Properties

Label 432.2.be.b.383.2
Level $432$
Weight $2$
Character 432.383
Analytic conductor $3.450$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.be (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 383.2
Character \(\chi\) \(=\) 432.383
Dual form 432.2.be.b.335.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.35972 + 1.07292i) q^{3} +(1.16481 + 3.20030i) q^{5} +(4.32834 - 0.763203i) q^{7} +(0.697681 - 2.91775i) q^{9} +O(q^{10})\) \(q+(-1.35972 + 1.07292i) q^{3} +(1.16481 + 3.20030i) q^{5} +(4.32834 - 0.763203i) q^{7} +(0.697681 - 2.91775i) q^{9} +(-3.88970 - 1.41573i) q^{11} +(4.63966 + 3.89314i) q^{13} +(-5.01749 - 3.10176i) q^{15} +(0.945866 + 0.546096i) q^{17} +(-2.45107 + 1.41513i) q^{19} +(-5.06647 + 5.68171i) q^{21} +(-0.327067 + 1.85489i) q^{23} +(-5.05492 + 4.24158i) q^{25} +(2.18186 + 4.71588i) q^{27} +(-3.45728 - 4.12023i) q^{29} +(1.52041 + 0.268090i) q^{31} +(6.80787 - 2.24833i) q^{33} +(7.48419 + 12.9630i) q^{35} +(-2.48926 + 4.31152i) q^{37} +(-10.4857 - 0.315590i) q^{39} +(-3.29698 + 3.92918i) q^{41} +(1.43112 - 3.93198i) q^{43} +(10.1503 - 1.16584i) q^{45} +(1.51654 + 8.60072i) q^{47} +(11.5742 - 4.21266i) q^{49} +(-1.87203 + 0.272302i) q^{51} -12.1741i q^{53} -14.0973i q^{55} +(1.81445 - 4.55398i) q^{57} +(3.09392 - 1.12609i) q^{59} +(-0.463630 - 2.62938i) q^{61} +(0.792966 - 13.1615i) q^{63} +(-7.05488 + 19.3831i) q^{65} +(2.32819 - 2.77463i) q^{67} +(-1.54543 - 2.87305i) q^{69} +(-0.842160 + 1.45866i) q^{71} +(-5.58205 - 9.66839i) q^{73} +(2.32240 - 11.1909i) q^{75} +(-17.9164 - 3.15915i) q^{77} +(-6.26169 - 7.46239i) q^{79} +(-8.02648 - 4.07131i) q^{81} +(-0.240134 + 0.201496i) q^{83} +(-0.645914 + 3.66316i) q^{85} +(9.12161 + 1.89297i) q^{87} +(6.60573 - 3.81382i) q^{89} +(23.0533 + 13.3098i) q^{91} +(-2.35498 + 1.26676i) q^{93} +(-7.38387 - 6.19580i) q^{95} +(0.903887 + 0.328988i) q^{97} +(-6.84452 + 10.3614i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 3 q^{5} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 3 q^{5} + 6 q^{9} - 18 q^{11} + 9 q^{15} + 18 q^{21} - 9 q^{25} + 30 q^{29} + 27 q^{31} + 27 q^{33} + 27 q^{35} - 45 q^{39} + 18 q^{41} + 27 q^{45} + 45 q^{47} - 63 q^{51} - 9 q^{57} + 54 q^{59} - 63 q^{63} - 57 q^{65} - 63 q^{69} + 36 q^{71} + 9 q^{73} - 45 q^{75} - 81 q^{77} - 54 q^{81} - 27 q^{83} - 36 q^{85} + 45 q^{87} - 63 q^{89} + 27 q^{91} - 63 q^{93} - 72 q^{95} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.35972 + 1.07292i −0.785035 + 0.619451i
\(4\) 0 0
\(5\) 1.16481 + 3.20030i 0.520921 + 1.43122i 0.869497 + 0.493938i \(0.164443\pi\)
−0.348576 + 0.937281i \(0.613335\pi\)
\(6\) 0 0
\(7\) 4.32834 0.763203i 1.63596 0.288464i 0.721279 0.692645i \(-0.243555\pi\)
0.914679 + 0.404181i \(0.132443\pi\)
\(8\) 0 0
\(9\) 0.697681 2.91775i 0.232560 0.972582i
\(10\) 0 0
\(11\) −3.88970 1.41573i −1.17279 0.426860i −0.319138 0.947708i \(-0.603393\pi\)
−0.853649 + 0.520849i \(0.825616\pi\)
\(12\) 0 0
\(13\) 4.63966 + 3.89314i 1.28681 + 1.07976i 0.992267 + 0.124125i \(0.0396124\pi\)
0.294545 + 0.955638i \(0.404832\pi\)
\(14\) 0 0
\(15\) −5.01749 3.10176i −1.29551 0.800872i
\(16\) 0 0
\(17\) 0.945866 + 0.546096i 0.229406 + 0.132448i 0.610298 0.792172i \(-0.291050\pi\)
−0.380892 + 0.924620i \(0.624383\pi\)
\(18\) 0 0
\(19\) −2.45107 + 1.41513i −0.562314 + 0.324652i −0.754074 0.656790i \(-0.771914\pi\)
0.191760 + 0.981442i \(0.438581\pi\)
\(20\) 0 0
\(21\) −5.06647 + 5.68171i −1.10560 + 1.23985i
\(22\) 0 0
\(23\) −0.327067 + 1.85489i −0.0681982 + 0.386771i 0.931535 + 0.363653i \(0.118471\pi\)
−0.999733 + 0.0231182i \(0.992641\pi\)
\(24\) 0 0
\(25\) −5.05492 + 4.24158i −1.01098 + 0.848316i
\(26\) 0 0
\(27\) 2.18186 + 4.71588i 0.419899 + 0.907571i
\(28\) 0 0
\(29\) −3.45728 4.12023i −0.642001 0.765107i 0.342684 0.939451i \(-0.388664\pi\)
−0.984685 + 0.174344i \(0.944220\pi\)
\(30\) 0 0
\(31\) 1.52041 + 0.268090i 0.273074 + 0.0481504i 0.308508 0.951222i \(-0.400170\pi\)
−0.0354340 + 0.999372i \(0.511281\pi\)
\(32\) 0 0
\(33\) 6.80787 2.24833i 1.18510 0.391385i
\(34\) 0 0
\(35\) 7.48419 + 12.9630i 1.26506 + 2.19115i
\(36\) 0 0
