Properties

Label 432.2.s.e.143.2
Level $432$
Weight $2$
Character 432.143
Analytic conductor $3.450$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 143.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 432.143
Dual form 432.2.s.e.287.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.50000 + 0.866025i) q^{5} +(2.59808 + 1.50000i) q^{7} +O(q^{10})\) \(q+(-1.50000 + 0.866025i) q^{5} +(2.59808 + 1.50000i) q^{7} +(-2.59808 + 4.50000i) q^{11} +(-0.500000 - 0.866025i) q^{13} -3.46410i q^{17} +6.00000i q^{19} +(2.59808 + 4.50000i) q^{23} +(-1.00000 + 1.73205i) q^{25} +(7.50000 + 4.33013i) q^{29} +(2.59808 - 1.50000i) q^{31} -5.19615 q^{35} -4.00000 q^{37} +(-4.50000 + 2.59808i) q^{41} +(2.59808 + 1.50000i) q^{43} +(2.59808 - 4.50000i) q^{47} +(1.00000 + 1.73205i) q^{49} -10.3923i q^{53} -9.00000i q^{55} +(-2.59808 - 4.50000i) q^{59} +(3.50000 - 6.06218i) q^{61} +(1.50000 + 0.866025i) q^{65} +(-7.79423 + 4.50000i) q^{67} +10.3923 q^{71} +4.00000 q^{73} +(-13.5000 + 7.79423i) q^{77} +(-12.9904 - 7.50000i) q^{79} +(2.59808 - 4.50000i) q^{83} +(3.00000 + 5.19615i) q^{85} +3.46410i q^{89} -3.00000i q^{91} +(-5.19615 - 9.00000i) q^{95} +(-0.500000 + 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 6q^{5} + O(q^{10}) \) \( 4q - 6q^{5} - 2q^{13} - 4q^{25} + 30q^{29} - 16q^{37} - 18q^{41} + 4q^{49} + 14q^{61} + 6q^{65} + 16q^{73} - 54q^{77} + 12q^{85} - 2q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.50000 + 0.866025i −0.670820 + 0.387298i −0.796387 0.604787i \(-0.793258\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 0 0
\(7\) 2.59808 + 1.50000i 0.981981 + 0.566947i 0.902867 0.429919i \(-0.141458\pi\)
0.0791130 + 0.996866i \(0.474791\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.59808 + 4.50000i −0.783349 + 1.35680i 0.146631 + 0.989191i \(0.453157\pi\)
−0.929980 + 0.367610i \(0.880176\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i 0.788320 0.615265i \(-0.210951\pi\)
−0.926995 + 0.375073i \(0.877618\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.46410i 0.840168i −0.907485 0.420084i \(-0.862001\pi\)
0.907485 0.420084i \(-0.137999\pi\)
\(18\) 0 0
\(19\) 6.00000i 1.37649i 0.725476 + 0.688247i \(0.241620\pi\)
−0.725476 + 0.688247i \(0.758380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.59808 + 4.50000i 0.541736 + 0.938315i 0.998805 + 0.0488832i \(0.0155662\pi\)
−0.457068 + 0.889432i \(0.651100\pi\)
\(24\) 0 0
\(25\) −1.00000 + 1.73205i −0.200000 + 0.346410i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.50000 + 4.33013i 1.39272 + 0.804084i 0.993615 0.112823i \(-0.0359893\pi\)
0.399100 + 0.916907i \(0.369323\pi\)
\(30\) 0 0
\(31\) 2.59808 1.50000i 0.466628 0.269408i −0.248199 0.968709i \(-0.579839\pi\)
0.714827 + 0.699301i \(0.246505\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.19615 −0.878310
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.50000 + 2.59808i −0.702782 + 0.405751i −0.808383 0.588657i \(-0.799657\pi\)
0.105601 + 0.994409i \(0.466323\pi\)
\(42\) 0 0
\(43\) 2.59808 + 1.50000i 0.396203 + 0.228748i 0.684844 0.728689i \(-0.259870\pi\)
−0.288641 + 0.957437i \(0.593204\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.59808 4.50000i 0.378968 0.656392i −0.611944 0.790901i \(-0.709612\pi\)
0.990912 + 0.134509i \(0.0429456\pi\)
\(48\) 0 0
\(49\) 1.00000 + 1.73205i 0.142857 + 0.247436i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.3923i 1.42749i −0.700404 0.713746i \(-0.746997\pi\)
0.700404 0.713746i \(-0.253003\pi\)
