Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [432,2,Mod(47,432)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(432, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 0, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("432.47");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 432 = 2^{4} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 432.be (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.44953736732\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | 0 | −1.50778 | − | 0.852402i | 0 | −2.12767 | + | 0.375166i | 0 | 2.50142 | − | 2.98107i | 0 | 1.54682 | + | 2.57047i | 0 | ||||||||||
47.2 | 0 | −1.36628 | + | 1.06456i | 0 | 1.83017 | − | 0.322709i | 0 | 0.441545 | − | 0.526213i | 0 | 0.733433 | − | 2.90896i | 0 | ||||||||||
47.3 | 0 | −0.721706 | − | 1.57453i | 0 | 0.976679 | − | 0.172215i | 0 | −3.12803 | + | 3.72784i | 0 | −1.95828 | + | 2.27269i | 0 | ||||||||||
47.4 | 0 | 0.939092 | − | 1.45537i | 0 | −1.07086 | + | 0.188822i | 0 | 0.0466102 | − | 0.0555478i | 0 | −1.23621 | − | 2.73346i | 0 | ||||||||||
47.5 | 0 | 1.59623 | + | 0.672336i | 0 | 4.18690 | − | 0.738263i | 0 | −1.26944 | + | 1.51285i | 0 | 2.09593 | + | 2.14641i | 0 | ||||||||||
47.6 | 0 | 1.65284 | + | 0.517813i | 0 | −2.52917 | + | 0.445961i | 0 | 1.40789 | − | 1.67786i | 0 | 2.46374 | + | 1.71172i | 0 | ||||||||||
95.1 | 0 | −1.70424 | + | 0.309120i | 0 | −1.45395 | + | 1.73275i | 0 | 1.49276 | − | 4.10134i | 0 | 2.80889 | − | 1.05363i | 0 | ||||||||||
95.2 | 0 | −1.63553 | − | 0.570126i | 0 | 2.34697 | − | 2.79701i | 0 | −0.550750 | + | 1.51317i | 0 | 2.34991 | + | 1.86492i | 0 | ||||||||||
95.3 | 0 | −0.536320 | + | 1.64692i | 0 | −1.32159 | + | 1.57501i | 0 | −1.34711 | + | 3.70114i | 0 | −2.42472 | − | 1.76656i | 0 | ||||||||||
95.4 | 0 | −0.249148 | − | 1.71404i | 0 | −1.47612 | + | 1.75917i | 0 | −0.590654 | + | 1.62281i | 0 | −2.87585 | + | 0.854099i | 0 | ||||||||||
95.5 | 0 | 1.19574 | + | 1.25308i | 0 | 0.311559 | − | 0.371302i | 0 | 0.958275 | − | 2.63284i | 0 | −0.140409 | + | 2.99671i | 0 | ||||||||||
95.6 | 0 | 1.22376 | − | 1.22573i | 0 | 1.15344 | − | 1.37462i | 0 | 0.0374696 | − | 0.102947i | 0 | −0.00480931 | − | 3.00000i | 0 | ||||||||||
191.1 | 0 | −1.70424 | − | 0.309120i | 0 | −1.45395 | − | 1.73275i | 0 | 1.49276 | + | 4.10134i | 0 | 2.80889 | + | 1.05363i | 0 | ||||||||||
191.2 | 0 | −1.63553 | + | 0.570126i | 0 | 2.34697 | + | 2.79701i | 0 | −0.550750 | − | 1.51317i | 0 | 2.34991 | − | 1.86492i | 0 | ||||||||||
191.3 | 0 | −0.536320 | − | 1.64692i | 0 | −1.32159 | − | 1.57501i | 0 | −1.34711 | − | 3.70114i | 0 | −2.42472 | + | 1.76656i | 0 | ||||||||||
191.4 | 0 | −0.249148 | + | 1.71404i | 0 | −1.47612 | − | 1.75917i | 0 | −0.590654 | − | 1.62281i | 0 | −2.87585 | − | 0.854099i | 0 | ||||||||||
191.5 | 0 | 1.19574 | − | 1.25308i | 0 | 0.311559 | + | 0.371302i | 0 | 0.958275 | + | 2.63284i | 0 | −0.140409 | − | 2.99671i | 0 | ||||||||||
191.6 | 0 | 1.22376 | + | 1.22573i | 0 | 1.15344 | + | 1.37462i | 0 | 0.0374696 | + | 0.102947i | 0 | −0.00480931 | + | 3.00000i | 0 | ||||||||||
239.1 | 0 | −1.50778 | + | 0.852402i | 0 | −2.12767 | − | 0.375166i | 0 | 2.50142 | + | 2.98107i | 0 | 1.54682 | − | 2.57047i | 0 | ||||||||||
239.2 | 0 | −1.36628 | − | 1.06456i | 0 | 1.83017 | + | 0.322709i | 0 | 0.441545 | + | 0.526213i | 0 | 0.733433 | + | 2.90896i | 0 | ||||||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
108.l | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 432.2.be.c | yes | 36 |
4.b | odd | 2 | 1 | 432.2.be.b | ✓ | 36 | |
27.f | odd | 18 | 1 | 432.2.be.b | ✓ | 36 | |
108.l | even | 18 | 1 | inner | 432.2.be.c | yes | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
432.2.be.b | ✓ | 36 | 4.b | odd | 2 | 1 | |
432.2.be.b | ✓ | 36 | 27.f | odd | 18 | 1 | |
432.2.be.c | yes | 36 | 1.a | even | 1 | 1 | trivial |
432.2.be.c | yes | 36 | 108.l | even | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(432, [\chi])\):
\( T_{5}^{36} - 3 T_{5}^{35} + 9 T_{5}^{34} - 33 T_{5}^{33} - 108 T_{5}^{31} - 2493 T_{5}^{30} + 2277 T_{5}^{29} + 10935 T_{5}^{28} - 2952 T_{5}^{27} + 169857 T_{5}^{26} + 1473687 T_{5}^{25} + 3988251 T_{5}^{24} + \cdots + 1847624256 \)
|
\( T_{7}^{36} + 81 T_{7}^{32} - 351 T_{7}^{31} - 6399 T_{7}^{30} + 19521 T_{7}^{29} - 29322 T_{7}^{28} - 28431 T_{7}^{27} + 269487 T_{7}^{26} - 3623616 T_{7}^{25} + 36709524 T_{7}^{24} - 69289992 T_{7}^{23} + \cdots + 34012224 \)
|