\(37\) −2.48926 + 4.31152i −0.409232 + 0.708810i −0.994804 0.101810i \(-0.967537\pi\)
0.585572 + 0.810620i \(0.300870\pi\)
\(38\) 0 0
\(39\) −10.4857 0.315590i −1.67905 0.0505348i
\(40\) 0 0
\(41\) −3.29698 + 3.92918i −0.514901 + 0.613635i −0.959367 0.282160i \(-0.908949\pi\)
0.444466 + 0.895796i \(0.353393\pi\)
\(42\) 0 0
\(43\) 1.43112 3.93198i 0.218244 0.599622i −0.781459 0.623956i \(-0.785524\pi\)
0.999704 + 0.0243344i \(0.00774665\pi\)
\(44\) 0 0
\(45\) 10.1503 1.16584i 1.51312 0.173794i
\(46\) 0 0
\(47\) 1.51654 + 8.60072i 0.221210 + 1.25454i 0.869799 + 0.493406i \(0.164248\pi\)
−0.648589 + 0.761138i \(0.724641\pi\)
\(48\) 0 0
\(49\) 11.5742 4.21266i 1.65345 0.601808i
\(50\) 0 0
\(51\) −1.87203 + 0.272302i −0.262137 + 0.0381298i
\(52\) 0 0
\(53\) 12.1741i 1.67224i −0.548548 0.836119i \(-0.684819\pi\)
0.548548 0.836119i \(-0.315181\pi\)
\(54\) 0 0
\(55\) 14.0973i 1.90088i
\(56\) 0 0
\(57\) 1.81445 4.55398i 0.240330 0.603189i
\(58\) 0 0
\(59\) 3.09392 1.12609i 0.402793 0.146605i −0.132676 0.991159i \(-0.542357\pi\)
0.535469 + 0.844555i \(0.320135\pi\)
\(60\) 0 0
\(61\) −0.463630 2.62938i −0.0593618 0.336657i 0.940634 0.339421i \(-0.110231\pi\)
−0.999996 + 0.00276409i \(0.999120\pi\)
\(62\) 0 0
\(63\) 0.792966 13.1615i 0.0999043 1.65819i
\(64\) 0 0
\(65\) −7.05488 + 19.3831i −0.875050 + 2.40418i
\(66\) 0 0
\(67\) 2.32819 2.77463i 0.284434 0.338975i −0.604843 0.796345i \(-0.706764\pi\)
0.889277 + 0.457370i \(0.151208\pi\)
\(68\) 0 0
\(69\) −1.54543 2.87305i −0.186048 0.345874i
\(70\) 0 0
\(71\) −0.842160 + 1.45866i −0.0999460 + 0.173112i −0.911662 0.410941i \(-0.865200\pi\)
0.811716 + 0.584052i \(0.198534\pi\)
\(72\) 0 0
\(73\) −5.58205 9.66839i −0.653329 1.13160i −0.982310 0.187262i \(-0.940039\pi\)
0.328981 0.944337i \(-0.393295\pi\)
\(74\) 0 0
\(75\) 2.32240 11.1909i 0.268167 1.29221i
\(76\) 0 0
\(77\) −17.9164 3.15915i −2.04176 0.360018i
\(78\) 0 0
\(79\) −6.26169 7.46239i −0.704495 0.839584i 0.288532 0.957470i \(-0.406833\pi\)
−0.993027 + 0.117886i \(0.962388\pi\)
\(80\) 0 0
\(81\) −8.02648 4.07131i −0.891832 0.452368i
\(82\) 0 0
\(83\) −0.240134 + 0.201496i −0.0263581 + 0.0221171i −0.655872 0.754873i \(-0.727699\pi\)
0.629513 + 0.776990i \(0.283254\pi\)
\(84\) 0 0
\(85\) −0.645914 + 3.66316i −0.0700592 + 0.397325i
\(86\) 0 0
\(87\) 9.12161 + 1.89297i 0.977940 + 0.202947i
\(88\) 0 0
\(89\) 6.60573 3.81382i 0.700206 0.404264i −0.107218 0.994236i \(-0.534194\pi\)
0.807424 + 0.589971i \(0.200861\pi\)
\(90\) 0 0
\(91\) 23.0533 + 13.3098i 2.41664 + 1.39525i
\(92\) 0 0
\(93\) −2.35498 + 1.26676i −0.244200 + 0.131357i
\(94\) 0 0
\(95\) −7.38387 6.19580i −0.757569 0.635676i
\(96\) 0 0
\(97\) 0.903887 + 0.328988i 0.0917758 + 0.0334037i 0.387500 0.921870i \(-0.373339\pi\)
−0.295724 + 0.955273i \(0.595561\pi\)
\(98\) 0 0
\(99\) −6.84452 + 10.3614i −0.687900 + 1.04136i
\(100\) 0 0
\(101\) 13.8908 2.44933i 1.38219 0.243717i 0.567384 0.823453i \(-0.307955\pi\)
0.814804 + 0.579736i \(0.196844\pi\)
\(102\) 0 0
\(103\) 2.88921 + 7.93804i 0.284682 + 0.782158i 0.996788 + 0.0800861i \(0.0255195\pi\)
−0.712106 + 0.702072i \(0.752258\pi\)
\(104\) 0 0
\(105\) −24.0847 9.59611i −2.35042 0.936485i
\(106\) 0 0
\(107\) 5.48494 0.530249 0.265125 0.964214i \(-0.414587\pi\)
0.265125 + 0.964214i \(0.414587\pi\)
\(108\) 0 0
\(109\) 7.87082 0.753888 0.376944 0.926236i \(-0.376975\pi\)
0.376944 + 0.926236i \(0.376975\pi\)
\(110\) 0 0
\(111\) −1.24123 8.53325i −0.117812 0.809940i
\(112\) 0 0
\(113\) −3.88780 10.6816i −0.365733 1.00484i −0.976966 0.213393i \(-0.931548\pi\)
0.611233 0.791451i \(-0.290674\pi\)
\(114\) 0 0
\(115\) −6.31718 + 1.11389i −0.589080 + 0.103871i
\(116\) 0 0
\(117\) 14.5962 10.8212i 1.34942 1.00042i
\(118\) 0 0
\(119\) 4.51081 + 1.64180i 0.413505 + 0.150504i
\(120\) 0 0
\(121\) 4.69894 + 3.94288i 0.427176 + 0.358444i
\(122\) 0 0
\(123\) 0.267263 8.87999i 0.0240983 0.800682i
\(124\) 0 0
\(125\) −4.71532 2.72239i −0.421751 0.243498i
\(126\) 0 0
\(127\) 9.65557 5.57465i 0.856793 0.494670i −0.00614387 0.999981i \(-0.501956\pi\)
0.862937 + 0.505311i \(0.168622\pi\)
\(128\) 0 0
\(129\) 2.27278 + 6.88188i 0.200107 + 0.605916i