\(54\) 0 0
\(55\) 9.00000i 1.21356i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.59808 4.50000i −0.338241 0.585850i 0.645861 0.763455i \(-0.276498\pi\)
−0.984102 + 0.177605i \(0.943165\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.50000 + 0.866025i 0.186052 + 0.107417i
\(66\) 0 0
\(67\) −7.79423 + 4.50000i −0.952217 + 0.549762i −0.893769 0.448528i \(-0.851948\pi\)
−0.0584478 + 0.998290i \(0.518615\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923 1.23334 0.616670 0.787222i \(-0.288481\pi\)
0.616670 + 0.787222i \(0.288481\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −13.5000 + 7.79423i −1.53847 + 0.888235i
\(78\) 0 0
\(79\) −12.9904 7.50000i −1.46153 0.843816i −0.462450 0.886646i \(-0.653029\pi\)
−0.999082 + 0.0428296i \(0.986363\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.59808 4.50000i 0.285176 0.493939i −0.687476 0.726207i \(-0.741281\pi\)
0.972652 + 0.232268i \(0.0746146\pi\)
\(84\) 0 0
\(85\) 3.00000 + 5.19615i 0.325396 + 0.563602i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.46410i 0.367194i 0.983002 + 0.183597i \(0.0587741\pi\)
−0.983002 + 0.183597i \(0.941226\pi\)
\(90\) 0 0
\(91\) 3.00000i 0.314485i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.19615 9.00000i −0.533114 0.923381i
\(96\) 0 0
\(97\) −0.500000 + 0.866025i −0.0507673 + 0.0879316i −0.890292 0.455389i \(-0.849500\pi\)
0.839525 + 0.543321i \(0.182833\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.50000 + 2.59808i 0.447767 + 0.258518i 0.706887 0.707327i \(-0.250099\pi\)
−0.259120 + 0.965845i \(0.583432\pi\)
\(102\) 0 0
\(103\) 7.79423 4.50000i 0.767988 0.443398i −0.0641683 0.997939i \(-0.520439\pi\)
0.832156 + 0.554541i \(0.187106\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.5000 6.06218i 0.987757 0.570282i 0.0831539 0.996537i \(-0.473501\pi\)
0.904603 + 0.426255i \(0.140167\pi\)
\(114\) 0 0
\(115\) −7.79423 4.50000i −0.726816 0.419627i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.19615 9.00000i 0.476331 0.825029i
\(120\) 0 0
\(121\) −8.00000 13.8564i −0.727273 1.25967i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 6.00000i 0.532414i −0.963916 0.266207i \(-0.914230\pi\)
0.963916 0.266207i \(-0.0857705\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.59808 4.50000i −0.226995 0.393167i 0.729921 0.683531i \(-0.239557\pi\)
−0.956916 + 0.290365i \(0.906223\pi\)
\(132\) 0 0
\(133\) −9.00000 + 15.5885i −0.780399 + 1.35169i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.50000 + 0.866025i 0.128154 + 0.0739895i 0.562706 0.826657i \(-0.309760\pi\)
−0.434553 + 0.900646i \(0.643094\pi\)
\(138\) 0 0
\(139\) −2.59808 + 1.50000i −0.220366 + 0.127228i −0.606120 0.795373i \(-0.707275\pi\)
0.385754 + 0.922602i \(0.373941\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.19615 0.434524
\(144\) 0 0
\(145\) −15.0000 −1.24568
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.50000 0.866025i 0.122885 0.0709476i −0.437298 0.899317i \(-0.644064\pi\)
0.560182 + 0.828369i \(0.310731\pi\)
\(150\) 0 0
\(151\) 7.79423 + 4.50000i 0.634285 + 0.366205i 0.782410 0.622764i \(-0.213990\pi\)
−0.148124 + 0.988969i \(0.547324\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.59808 + 4.50000i −0.208683 + 0.361449i
\(156\) 0 0
\(157\) 0.500000 + 0.866025i 0.0399043 + 0.0691164i 0.885288 0.465044i \(-0.153961\pi\)
−0.845383 + 0.534160i \(0.820628\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.5885i 1.22854i
\(162\) 0 0
\(163\) 6.00000i 0.469956i 0.972001 + 0.234978i \(0.0755019\pi\)
