 1.54764i −0.0212767 0.0603792i
\(658\) 0 0
\(659\) 8.82552 + 3.21223i 0.343794 + 0.125131i 0.508146 0.861271i \(-0.330331\pi\)
−0.164352 + 0.986402i \(0.552553\pi\)
\(660\) 0 0
\(661\) −18.4980 15.5217i −0.719489 0.603723i 0.207755 0.978181i \(-0.433384\pi\)
−0.927244 + 0.374458i \(0.877829\pi\)
\(662\) 0 0
\(663\) −0.0248750 0.0947785i −0.000966065 0.00368089i
\(664\) 0 0
\(665\) 0.610007 1.05656i 0.0236551 0.0409718i
\(666\) 0 0
\(667\) 4.03784 + 6.99375i 0.156346 + 0.270799i
\(668\) 0 0
\(669\) 37.3935 3.07815i 1.44572 0.119008i
\(670\) 0 0
\(671\) 6.26159 35.5112i 0.241726 1.37090i
\(672\) 0 0
\(673\) −20.2742 + 17.0121i −0.781514 + 0.655768i −0.943630 0.331003i \(-0.892613\pi\)
0.162115 + 0.986772i \(0.448168\pi\)
\(674\) 0 0
\(675\) 0.197346 + 0.440811i 0.00759585 + 0.0169668i
\(676\) 0 0
\(677\) 23.7986 19.9694i 0.914654 0.767486i −0.0583448 0.998296i \(-0.518582\pi\)
0.972999 + 0.230811i \(0.0741378\pi\)
\(678\) 0 0
\(679\) 2.27807 12.9196i 0.0874245 0.495809i
\(680\) 0 0
\(681\) −16.0160 + 33.8910i −0.613734 + 1.29871i
\(682\) 0 0
\(683\) 19.0681 + 33.0268i 0.729619 + 1.26374i 0.957044 + 0.289942i \(0.0936359\pi\)
−0.227425 + 0.973796i \(0.573031\pi\)
\(684\) 0 0
\(685\) −13.2993 + 23.0351i −0.508140 + 0.880125i
\(686\) 0 0
\(687\) 13.3016 13.1657i 0.507487 0.502303i
\(688\) 0 0
\(689\) 0.0179917 + 0.0150968i 0.000685428 + 0.000575142i
\(690\) 0 0
\(691\) 30.9436 + 11.2626i 1.17715 + 0.428448i 0.855195 0.518306i \(-0.173437\pi\)
0.321957 + 0.946754i \(0.395659\pi\)
\(692\) 0 0
\(693\) −7.26030 + 19.3277i −0.275796 + 0.734198i
\(694\) 0 0
\(695\) −2.36380 13.4058i −0.0896641 0.508510i
\(696\) 0 0
\(697\) −10.8185 + 3.93762i −0.409781 + 0.149148i
\(698\) 0 0
\(699\) −10.7992 7.64461i −0.408463 0.289146i
\(700\) 0 0
\(701\) −2.30710 −0.0871381 −0.0435690 0.999050i \(-0.513873\pi\)
−0.0435690 + 0.999050i \(0.513873\pi\)
\(702\) 0 0
\(703\) −1.84668 −0.0696490
\(704\) 0 0
\(705\) 24.7406 11.3825i 0.931784 0.428688i
\(706\) 0 0
\(707\) −17.1120 + 6.22826i −0.643563 + 0.234238i
\(708\) 0 0
\(709\) −1.93654 10.9826i −0.0727281 0.412462i −0.999336 0.0364329i \(-0.988400\pi\)
0.926608 0.376029i \(-0.122711\pi\)
\(710\) 0 0
\(711\) 1.27830 0.720629i 0.0479400 0.0270257i
\(712\) 0 0
\(713\) 3.62525 + 1.31948i 0.135767 + 0.0494151i
\(714\) 0 0
\(715\) −0.159815 0.134100i −0.00597673 0.00501507i
\(716\) 0 0
\(717\) 5.39888 + 1.47637i 0.201625 + 0.0551362i
\(718\) 0 0
\(719\) −16.0850 + 27.8600i −0.599869 + 1.03900i 0.392971 + 0.919551i \(0.371447\pi\)
−0.992840 + 0.119453i \(0.961886\pi\)
\(720\) 0 0
\(721\) 3.01213 + 5.21717i 0.112178 + 0.194297i
\(722\) 0 0