\(130\) 0 0
\(131\) −1.91696 + 10.8716i −0.167486 + 0.949858i 0.778979 + 0.627050i \(0.215738\pi\)
−0.946464 + 0.322808i \(0.895373\pi\)
\(132\) 0 0
\(133\) −9.52903 + 7.99580i −0.826272 + 0.693324i
\(134\) 0 0
\(135\) −12.5508 + 12.4757i −1.08020 + 1.07374i
\(136\) 0 0
\(137\) 7.49116 + 8.92762i 0.640013 + 0.762738i 0.984372 0.176100i \(-0.0563483\pi\)
−0.344359 + 0.938838i \(0.611904\pi\)
\(138\) 0 0
\(139\) 1.75412 + 0.309298i 0.148782 + 0.0262343i 0.247543 0.968877i \(-0.420377\pi\)
−0.0987610 + 0.995111i \(0.531488\pi\)
\(140\) 0 0
\(141\) −11.2900 10.0675i −0.950787 0.847832i
\(142\) 0 0
\(143\) −12.5352 21.7117i −1.04825 1.81562i
\(144\) 0 0
\(145\) 9.15888 15.8636i 0.760604 1.31740i
\(146\) 0 0
\(147\) −11.2178 + 18.1462i −0.925229 + 1.49668i
\(148\) 0 0
\(149\) 4.09859 4.88451i 0.335770 0.400155i −0.571570 0.820553i \(-0.693665\pi\)
0.907339 + 0.420399i \(0.138110\pi\)
\(150\) 0 0
\(151\) 2.40548 6.60901i 0.195755 0.537834i −0.802514 0.596633i \(-0.796505\pi\)
0.998270 + 0.0587991i \(0.0187271\pi\)
\(152\) 0 0
\(153\) 2.25328 2.37880i 0.182167 0.192314i
\(154\) 0 0
\(155\) 0.913032 + 5.17806i 0.0733365 + 0.415912i
\(156\) 0 0
\(157\) −18.7388 + 6.82035i −1.49552 + 0.544323i −0.954895 0.296944i \(-0.904033\pi\)
−0.540620 + 0.841267i \(0.681810\pi\)
\(158\) 0 0
\(159\) 13.0618 + 16.5533i 1.03587 + 1.31277i
\(160\) 0 0
\(161\) 8.27820i 0.652414i
\(162\) 0 0
\(163\) 8.53829i 0.668770i −0.942437 0.334385i \(-0.891471\pi\)
0.942437 0.334385i \(-0.108529\pi\)
\(164\) 0 0
\(165\) 15.1253 + 19.1683i 1.17750 + 1.49225i
\(166\) 0 0
\(167\) 21.2266 7.72587i 1.64257 0.597846i 0.655082 0.755558i \(-0.272634\pi\)
0.987485 + 0.157712i \(0.0504118\pi\)
\(168\) 0 0
\(169\) 4.11251 + 23.3232i 0.316347 + 1.79409i
\(170\) 0 0
\(171\) 2.41891 + 8.13890i 0.184979 + 0.622397i
\(172\) 0 0
\(173\) 1.10479 3.03538i 0.0839954 0.230776i −0.890584 0.454820i \(-0.849704\pi\)
0.974579 + 0.224044i \(0.0719260\pi\)
\(174\) 0 0
\(175\) −18.6422 + 22.2169i −1.40922 + 1.67944i
\(176\) 0 0
\(177\) −2.99865 + 4.85070i −0.225392 + 0.364601i
\(178\) 0 0
\(179\) 1.89356 3.27975i 0.141531 0.245140i −0.786542 0.617537i \(-0.788131\pi\)
0.928074 + 0.372397i \(0.121464\pi\)
\(180\) 0 0
\(181\) −11.0399 19.1216i −0.820586 1.42130i −0.905247 0.424886i \(-0.860314\pi\)
0.0846611 0.996410i \(-0.473019\pi\)
\(182\) 0 0
\(183\) 3.45152 + 3.07778i 0.255144 + 0.227516i
\(184\) 0 0
\(185\) −16.6977 2.94426i −1.22764 0.216466i
\(186\) 0 0
\(187\) −2.90600 3.46324i −0.212508 0.253257i
\(188\) 0 0
\(189\) 13.0430 + 18.7467i 0.948739 + 1.36362i
\(190\) 0 0
\(191\) −9.73071 + 8.16503i −0.704089 + 0.590801i −0.922934 0.384959i \(-0.874216\pi\)
0.218844 + 0.975760i \(0.429771\pi\)
\(192\) 0 0
\(193\) −1.17091 + 6.64057i −0.0842841 + 0.477999i 0.913225 + 0.407456i \(0.133584\pi\)
−0.997509 + 0.0705424i \(0.977527\pi\)
\(194\) 0 0
\(195\) −11.2039 33.9250i −0.802327 2.42942i
\(196\) 0 0
\(197\) 10.9892 6.34463i 0.782950 0.452036i −0.0545249 0.998512i \(-0.517364\pi\)
0.837475 + 0.546476i \(0.184031\pi\)
\(198\) 0 0
\(199\) 2.36052 + 1.36285i 0.167333 + 0.0966097i 0.581328 0.813670i \(-0.302533\pi\)
−0.413995 + 0.910279i \(0.635867\pi\)
\(200\) 0 0
\(201\) −0.188731 + 6.27069i −0.0133120 + 0.442301i
\(202\) 0 0
\(203\) −18.1088 15.1951i −1.27099 1.06649i
\(204\) 0 0
\(205\) −16.4149 5.97455i −1.14647 0.417281i
\(206\) 0 0
\(207\) 5.18391 + 2.24842i 0.360306 + 0.156276i
\(208\) 0 0
\(209\) 11.5374 2.03435i 0.798055 0.140719i
\(210\) 0 0
\(211\) −3.06103 8.41010i −0.210730 0.578975i 0.788626 0.614874i \(-0.210793\pi\)
−0.999355 + 0.0358983i \(0.988571\pi\)
\(212\) 0 0
\(213\) −0.419929 2.88695i −0.0287731 0.197810i
\(214\) 0 0
\(215\) 14.2505 0.971878
\(216\) 0 0
\(217\) 6.78547 0.460628
\(218\) 0 0
\(219\) 17.9634 + 7.15721i 1.21386 + 0.483639i
\(220\) 0 0
\(221\) 2.26247 + 6.21609i 0.152190 + 0.418139i
\(222\) 0 0
\(223\) −20.0713 + 3.53911i −1.34407 + 0.236996i −0.798969 0.601372i \(-0.794621\pi\)
−0.545104 + 0.838368i \(0.683510\pi\)
\(224\) 0 0
\(225\) 8.84914 + 17.7082i 0.589943 + 1.18055i
\(226\) 0 0