−0.972001 + 0.234978i \(0.924498\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.79423 + 13.5000i 0.603136 + 1.04466i 0.992343 + 0.123511i \(0.0394155\pi\)
−0.389208 + 0.921150i \(0.627251\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.50000 0.866025i −0.114043 0.0658427i 0.441894 0.897067i \(-0.354307\pi\)
−0.555936 + 0.831225i \(0.687640\pi\)
\(174\) 0 0
\(175\) −5.19615 + 3.00000i −0.392792 + 0.226779i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.7846 −1.55351 −0.776757 0.629800i \(-0.783137\pi\)
−0.776757 + 0.629800i \(0.783137\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000 3.46410i 0.441129 0.254686i
\(186\) 0 0
\(187\) 15.5885 + 9.00000i 1.13994 + 0.658145i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.79423 + 13.5000i −0.563971 + 0.976826i 0.433174 + 0.901310i \(0.357394\pi\)
−0.997145 + 0.0755154i \(0.975940\pi\)
\(192\) 0 0
\(193\) 9.50000 + 16.4545i 0.683825 + 1.18442i 0.973805 + 0.227387i \(0.0730182\pi\)
−0.289980 + 0.957033i \(0.593649\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.92820i 0.493614i 0.969065 + 0.246807i \(0.0793814\pi\)
−0.969065 + 0.246807i \(0.920619\pi\)
\(198\) 0 0
\(199\) 12.0000i 0.850657i 0.905039 + 0.425329i \(0.139842\pi\)
−0.905039 + 0.425329i \(0.860158\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.9904 + 22.5000i 0.911746 + 1.57919i
\(204\) 0 0
\(205\) 4.50000 7.79423i 0.314294 0.544373i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −27.0000 15.5885i −1.86763 1.07828i
\(210\) 0 0
\(211\) 2.59808 1.50000i 0.178859 0.103264i −0.407898 0.913028i \(-0.633738\pi\)
0.586756 + 0.809763i \(0.300405\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.19615 −0.354375
\(216\) 0 0
\(217\) 9.00000 0.610960
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.00000 + 1.73205i −0.201802 + 0.116510i
\(222\) 0 0
\(223\) 12.9904 + 7.50000i 0.869900 + 0.502237i 0.867315 0.497760i \(-0.165844\pi\)
0.00258516 + 0.999997i \(0.499177\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.59808 + 4.50000i −0.172440 + 0.298675i −0.939272 0.343172i \(-0.888499\pi\)
0.766832 + 0.641848i \(0.221832\pi\)
\(228\) 0 0
\(229\) −9.50000 16.4545i −0.627778 1.08734i −0.987997 0.154475i \(-0.950631\pi\)
0.360219 0.932868i \(-0.382702\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.8564i 0.907763i 0.891062 + 0.453882i \(0.149961\pi\)
−0.891062 + 0.453882i \(0.850039\pi\)
\(234\) 0 0
\(235\) 9.00000i 0.587095i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.79423 13.5000i −0.504167 0.873242i −0.999988 0.00481804i \(-0.998466\pi\)
0.495822 0.868424i \(-0.334867\pi\)
\(240\) 0 0
\(241\) −3.50000 + 6.06218i −0.225455 + 0.390499i −0.956456 0.291877i \(-0.905720\pi\)
0.731001 + 0.682376i \(0.239053\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00000 1.73205i −0.191663 0.110657i
\(246\) 0 0
\(247\) 5.19615 3.00000i 0.330623 0.190885i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.7846 1.31191 0.655956 0.754799i \(-0.272265\pi\)
0.655956 + 0.754799i \(0.272265\pi\)
\(252\) 0 0
\(253\) −27.0000 −1.69748
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.5000 9.52628i 1.02924 0.594233i 0.112474 0.993655i \(-0.464122\pi\)
0.916767 + 0.399422i \(0.130789\pi\)
\(258\) 0 0
\(259\) −10.3923 6.00000i −0.645746 0.372822i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.9904 + 22.5000i −0.801021 + 1.38741i 0.117923 + 0.993023i \(0.462376\pi\)
−0.918945 + 0.394387i \(0.870957\pi\)
\(264\) 0 0