\(723\) −26.1777 37.7972i −0.973560 1.40569i
\(724\) 0 0
\(725\) 0.126010 0.714637i 0.00467989 0.0265410i
\(726\) 0 0
\(727\) 4.11022 3.44888i 0.152440 0.127912i −0.563378 0.826199i \(-0.690499\pi\)
0.715818 + 0.698287i \(0.246054\pi\)
\(728\) 0 0
\(729\) −22.9558 14.2138i −0.850215 0.526435i
\(730\) 0 0
\(731\) −19.9377 + 16.7297i −0.737424 + 0.618772i
\(732\) 0 0
\(733\) −2.53463 + 14.3746i −0.0936187 + 0.530938i 0.901543 + 0.432689i \(0.142435\pi\)
−0.995162 + 0.0982489i \(0.968676\pi\)
\(734\) 0 0
\(735\) −11.4876 16.5866i −0.423726 0.611805i
\(736\) 0 0
\(737\) −28.7534 49.8023i −1.05915 1.83449i
\(738\) 0 0
\(739\) −21.6083 + 37.4266i −0.794873 + 1.37676i 0.128047 + 0.991768i \(0.459129\pi\)
−0.922920 + 0.384992i \(0.874204\pi\)
\(740\) 0 0
\(741\) 0.0125917 + 0.00344333i 0.000462569 + 0.000126494i
\(742\) 0 0
\(743\) −6.21431 5.21443i −0.227981 0.191299i 0.521641 0.853165i \(-0.325320\pi\)
−0.749622 + 0.661866i \(0.769765\pi\)
\(744\) 0 0
\(745\) −1.83767 0.668859i −0.0673272 0.0245051i
\(746\) 0 0
\(747\) 12.0571 6.79706i 0.441146 0.248692i
\(748\) 0 0
\(749\) 2.58860 + 14.6807i 0.0945854 + 0.536420i
\(750\) 0 0
\(751\) 8.22744 2.99454i 0.300223 0.109272i −0.187516 0.982261i \(-0.560044\pi\)
0.487740 + 0.872989i \(0.337822\pi\)
\(752\) 0 0
\(753\) 7.07968 3.25717i 0.257998 0.118698i
\(754\) 0 0
\(755\) −18.2210 −0.663129
\(756\) 0 0
\(757\) −32.1511 −1.16855 −0.584276 0.811555i \(-0.698622\pi\)
−0.584276 + 0.811555i \(0.698622\pi\)
\(758\) 0 0
\(759\) −7.62620 5.39848i −0.276813 0.195952i
\(760\) 0 0
\(761\) 23.0656 8.39520i 0.836128 0.304326i 0.111756 0.993736i \(-0.464352\pi\)
0.724371 + 0.689410i \(0.242130\pi\)
\(762\) 0 0
\(763\) 3.32342 + 18.8481i 0.120316 + 0.682346i
\(764\) 0 0
\(765\) 7.32108 19.4895i 0.264694 0.704644i
\(766\) 0 0
\(767\) 0.0628177 + 0.0228638i 0.00226822 + 0.000825563i
\(768\) 0 0
\(769\) 24.0648 + 20.1928i 0.867800 + 0.728170i 0.963634 0.267227i \(-0.0861073\pi\)
−0.0958338 + 0.995397i \(0.530552\pi\)
\(770\) 0 0
\(771\) −16.9085 + 16.7358i −0.608945 + 0.602725i
\(772\) 0 0
\(773\) −14.3573 + 24.8675i −0.516395 + 0.894422i 0.483424 + 0.875386i \(0.339393\pi\)
−0.999819 + 0.0190355i \(0.993940\pi\)
\(774\) 0 0
\(775\) −0.173332 0.300219i −0.00622625 0.0107842i
\(776\) 0 0
\(777\) 4.32116 9.14389i 0.155021 0.328035i
\(778\) 0 0
\(779\) 0.266332 1.51044i 0.00954233 0.0541173i
\(780\) 0 0
\(781\) 24.3071 20.3961i 0.869776 0.729829i
\(782\) 0 0
\(783\) 16.5763 + 37.0263i 0.592388 + 1.32321i
\(784\) 0 0
\(785\) 21.3132 17.8839i 0.760699 0.638303i
\(786\) 0 0
\(787\) 6.74033 38.2263i 0.240267 1.36262i −0.590966 0.806697i