\(227\) −26.8955 9.78916i −1.78512 0.649729i −0.999520 0.0309904i \(-0.990134\pi\)
−0.785597 0.618739i \(-0.787644\pi\)
\(228\) 0 0
\(229\) 7.21555 + 6.05457i 0.476817 + 0.400097i 0.849274 0.527953i \(-0.177040\pi\)
−0.372457 + 0.928050i \(0.621485\pi\)
\(230\) 0 0
\(231\) 27.7508 14.9273i 1.82587 0.982147i
\(232\) 0 0
\(233\) 5.57469 + 3.21855i 0.365210 + 0.210854i 0.671364 0.741128i \(-0.265709\pi\)
−0.306154 + 0.951982i \(0.599042\pi\)
\(234\) 0 0
\(235\) −25.7584 + 14.8716i −1.68029 + 0.970118i
\(236\) 0 0
\(237\) 16.5207 + 3.42847i 1.07313 + 0.222703i
\(238\) 0 0
\(239\) 0.774137 4.39035i 0.0500748 0.283988i −0.949480 0.313828i \(-0.898389\pi\)
0.999555 + 0.0298396i \(0.00949966\pi\)
\(240\) 0 0
\(241\) 8.43801 7.08033i 0.543540 0.456084i −0.329207 0.944258i \(-0.606781\pi\)
0.872746 + 0.488174i \(0.162337\pi\)
\(242\) 0 0
\(243\) 15.2820 3.07594i 0.980339 0.197322i
\(244\) 0 0
\(245\) 26.9636 + 32.1339i 1.72264 + 2.05296i
\(246\) 0 0
\(247\) −16.8814 2.97665i −1.07414 0.189400i
\(248\) 0 0
\(249\) 0.110325 0.531623i 0.00699159 0.0336902i
\(250\) 0 0
\(251\) 9.58454 + 16.6009i 0.604971 + 1.04784i 0.992056 + 0.125796i \(0.0401485\pi\)
−0.387085 + 0.922044i \(0.626518\pi\)
\(252\) 0 0
\(253\) 3.89822 6.75191i 0.245079 0.424489i
\(254\) 0 0
\(255\) −3.05202 5.67389i −0.191125 0.355312i
\(256\) 0 0
\(257\) −1.69182 + 2.01624i −0.105533 + 0.125769i −0.816226 0.577733i \(-0.803937\pi\)
0.710692 + 0.703503i \(0.248382\pi\)
\(258\) 0 0
\(259\) −7.48379 + 20.5615i −0.465020 + 1.27763i
\(260\) 0 0
\(261\) −14.4339 + 7.21286i −0.893433 + 0.446465i
\(262\) 0 0
\(263\) −1.32969 7.54107i −0.0819924 0.465002i −0.997965 0.0637616i \(-0.979690\pi\)
0.915973 0.401241i \(-0.131421\pi\)
\(264\) 0 0
\(265\) 38.9607 14.1805i 2.39334 0.871104i
\(266\) 0 0
\(267\) −4.89002 + 12.2732i −0.299264 + 0.751105i
\(268\) 0 0
\(269\) 7.03704i 0.429056i −0.976718 0.214528i \(-0.931179\pi\)
0.976718 0.214528i \(-0.0688213\pi\)
\(270\) 0 0
\(271\) 24.1189i 1.46512i 0.680704 + 0.732559i \(0.261674\pi\)
−0.680704 + 0.732559i \(0.738326\pi\)
\(272\) 0 0
\(273\) −45.6264 + 6.63672i −2.76144 + 0.401673i
\(274\) 0 0
\(275\) 25.6670 9.34204i 1.54778 0.563346i
\(276\) 0 0
\(277\) 3.42494 + 19.4238i 0.205785 + 1.16706i 0.896200 + 0.443650i \(0.146317\pi\)
−0.690416 + 0.723413i \(0.742572\pi\)
\(278\) 0 0
\(279\) 1.84298 4.24914i 0.110336 0.254389i
\(280\) 0 0
\(281\) 2.28394 6.27507i 0.136248 0.374339i −0.852739 0.522337i \(-0.825060\pi\)
0.988988 + 0.147997i \(0.0472827\pi\)
\(282\) 0 0
\(283\) 10.6684 12.7141i 0.634172 0.755777i −0.349265 0.937024i \(-0.613569\pi\)
0.983438 + 0.181247i \(0.0580133\pi\)
\(284\) 0 0
\(285\) 16.6876 + 0.502251i 0.988489 + 0.0297508i
\(286\) 0 0
\(287\) −11.2717 + 19.5231i −0.665345 + 1.15241i
\(288\) 0 0
\(289\) −7.90356 13.6894i −0.464915 0.805257i
\(290\) 0 0
\(291\) −1.58201 + 0.522468i −0.0927392 + 0.0306276i
\(292\) 0 0
\(293\) −12.2915 2.16732i −0.718075 0.126616i −0.197341 0.980335i \(-0.563231\pi\)
−0.520734 + 0.853719i \(0.674342\pi\)
\(294\) 0 0
\(295\) 7.20768 + 8.58978i 0.419647 + 0.500116i
\(296\) 0 0
\(297\) −1.81035 21.4323i −0.105047 1.24363i
\(298\) 0 0
\(299\) −8.73882 + 7.33274i −0.505379 + 0.424063i
\(300\) 0 0
\(301\) 3.19349 18.1112i 0.184070 1.04391i
\(302\) 0 0
\(303\) −16.2597 + 18.2342i −0.934096 + 1.04753i
\(304\) 0 0
\(305\) 7.87476 4.54650i 0.450908 0.260332i
\(306\) 0 0
\(307\) −23.3290 13.4690i −1.33145 0.768715i −0.345931 0.938260i \(-0.612437\pi\)
−0.985523 + 0.169545i \(0.945770\pi\)
\(308\) 0 0
\(309\) −12.4454 7.69362i −0.707995 0.437675i
\(310\) 0 0
\(311\) −17.6156 14.7812i −0.998888 0.838167i −0.0120581 0.999927i \(-0.503838\pi\)
−0.986830 + 0.161761i \(0.948283\pi\)
\(312\) 0 0
\(313\) −9.95877 3.62469i −0.562903 0.204880i 0.0448672 0.998993i \(-0.485714\pi\)
−0.607770 + 0.794113i \(0.707936\pi\)
\(314\) 0 0
\(315\) 43.0443 12.7929i 2.42527 0.720800i
\(316\) 0 0
\(317\) −34.2177 + 6.03350i −1.92186 + 0.338875i −0.998936 0.0461189i \(-0.985315\pi\)
−0.922919 + 0.384994i \(0.874204\pi\)
\(318\) 0 0
\(319\) 7.61463 + 20.9210i 0.426337 + 1.17135i
\(320\) 0 0
\(321\) −7.45799 + 5.88491i −0.416264 + 0.328463i