\(265\) 9.00000 + 15.5885i 0.552866 + 0.957591i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.46410i 0.211210i 0.994408 + 0.105605i \(0.0336779\pi\)
−0.994408 + 0.105605i \(0.966322\pi\)
\(270\) 0 0
\(271\) 18.0000i 1.09342i 0.837321 + 0.546711i \(0.184120\pi\)
−0.837321 + 0.546711i \(0.815880\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.19615 9.00000i −0.313340 0.542720i
\(276\) 0 0
\(277\) 8.50000 14.7224i 0.510716 0.884585i −0.489207 0.872167i \(-0.662714\pi\)
0.999923 0.0124177i \(-0.00395278\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.5000 6.06218i −0.626377 0.361639i 0.152970 0.988231i \(-0.451116\pi\)
−0.779348 + 0.626592i \(0.784449\pi\)
\(282\) 0 0
\(283\) 28.5788 16.5000i 1.69884 0.980823i 0.751968 0.659200i \(-0.229105\pi\)
0.946868 0.321624i \(-0.104229\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.5885 −0.920158
\(288\) 0 0
\(289\) 5.00000 0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.5000 9.52628i 0.963940 0.556531i 0.0665568 0.997783i \(-0.478799\pi\)
0.897384 + 0.441251i \(0.145465\pi\)
\(294\) 0 0
\(295\) 7.79423 + 4.50000i 0.453798 + 0.262000i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.59808 4.50000i 0.150251 0.260242i
\(300\) 0 0
\(301\) 4.50000 + 7.79423i 0.259376 + 0.449252i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.1244i 0.694239i
\(306\) 0 0
\(307\) 18.0000i 1.02731i −0.857996 0.513657i \(-0.828290\pi\)
0.857996 0.513657i \(-0.171710\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.59808 + 4.50000i 0.147323 + 0.255172i 0.930237 0.366958i \(-0.119601\pi\)
−0.782914 + 0.622130i \(0.786268\pi\)
\(312\) 0 0
\(313\) −5.50000 + 9.52628i −0.310878 + 0.538457i −0.978553 0.205996i \(-0.933957\pi\)
0.667674 + 0.744453i \(0.267290\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.5000 + 11.2583i 1.09523 + 0.632331i 0.934964 0.354743i \(-0.115432\pi\)
0.160265 + 0.987074i \(0.448765\pi\)
\(318\) 0 0
\(319\) −38.9711 + 22.5000i −2.18197 + 1.25976i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.7846 1.15649
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 13.5000 7.79423i 0.744279 0.429710i
\(330\) 0 0
\(331\) −2.59808 1.50000i −0.142803 0.0824475i 0.426896 0.904301i \(-0.359607\pi\)
−0.569699 + 0.821853i \(0.692940\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.79423 13.5000i 0.425844 0.737584i
\(336\) 0 0
\(337\) −15.5000 26.8468i −0.844339 1.46244i −0.886194 0.463314i \(-0.846660\pi\)
0.0418554 0.999124i \(-0.486673\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15.5885i 0.844162i
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.59808 + 4.50000i 0.139472 + 0.241573i 0.927297 0.374327i \(-0.122126\pi\)
−0.787825 + 0.615899i \(0.788793\pi\)
\(348\) 0 0
\(349\) −17.5000 + 30.3109i −0.936754 + 1.62250i −0.165277 + 0.986247i \(0.552852\pi\)
−0.771477 + 0.636257i \(0.780482\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −22.5000 12.9904i −1.19755 0.691408i −0.237545 0.971377i \(-0.576343\pi\)
−0.960009 + 0.279968i \(0.909676\pi\)
\(354\) 0 0
\(355\) −15.5885 + 9.00000i −0.827349 + 0.477670i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.7846 −1.09697 −0.548485 0.836160i \(-0.684795\pi\)
−0.548485 + 0.836160i \(0.684795\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 + 3.46410i −0.314054 + 0.181319i
\(366\) 0 0
\(367\) −23.3827 13.5000i −1.22057 0.704694i −0.255528 0.966802i \(-0.582249\pi\)
−0.965039 + 0.262108i \(0.915582\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.5885 27.0000i 0.809312 1.40177i
\(372\) 0 0
\(373\) −2.50000 4.33013i −0.129445 0.224205i 0.794017 0.607896i \(-0.207986\pi\)
−0.923462 + 0.383691i \(0.874653\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.66025i 0.446026i
\(378\) 0 0
\(379\) 24.0000i 1.23280i −0.787434 0.616399i \(-0.788591\pi\)
0.787434 0.616399i \(-0.211409\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.59808 4.50000i −0.132755 0.229939i 0.791982 0.610544i \(-0.209049\pi\)
−0.924738 + 0.380605i \(0.875716\pi\)
\(384\) 0 0
\(385\) 13.5000 23.3827i 0.688024 1.19169i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.5000 7.79423i −0.684477 0.395183i 0.117063 0.993125i \(-0.462652\pi\)
−0.801540 + 0.597941i \(0.795986\pi\)
\(390\) 0 0
\(391\) 15.5885 9.00000i 0.788342 0.455150i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 25.9808 1.30723
\(396\) 0 0
\(397\) 32.0000 1.60603 0.803017 0.595956i \(-0.203227\pi\)
0.803017 + 0.595956i \(0.203227\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.50000 4.33013i 0.374532 0.216236i −0.300904 0.953654i \(-0.597289\pi\)
0.675437 + 0.737418i \(0.263955\pi\)
\(402\) 0 0
\(403\) −2.59808 1.50000i −0.129419 0.0747203i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.3923 18.0000i 0.515127 0.892227i
\(408\) 0 0
\(409\) 8.50000 + 14.7224i 0.420298 + 0.727977i 0.995968 0.0897044i \(-0.0285922\pi\)
−0.575670 + 0.817682i \(0.695259\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 15.5885i 0.767058i
\(414\) 0 0
\(415\) 9.00000i 0.441793i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.1865 31.5000i −0.888470 1.53888i −0.841684 0.539971i \(-0.818435\pi\)
−0.0467865 0.998905i \(-0.514898\pi\)
\(420\) 0 0
\(421\) 5.50000 9.52628i 0.268054 0.464282i −0.700306 0.713843i \(-0.746953\pi\)
0.968359 + 0.249561i \(0.0802862\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.00000 + 3.46410i 0.291043 + 0.168034i
\(426\) 0 0
\(427\) 18.1865 10.5000i 0.880108 0.508131i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.7846 −1.00116 −0.500580 0.865690i \(-0.666880\pi\)
−0.500580 + 0.865690i \(0.666880\pi\)
\(432\) 0 0
\(433\) 32.0000 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −27.0000 + 15.5885i −1.29159 + 0.745697i
\(438\) 0 0
\(439\) −23.3827 13.5000i −1.11599 0.644320i −0.175619 0.984458i \(-0.556193\pi\)
−0.940375 + 0.340138i \(0.889526\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.59808 4.50000i 0.123438 0.213801i −0.797683 0.603077i \(-0.793941\pi\)
0.921121 + 0.389275i \(0.127275\pi\)
\(444\) 0 0
\(445\) −3.00000 5.19615i −0.142214 0.246321i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.1769i 1.47133i 0.677346 + 0.735665i \(0.263130\pi\)
−0.677346 + 0.735665i \(0.736870\pi\)
\(450\) 0 0
\(451\) 27.0000i 1.27138i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.59808 + 4.50000i 0.121800 + 0.210963i
\(456\) 0 0
\(457\) −12.5000 + 21.6506i −0.584725 + 1.01277i 0.410184 + 0.912003i \(0.365464\pi\)
−0.994910 + 0.100771i \(0.967869\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.50000 2.59808i −0.209586 0.121004i 0.391533 0.920164i \(-0.371945\pi\)
−0.601119 + 0.799160i \(0.705278\pi\)
\(462\) 0 0
\(463\) 2.59808 1.50000i 0.120743 0.0697109i −0.438412 0.898774i \(-0.644459\pi\)
0.559155 + 0.829063i \(0.311126\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −27.0000 −1.24674
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −13.5000 + 7.79423i −0.620731 + 0.358379i
\(474\) 0 0