\(322\) 0 0
\(323\) −3.09118 −0.171998
\(324\) 0 0
\(325\) −39.9662 −2.21693
\(326\) 0 0
\(327\) −10.7021 + 8.44477i −0.591828 + 0.466997i
\(328\) 0 0
\(329\) 13.1282 + 36.0694i 0.723780 + 1.98857i
\(330\) 0 0
\(331\) 5.68194 1.00188i 0.312308 0.0550682i −0.0152976 0.999883i \(-0.504870\pi\)
0.327605 + 0.944815i \(0.393758\pi\)
\(332\) 0 0
\(333\) 10.8432 + 10.2711i 0.594205 + 0.562852i
\(334\) 0 0
\(335\) 11.5916 + 4.21899i 0.633316 + 0.230508i
\(336\) 0 0
\(337\) −5.65269 4.74317i −0.307922 0.258377i 0.475711 0.879602i \(-0.342191\pi\)
−0.783632 + 0.621225i \(0.786635\pi\)
\(338\) 0 0
\(339\) 16.7469 + 10.3527i 0.909565 + 0.562284i
\(340\) 0 0
\(341\) −5.53440 3.19529i −0.299705 0.173035i
\(342\) 0 0
\(343\) 20.2379 11.6844i 1.09275 0.630897i
\(344\) 0 0
\(345\) 7.39448 8.29241i 0.398105 0.446448i
\(346\) 0 0
\(347\) 4.01371 22.7629i 0.215467 1.22198i −0.664626 0.747176i \(-0.731409\pi\)
0.880094 0.474800i \(-0.157480\pi\)
\(348\) 0 0
\(349\) −21.3840 + 17.9433i −1.14466 + 0.960482i −0.999581 0.0289385i \(-0.990787\pi\)
−0.145077 + 0.989420i \(0.546343\pi\)
\(350\) 0 0
\(351\) −8.23647 + 30.3744i −0.439630 + 1.62126i
\(352\) 0 0
\(353\) −4.12725 4.91866i −0.219671 0.261794i 0.644943 0.764231i \(-0.276881\pi\)
−0.864614 + 0.502437i \(0.832437\pi\)
\(354\) 0 0
\(355\) −5.64913 0.996094i −0.299825 0.0528672i
\(356\) 0 0
\(357\) −7.89496 + 2.60735i −0.417846 + 0.137996i
\(358\) 0 0
\(359\) −1.88368 3.26264i −0.0994170 0.172195i 0.812026 0.583621i \(-0.198364\pi\)
−0.911443 + 0.411425i \(0.865031\pi\)
\(360\) 0 0
\(361\) −5.49484 + 9.51734i −0.289202 + 0.500913i
\(362\) 0 0
\(363\) −10.6196 0.319622i −0.557387 0.0167758i
\(364\) 0 0
\(365\) 24.4397 29.1261i 1.27923 1.52453i
\(366\) 0 0
\(367\) 6.60798 18.1553i 0.344934 0.947697i −0.639007 0.769201i \(-0.720654\pi\)
0.983941 0.178496i \(-0.0571233\pi\)
\(368\) 0 0
\(369\) 9.16412 + 12.3611i 0.477065 + 0.643491i
\(370\) 0 0
\(371\) −9.29129 52.6935i −0.482380 2.73571i
\(372\) 0 0
\(373\) −0.646074 + 0.235152i −0.0334524 + 0.0121757i −0.358692 0.933456i \(-0.616777\pi\)
0.325240 + 0.945632i \(0.394555\pi\)
\(374\) 0 0
\(375\) 9.33242 1.35747i 0.481924 0.0700996i
\(376\) 0 0
\(377\) 32.5761i 1.67776i
\(378\) 0 0
\(379\) 17.2965i 0.888463i 0.895912 + 0.444232i \(0.146523\pi\)
−0.895912 + 0.444232i \(0.853477\pi\)
\(380\) 0 0
\(381\) −7.14772 + 17.9396i −0.366189 + 0.919075i
\(382\) 0 0
\(383\) −3.32586 + 1.21051i −0.169944 + 0.0618544i −0.425591 0.904916i \(-0.639934\pi\)
0.255647 + 0.966770i \(0.417711\pi\)
\(384\) 0 0
\(385\) −10.7591 61.0177i −0.548333 3.10975i
\(386\) 0 0
\(387\) −10.4741 6.91892i −0.532426 0.351709i
\(388\) 0 0
\(389\) 11.5224 31.6576i 0.584210 1.60510i −0.196703 0.980463i \(-0.563024\pi\)
0.780913 0.624640i \(-0.214754\pi\)
\(390\) 0 0
\(391\) −1.32231 + 1.57587i −0.0668720 + 0.0796950i
\(392\) 0 0
\(393\) −9.05786 16.8391i −0.456909 0.849421i
\(394\) 0 0
\(395\) 16.5882 28.7316i 0.834642 1.44564i
\(396\) 0 0
\(397\) 14.8687 + 25.7534i 0.746239 + 1.29252i 0.949614 + 0.313423i \(0.101476\pi\)
−0.203374 + 0.979101i \(0.565191\pi\)
\(398\) 0 0
\(399\) 4.37795 21.0960i 0.219172 1.05612i
\(400\) 0 0
\(401\) 8.62018 + 1.51997i 0.430471 + 0.0759037i 0.384686 0.923048i \(-0.374310\pi\)
0.0457855 + 0.998951i \(0.485421\pi\)
\(402\) 0 0
\(403\) 6.01050 + 7.16303i 0.299404 + 0.356816i
\(404\) 0 0
\(405\) 3.68006 30.4295i 0.182863 1.51205i
\(406\) 0 0
\(407\) 15.7864 13.2464i 0.782504 0.656599i
\(408\) 0 0
\(409\) −3.71415 + 21.0640i −0.183653 + 1.04155i 0.744021 + 0.668157i \(0.232916\pi\)
−0.927674 + 0.373392i \(0.878195\pi\)
\(410\) 0 0
\(411\) −19.7645 4.10164i −0.974911 0.202319i
\(412\) 0 0
\(413\) 12.5321 7.23540i 0.616663 0.356031i
\(414\) 0 0
\(415\) −0.924560 0.533795i −0.0453849 0.0262030i
\(416\) 0 0
\(417\) −2.71696 + 1.46147i −0.133050 + 0.0715684i
\(418\) 0 0
\(419\) −28.0877 23.5684i −1.37217 1.15139i −0.972008 0.234947i \(-0.924508\pi\)
−0.400165 0.916443i \(-0.631047\pi\)
\(420\) 0 0
\(421\) −10.5196 3.82881i −0.512692 0.186605i 0.0727019 0.997354i \(-0.476838\pi\)
−0.585394 + 0.810749i \(0.699060\pi\)