\(475\) −10.3923 6.00000i −0.476832 0.275299i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.79423 13.5000i 0.356127 0.616831i −0.631183 0.775634i \(-0.717430\pi\)
0.987310 + 0.158803i \(0.0507636\pi\)
\(480\) 0 0
\(481\) 2.00000 + 3.46410i 0.0911922 + 0.157949i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.73205i 0.0786484i
\(486\) 0 0
\(487\) 30.0000i 1.35943i 0.733476 + 0.679715i \(0.237896\pi\)
−0.733476 + 0.679715i \(0.762104\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.79423 + 13.5000i 0.351749 + 0.609246i 0.986556 0.163424i \(-0.0522539\pi\)
−0.634807 + 0.772670i \(0.718921\pi\)
\(492\) 0 0
\(493\) 15.0000 25.9808i 0.675566 1.17011i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 27.0000 + 15.5885i 1.21112 + 0.699238i
\(498\) 0 0
\(499\) −23.3827 + 13.5000i −1.04675 + 0.604343i −0.921739 0.387812i \(-0.873231\pi\)
−0.125014 + 0.992155i \(0.539898\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 31.1769 1.39011 0.695055 0.718957i \(-0.255380\pi\)
0.695055 + 0.718957i \(0.255380\pi\)
\(504\) 0 0
\(505\) −9.00000 −0.400495
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.5000 7.79423i 0.598377 0.345473i −0.170026 0.985440i \(-0.554385\pi\)
0.768403 + 0.639966i \(0.221052\pi\)
\(510\) 0 0
\(511\) 10.3923 + 6.00000i 0.459728 + 0.265424i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.79423 + 13.5000i −0.343455 + 0.594881i
\(516\) 0 0
\(517\) 13.5000 + 23.3827i 0.593729 + 1.02837i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 41.5692i 1.82118i −0.413310 0.910590i \(-0.635627\pi\)
0.413310 0.910590i \(-0.364373\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.19615 9.00000i −0.226348 0.392046i
\(528\) 0 0
\(529\) −2.00000 + 3.46410i −0.0869565 + 0.150613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.50000 + 2.59808i 0.194917 + 0.112535i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.3923 −0.447628
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.00000 + 3.46410i −0.257012 + 0.148386i
\(546\) 0 0
\(547\) 7.79423 + 4.50000i 0.333257 + 0.192406i 0.657286 0.753641i \(-0.271704\pi\)
−0.324029 + 0.946047i \(0.605038\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −25.9808 + 45.0000i −1.10682 + 1.91706i
\(552\) 0 0
\(553\) −22.5000 38.9711i −0.956797 1.65722i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 45.0333i 1.90812i −0.299611 0.954062i \(-0.596857\pi\)
0.299611 0.954062i \(-0.403143\pi\)
\(558\) 0 0
\(559\) 3.00000i 0.126886i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.9904 + 22.5000i 0.547479 + 0.948262i 0.998446 + 0.0557214i \(0.0177458\pi\)
−0.450967 + 0.892541i \(0.648921\pi\)
\(564\) 0 0
\(565\) −10.5000 + 18.1865i −0.441738 + 0.765113i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.5000 + 9.52628i 0.691716 + 0.399362i 0.804255 0.594285i \(-0.202565\pi\)
−0.112539 + 0.993647i \(0.535898\pi\)
\(570\) 0 0
\(571\) 2.59808 1.50000i 0.108726 0.0627730i −0.444651 0.895704i \(-0.646672\pi\)
0.553377 + 0.832931i \(0.313339\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −10.3923 −0.433389
\(576\) 0 0
\(577\) −40.0000 −1.66522 −0.832611 0.553858i \(-0.813155\pi\)
−0.832611 + 0.553858i \(0.813155\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.5000 7.79423i 0.560074 0.323359i
\(582\) 0 0
\(583\) 46.7654 + 27.0000i 1.93682 + 1.11823i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.79423 + 13.5000i −0.321702 + 0.557205i −0.980839 0.194818i \(-0.937588\pi\)
0.659137 + 0.752023i \(0.270922\pi\)
\(588\) 0 0
\(589\) 9.00000 + 15.5885i 0.370839 + 0.642311i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.2487i 0.995775i 0.867242 + 0.497888i \(0.165891\pi\)
−0.867242 + 0.497888i \(0.834109\pi\)
\(594\) 0 0
\(595\) 18.0000i 0.737928i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.9904 22.5000i −0.530773 0.919325i −0.999355 0.0359054i \(-0.988569\pi\)
0.468583 0.883420i \(-0.344765\pi\)
\(600\) 0 0
\(601\) 3.50000 6.06218i 0.142768 0.247281i −0.785770 0.618519i \(-0.787733\pi\)
0.928538 + 0.371237i \(0.121066\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.0000 + 13.8564i 0.975739 + 0.563343i
\(606\) 0 0
\(607\) −2.59808 + 1.50000i −0.105453 + 0.0608831i −0.551799 0.833977i \(-0.686058\pi\)
0.446346 + 0.894860i \(0.352725\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.19615 −0.210214
\(612\) 0 0
\(613\) 20.0000 0.807792 0.403896 0.914805i \(-0.367656\pi\)
0.403896 + 0.914805i \(0.367656\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −28.5000 + 16.4545i −1.14737 + 0.662433i −0.948244 0.317542i \(-0.897143\pi\)
−0.199123 + 0.979975i \(0.563809\pi\)
\(618\) 0 0
\(619\) 7.79423 + 4.50000i 0.313276 + 0.180870i 0.648392 0.761307i \(-0.275442\pi\)
−0.335115 + 0.942177i \(0.608775\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.19615 + 9.00000i −0.208179 + 0.360577i
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.8564i 0.552491i
\(630\) 0 0
\(631\) 6.00000i 0.238856i −0.992843 0.119428i \(-0.961894\pi\)
0.992843 0.119428i \(-0.0381061\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.19615 + 9.00000i 0.206203 + 0.357154i
\(636\) 0 0
\(637\) 1.00000 1.73205i 0.0396214 0.0686264i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.5000 + 6.06218i 0.414725 + 0.239442i 0.692818 0.721113i \(-0.256369\pi\)
−0.278093 + 0.960554i \(0.589702\pi\)
\(642\) 0 0
\(643\) 23.3827 13.5000i 0.922123 0.532388i 0.0378113 0.999285i \(-0.487961\pi\)
0.884312 + 0.466897i \(0.154628\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.7846 0.817127 0.408564 0.912730i \(-0.366030\pi\)
0.408564 + 0.912730i \(0.366030\pi\)
\(648\) 0 0
\(649\) 27.0000 1.05984
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −31.5000 + 18.1865i −1.23269 + 0.711694i −0.967590 0.252527i \(-0.918738\pi\)
−0.265100 + 0.964221i \(0.585405\pi\)
\(654\) 0 0
\(655\) 7.79423 + 4.50000i 0.304546 + 0.175830i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.59808 + 4.50000i −0.101207 + 0.175295i −0.912182 0.409785i \(-0.865604\pi\)
0.810975 + 0.585080i \(0.198937\pi\)
\(660\) 0 0
\(661\) 0.500000 + 0.866025i 0.0194477 + 0.0336845i 0.875585 0.483063i \(-0.160476\pi\)
−0.856138 + 0.516748i \(0.827143\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 31.1769i 1.20899i
\(666\) 0 0
\(667\) 45.0000i 1.74241i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 18.1865 + 31.5000i 0.702083 + 1.21604i
\(672\) 0 0
\(673\) 3.50000 6.06218i 0.134915 0.233680i −0.790650 0.612268i \(-0.790257\pi\)
0.925565 + 0.378589i \(0.123591\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.5000 7.79423i −0.518847 0.299557i 0.217616 0.976035i \(-0.430172\pi\)
−0.736463 + 0.676478i \(0.763505\pi\)
\(678\) 0 0
\(679\) −2.59808 + 1.50000i −0.0997050 + 0.0575647i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −41.5692 −1.59060 −0.795301 0.606215i \(-0.792687\pi\)
−0.795301 + 0.606215i \(0.792687\pi\)
\(684\) 0 0
\(685\) −3.00000 −0.114624
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.00000 + 5.19615i −0.342873 + 0.197958i
\(690\) 0 0