\(422\) 0 0
\(423\) 26.1528 + 1.57568i 1.27159 + 0.0766122i
\(424\) 0 0
\(425\) −7.09759 + 1.25150i −0.344284 + 0.0607065i
\(426\) 0 0
\(427\) −4.01350 11.0270i −0.194227 0.533634i
\(428\) 0 0
\(429\) 40.3393 + 16.0725i 1.94760 + 0.775986i
\(430\) 0 0
\(431\) 0.802008 0.0386314 0.0193157 0.999813i \(-0.493851\pi\)
0.0193157 + 0.999813i \(0.493851\pi\)
\(432\) 0 0
\(433\) 3.12308 0.150086 0.0750428 0.997180i \(-0.476091\pi\)
0.0750428 + 0.997180i \(0.476091\pi\)
\(434\) 0 0
\(435\) 4.56692 + 31.3969i 0.218967 + 1.50537i
\(436\) 0 0
\(437\) −1.82324 5.00930i −0.0872172 0.239627i
\(438\) 0 0
\(439\) 4.04187 0.712690i 0.192908 0.0340149i −0.0763594 0.997080i \(-0.524330\pi\)
0.269267 + 0.963066i \(0.413219\pi\)
\(440\) 0 0
\(441\) −4.21638 36.7096i −0.200780 1.74808i
\(442\) 0 0
\(443\) 32.3631 + 11.7792i 1.53762 + 0.559646i 0.965472 0.260507i \(-0.0838899\pi\)
0.572143 + 0.820154i \(0.306112\pi\)
\(444\) 0 0
\(445\) 19.8998 + 16.6979i 0.943343 + 0.791559i
\(446\) 0 0
\(447\) −0.332244 + 11.0390i −0.0157146 + 0.522128i
\(448\) 0 0
\(449\) 12.4452 + 7.18523i 0.587324 + 0.339092i 0.764039 0.645170i \(-0.223214\pi\)
−0.176715 + 0.984262i \(0.556547\pi\)
\(450\) 0 0
\(451\) 18.3869 10.6157i 0.865806 0.499873i
\(452\) 0 0
\(453\) 3.82016 + 11.5673i 0.179487 + 0.543479i
\(454\) 0 0
\(455\) −15.7426 + 89.2810i −0.738027 + 4.18556i
\(456\) 0 0
\(457\) 6.63409 5.56666i 0.310330 0.260398i −0.474299 0.880364i \(-0.657298\pi\)
0.784628 + 0.619967i \(0.212854\pi\)
\(458\) 0 0
\(459\) −0.511573 + 5.65209i −0.0238782 + 0.263817i
\(460\) 0 0
\(461\) −15.0829 17.9751i −0.702481 0.837184i 0.290324 0.956928i \(-0.406237\pi\)
−0.992805 + 0.119745i \(0.961792\pi\)
\(462\) 0 0
\(463\) 30.2719 + 5.33776i 1.40686 + 0.248067i 0.824958 0.565194i \(-0.191199\pi\)
0.581899 + 0.813261i \(0.302310\pi\)
\(464\) 0 0
\(465\) −6.79712 6.06110i −0.315209 0.281077i
\(466\) 0 0
\(467\) 9.51526 + 16.4809i 0.440314 + 0.762646i 0.997713 0.0675990i \(-0.0215338\pi\)
−0.557399 + 0.830245i \(0.688201\pi\)
\(468\) 0 0
\(469\) 7.95960 13.7864i 0.367540 0.636598i
\(470\) 0 0
\(471\) 18.1618 29.3790i 0.836850 1.35371i
\(472\) 0 0
\(473\) −11.1333 + 13.2681i −0.511909 + 0.610069i
\(474\) 0 0
\(475\) 6.38759 17.5498i 0.293083 0.805238i
\(476\) 0 0
\(477\) −35.5209 8.49362i −1.62639 0.388896i
\(478\) 0 0
\(479\) 2.75148 + 15.6044i 0.125718 + 0.712984i 0.980879 + 0.194620i \(0.0623474\pi\)
−0.855160 + 0.518363i \(0.826541\pi\)
\(480\) 0 0
\(481\) −28.3347 + 10.3130i −1.29195 + 0.470232i
\(482\) 0 0
\(483\) −8.88186 11.2560i −0.404139 0.512168i
\(484\) 0 0
\(485\) 3.27592i 0.148752i
\(486\) 0 0
\(487\) 4.49577i 0.203723i −0.994799 0.101861i \(-0.967520\pi\)
0.994799 0.101861i \(-0.0324798\pi\)
\(488\) 0 0
\(489\) 9.16091 + 11.6097i 0.414271 + 0.525008i
\(490\) 0 0
\(491\) 34.4443 12.5367i 1.55445 0.565773i 0.584992 0.811039i \(-0.301097\pi\)
0.969456 + 0.245266i \(0.0788753\pi\)
\(492\) 0 0
\(493\) −1.02008 5.78519i −0.0459423 0.260552i
\(494\) 0 0
\(495\) −41.1322 9.83539i −1.84876 0.442068i
\(496\) 0 0
\(497\) −2.53190 + 6.95633i −0.113571 + 0.312034i
\(498\) 0 0
\(499\) −23.9018 + 28.4851i −1.06999 + 1.27517i −0.110364 + 0.993891i \(0.535202\pi\)
−0.959627 + 0.281275i \(0.909243\pi\)
\(500\) 0 0
\(501\) −20.5731 + 33.2795i −0.919137 + 1.48682i
\(502\) 0 0
\(503\) 19.5952 33.9399i 0.873706 1.51330i 0.0155717 0.999879i \(-0.495043\pi\)
0.858135 0.513425i \(-0.171623\pi\)
\(504\) 0 0
\(505\) 24.0188 + 41.6018i 1.06882 + 1.85126i
\(506\) 0 0
\(507\) −30.6159 27.3007i −1.35970 1.21247i
\(508\) 0 0
\(509\) −13.0715 2.30486i −0.579385 0.102161i −0.123727 0.992316i \(-0.539485\pi\)
−0.455658 + 0.890155i \(0.650596\pi\)
\(510\) 0 0
\(511\) −31.5399 37.5878i −1.39524 1.66279i
\(512\) 0 0
\(513\) −12.0214 8.47133i −0.530760 0.374018i
\(514\) 0 0
\(515\) −22.0387 + 18.4927i −0.971143 + 0.814886i
\(516\) 0 0
\(517\) 6.27745 35.6012i 0.276082 1.56574i
\(518\) 0 0
\(519\) 1.75452 + 5.31262i 0.0770149 + 0.233198i
\(520\) 0 0
\(521\) −38.3054 + 22.1156i −1.67819 + 0.968903i −0.715375 + 0.698741i \(0.753744\pi\)
−0.962815 + 0.270162i \(0.912923\pi\)
\(522\) 0 0
\(523\) −38.8478 22.4288i −1.69870 0.980742i −0.947001 0.321230i \(-0.895904\pi\)
−0.751694 0.659512i \(-0.770763\pi\)
\(524\) 0 0
\(525\) 1.51120 50.2104i 0.0659540 2.19136i
\(526\) 0 0
\(527\) 1.29170 + 1.08387i 0.0562675 + 0.0472141i
\(528\) 0 0
\(529\) 18.2793 + 6.65312i 0.794752 + 0.289266i
\(530\) 0 0
\(531\) −1.12709 9.81291i −0.0489115 0.425844i
\(532\) 0 0
\(533\) −30.5937 + 5.39450i −1.32516 + 0.233662i
\(534\) 0 0
\(535\) 6.38894 + 17.5535i 0.276218 + 0.758902i
\(536\) 0 0
\(537\) 0.944193 + 6.49118i 0.0407449 + 0.280115i
\(538\) 0 0
\(539\) −50.9840 −2.19604
\(540\) 0 0
\(541\) 10.2100 0.438964 0.219482 0.975617i \(-0.429563\pi\)
0.219482 + 0.975617i \(0.429563\pi\)
\(542\) 0 0
\(543\) 35.5271 + 14.1551i 1.52461 + 0.607454i
\(544\) 0 0
\(545\) 9.16805 + 25.1890i 0.392716 + 1.07898i
\(546\) 0 0
\(547\) 41.0351 7.23559i 1.75453 0.309372i 0.798361 0.602178i \(-0.205700\pi\)
0.956172 + 0.292807i \(0.0945893\pi\)
\(548\) 0 0
\(549\) −7.99532 0.481711i −0.341232 0.0205589i
\(550\) 0 0
\(551\) 14.3047 + 5.20647i 0.609399 + 0.221803i
\(552\) 0 0
\(553\) −32.7980 27.5208i −1.39471 1.17030i
\(554\) 0 0
\(555\) 25.8632 13.9120i 1.09783 0.590530i
\(556\) 0 0
\(557\) 21.7735 + 12.5709i 0.922571 + 0.532647i 0.884454 0.466627i \(-0.154531\pi\)
0.0381165 + 0.999273i \(0.487864\pi\)
\(558\) 0 0
\(559\) 21.9477 12.6715i 0.928289 0.535948i
\(560\) 0 0
\(561\) 7.66714 + 1.59113i 0.323707 + 0.0671774i
\(562\) 0 0
\(563\) −7.04571 + 39.9582i −0.296941 + 1.68404i 0.362265 + 0.932075i \(0.382003\pi\)
−0.659206 + 0.751962i \(0.729108\pi\)
\(564\) 0 0
\(565\) 29.6559 24.8843i 1.24763 1.04689i
\(566\) 0 0
\(567\) −37.8486 11.4962i −1.58949 0.482794i
\(568\) 0 0
\(569\) 2.01852 + 2.40558i 0.0846208 + 0.100847i 0.806694 0.590970i \(-0.201255\pi\)
−0.722073 + 0.691817i \(0.756810\pi\)
\(570\) 0 0
\(571\) −8.87330 1.56460i −0.371336 0.0654765i −0.0151338 0.999885i \(-0.504817\pi\)
−0.356202 + 0.934409i \(0.615929\pi\)
\(572\) 0 0
\(573\) 4.47061 21.5424i 0.186762 0.899949i
\(574\) 0 0
\(575\) −6.21436 10.7636i −0.259157 0.448873i
\(576\) 0 0
\(577\) 0.994209 1.72202i 0.0413895 0.0716886i −0.844589 0.535416i \(-0.820155\pi\)
0.885978 + 0.463727i \(0.153488\pi\)
\(578\) 0 0
\(579\) −5.53269 10.2856i −0.229931 0.427456i
\(580\) 0 0
\(581\) −0.885598 + 1.05541i −0.0367408 + 0.0437860i
\(582\) 0 0
\(583\) −17.2352 + 47.3534i −0.713811 + 1.96118i
\(584\) 0 0
\(585\) 51.6330 + 34.1076i 2.13476 + 1.41017i
\(586\) 0 0
\(587\) 7.64588 + 43.3619i 0.315579 + 1.78974i 0.568953 + 0.822370i \(0.307349\pi\)
−0.253374 + 0.967369i \(0.581540\pi\)
\(588\) 0 0
\(589\) −4.10602 + 1.49447i −0.169186 + 0.0615785i
\(590\) 0 0
\(591\) −8.13499 + 20.4175i −0.334629 + 0.839863i
\(592\) 0 0
\(593\) 37.9415i 1.55807i 0.626979 + 0.779036i \(0.284291\pi\)
−0.626979 + 0.779036i \(0.715709\pi\)
\(594\) 0 0
\(595\) 16.3483i 0.670217i
\(596\) 0 0
\(597\) −4.67188 + 0.679561i −0.191207 + 0.0278126i
\(598\) 0 0
\(599\) −33.3395 + 12.1346i −1.36221 + 0.495805i −0.916738 0.399489i \(-0.869188\pi\)
−0.445476 + 0.895294i \(0.646965\pi\)
\(600\) 0 0
\(601\) 4.82497 + 27.3638i 0.196815 + 1.11619i 0.909811 + 0.415024i \(0.136227\pi\)
−0.712996 + 0.701168i \(0.752662\pi\)
\(602\) 0 0
\(603\) −6.47134 8.72888i −0.263533 0.355468i
\(604\) 0 0
\(605\) −7.14501 + 19.6308i −0.290486 + 0.798104i
\(606\) 0 0
\(607\) 18.0150 21.4694i 0.731207 0.871418i −0.264462 0.964396i \(-0.585194\pi\)
0.995668 + 0.0929782i \(0.0296387\pi\)
\(608\) 0 0
\(609\) 40.9261 + 1.23176i 1.65841 + 0.0499136i
\(610\) 0 0
\(611\) −26.4476 + 45.8086i −1.06995 + 1.85322i
\(612\) 0 0
\(613\) −2.08983 3.61970i −0.0844076 0.146198i 0.820731 0.571315i \(-0.193566\pi\)
−0.905139 + 0.425117i \(0.860233\pi\)
\(614\) 0 0
\(615\) 28.7300 9.48822i 1.15850 0.382602i
\(616\) 0 0
\(617\) −26.3586 4.64774i −1.06116 0.187111i −0.384288 0.923213i \(-0.625553\pi\)
−0.676870 + 0.736102i \(0.736664\pi\)
\(618\) 0 0
\(619\) 19.8689 + 23.6788i 0.798597 + 0.951731i 0.999612 0.0278575i \(-0.00886846\pi\)
−0.201015 + 0.979588i \(0.564424\pi\)
\(620\) 0 0
\(621\) −9.46104 + 2.50470i −0.379658 + 0.100510i
\(622\) 0 0