\(691\) 12.9904 + 7.50000i 0.494177 + 0.285313i 0.726306 0.687372i \(-0.241236\pi\)
−0.232128 + 0.972685i \(0.574569\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.59808 4.50000i 0.0985506 0.170695i
\(696\) 0 0
\(697\) 9.00000 + 15.5885i 0.340899 + 0.590455i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.3205i 0.654187i −0.944992 0.327093i \(-0.893931\pi\)
0.944992 0.327093i \(-0.106069\pi\)
\(702\) 0 0
\(703\) 24.0000i 0.905177i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.79423 + 13.5000i 0.293132 + 0.507720i
\(708\) 0 0
\(709\) 14.5000 25.1147i 0.544559 0.943204i −0.454076 0.890963i \(-0.650030\pi\)
0.998635 0.0522406i \(-0.0166363\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.5000 + 7.79423i 0.505579 + 0.291896i
\(714\) 0 0
\(715\) −7.79423 + 4.50000i −0.291488 + 0.168290i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.7846 −0.775135 −0.387568 0.921841i \(-0.626685\pi\)
−0.387568 + 0.921841i \(0.626685\pi\)
\(720\) 0 0
\(721\) 27.0000 1.00553
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −15.0000 + 8.66025i −0.557086 + 0.321634i
\(726\) 0 0
\(727\) −23.3827 13.5000i −0.867216 0.500687i −0.000793791 1.00000i \(-0.500253\pi\)
−0.866422 + 0.499312i \(0.833586\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.19615 9.00000i 0.192187 0.332877i
\(732\) 0 0
\(733\) −6.50000 11.2583i −0.240083 0.415836i 0.720655 0.693294i \(-0.243841\pi\)
−0.960738 + 0.277458i \(0.910508\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 46.7654i 1.72262i
\(738\) 0 0
\(739\) 48.0000i 1.76571i 0.469647 + 0.882854i \(0.344381\pi\)
−0.469647 + 0.882854i \(0.655619\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.1865 + 31.5000i 0.667199 + 1.15562i 0.978684 + 0.205372i \(0.0658404\pi\)
−0.311485 + 0.950251i \(0.600826\pi\)
\(744\) 0 0
\(745\) −1.50000 + 2.59808i −0.0549557 + 0.0951861i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 18.1865 10.5000i 0.663636 0.383150i −0.130025 0.991511i \(-0.541506\pi\)
0.793661 + 0.608360i \(0.208172\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.5885 −0.567322
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.5000 + 6.06218i −0.380625 + 0.219754i −0.678090 0.734979i \(-0.737192\pi\)
0.297465 + 0.954733i \(0.403859\pi\)
\(762\) 0 0
\(763\) 10.3923 + 6.00000i 0.376227 + 0.217215i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.59808 + 4.50000i −0.0938111 + 0.162486i
\(768\) 0 0
\(769\) −17.5000 30.3109i −0.631066 1.09304i −0.987334 0.158655i \(-0.949284\pi\)
0.356268 0.934384i \(-0.384049\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.1051i 1.37055i 0.728286 + 0.685273i \(0.240317\pi\)
−0.728286 + 0.685273i \(0.759683\pi\)
\(774\) 0 0
\(775\) 6.00000i 0.215526i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −15.5885 27.0000i −0.558514 0.967375i
\(780\) 0 0
\(781\) −27.0000 + 46.7654i −0.966136 + 1.67340i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.50000 0.866025i −0.0535373 0.0309098i
\(786\) 0 0
\(787\) 7.79423 4.50000i 0.277834 0.160408i −0.354608 0.935015i \(-0.615386\pi\)
0.632443 + 0.774607i \(0.282052\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 36.3731 1.29328
\(792\) 0 0
\(793\) −7.00000 −0.248577
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.5000 + 9.52628i −0.584460 + 0.337438i −0.762904 0.646512i \(-0.776227\pi\)
0.178444 + 0.983950i \(0.442894\pi\)
\(798\) 0 0
\(799\) −15.5885 9.00000i −0.551480 0.318397i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.3923 + </