\(623\) 25.6811 21.5490i 1.02889 0.863343i
\(624\) 0 0
\(625\) −2.50929 + 14.2309i −0.100372 + 0.569235i
\(626\) 0 0
\(627\) −13.5049 + 15.1448i −0.539333 + 0.604826i
\(628\) 0 0
\(629\) −4.70901 + 2.71875i −0.187761 + 0.108404i
\(630\) 0 0
\(631\) 4.48915 + 2.59181i 0.178710 + 0.103178i 0.586687 0.809814i \(-0.300432\pi\)
−0.407976 + 0.912993i \(0.633765\pi\)
\(632\) 0 0
\(633\) 13.1855 + 8.15115i 0.524077 + 0.323979i
\(634\) 0 0
\(635\) 29.0875 + 24.4073i 1.15430 + 0.968575i
\(636\) 0 0
\(637\) 70.1008 + 25.5146i 2.77749 + 1.01093i
\(638\) 0 0
\(639\) 3.66845 + 3.47489i 0.145122 + 0.137465i
\(640\) 0 0
\(641\) 32.6707 5.76073i 1.29042 0.227535i 0.514019 0.857779i \(-0.328156\pi\)
0.776397 + 0.630244i \(0.217045\pi\)
\(642\) 0 0
\(643\) −7.68834 21.1236i −0.303199 0.833032i −0.993939 0.109929i \(-0.964938\pi\)
0.690741 0.723102i \(-0.257285\pi\)
\(644\) 0 0
\(645\) −19.3767 + 15.2897i −0.762958 + 0.602031i
\(646\) 0 0
\(647\) 20.0311 0.787505 0.393752 0.919217i \(-0.371177\pi\)
0.393752 + 0.919217i \(0.371177\pi\)
\(648\) 0 0
\(649\) −13.6286 −0.534971
\(650\) 0 0
\(651\) −9.22635 + 7.28028i −0.361609 + 0.285337i
\(652\) 0 0
\(653\) −4.59529 12.6255i −0.179828 0.494072i 0.816726 0.577026i \(-0.195787\pi\)
−0.996553 + 0.0829537i \(0.973565\pi\)
\(654\) 0 0
\(655\) −37.0254 + 6.52858i −1.44670 + 0.255093i
\(656\) 0 0
\(657\) −32.1044 + 9.54155i −1.25251 + 0.372251i
\(658\) 0 0
\(659\) −36.5498 13.3030i −1.42378 0.518213i −0.488636 0.872488i \(-0.662505\pi\)
−0.935141 + 0.354275i \(0.884728\pi\)
\(660\) 0 0
\(661\) 3.65798 + 3.06941i 0.142279 + 0.119386i 0.711149 0.703041i \(-0.248175\pi\)
−0.568871 + 0.822427i \(0.692619\pi\)
\(662\) 0 0
\(663\) −9.74570 6.02469i −0.378492 0.233980i
\(664\) 0 0
\(665\) −36.6885 21.1821i −1.42272 0.821408i
\(666\) 0 0
\(667\) 8.77332 5.06528i 0.339704 0.196128i
\(668\) 0 0
\(669\) 23.4942 26.3471i 0.908337 1.01864i
\(670\) 0 0
\(671\) −1.91912 + 10.8839i −0.0740867 + 0.420167i
\(672\) 0 0
\(673\) −15.6817 + 13.1585i −0.604487 + 0.507225i −0.892884 0.450286i \(-0.851322\pi\)
0.288397 + 0.957511i \(0.406878\pi\)
\(674\) 0 0
\(675\) −31.0319 14.5838i −1.19442 0.561332i
\(676\) 0 0
\(677\) 2.71884 + 3.24019i 0.104494 + 0.124531i 0.815757 0.578395i \(-0.196321\pi\)
−0.711263 + 0.702926i \(0.751876\pi\)
\(678\) 0 0
\(679\) 4.16341 + 0.734122i 0.159777 + 0.0281730i
\(680\) 0 0
\(681\) 47.0733 15.5462i 1.80385 0.595732i
\(682\) 0 0
\(683\) 4.10080 + 7.10280i 0.156913 + 0.271781i 0.933754 0.357916i \(-0.116512\pi\)
−0.776841 + 0.629697i \(0.783179\pi\)
\(684\) 0 0
\(685\) −19.8453 + 34.3730i −0.758248 + 1.31332i
\(686\) 0 0
\(687\) −16.3072 0.490802i −0.622159 0.0187253i
\(688\) 0 0
\(689\) 47.3954 56.4836i 1.80562 2.15185i
\(690\) 0 0
\(691\) 7.36741 20.2418i 0.280269 0.770034i −0.717061 0.697011i \(-0.754513\pi\)
0.997330 0.0730233i \(-0.0232647\pi\)
\(692\) 0 0
\(693\) −21.7175 + 50.0715i −0.824980 + 1.90206i
\(694\) 0 0
\(695\) 1.05337 + 5.97398i 0.0399567 + 0.226606i
\(696\) 0 0
\(697\) −5.26421 + 1.91602i −0.199396 + 0.0725743i
\(698\) 0 0
\(699\) −11.0333 + 1.60487i −0.417316 + 0.0607019i
\(700\) 0 0
\(701\) 27.8257i 1.05096i 0.850806 + 0.525481i \(0.176114\pi\)
−0.850806 + 0.525481i \(0.823886\pi\)
\(702\) 0 0
\(703\) 14.0905i 0.531432i
\(704\) 0 0
\(705\) 19.0682 47.8580i 0.718149 1.80244i
\(706\) 0 0
\(707\) 58.2548 21.2030i 2.19090 0.797422i
\(708\) 0 0
\(709\) 0.557300 + 3.16061i 0.0209298 + 0.118699i 0.993483 0.113983i \(-0.0363610\pi\)
−0.972553 + 0.232682i \(0.925250\pi\)
\(710\) 0 0
\(711\) −26.1420 + 13.0636i −0.980402 + 0.489925i
\(712\) 0 0
\(713\) −0.994554 + 2.73251i −0.0372463 + 0.102333i
\(714\) 0 0
\(715\) 54.8826 65.4066i 2.05249 2.44607i
\(716\) 0 0
\(717\) 3.65789 + 6.80024i 0.136606 + 0.253960i
\(718\) 0 0
\(719\) −6.67788 + 11.5664i −0.249043 + 0.431355i −0.963260 0.268569i \(-0.913449\pi\)
0.714218 + 0.699924i \(0.246783\pi\)
\(720\) 0 0
\(721\) 18.5638 + 32.1535i 0.691353 + 1.19746i
\(722\) 0 0
\(723\) −3.87670 + 18.6806i −0.144176 + 0.694738i
\(724\) 0 0
\(725\) 34.9526 + 6.16308i 1.29811 + 0.228891i
\(726\) 0 0
\(727\) −2.08083 2.47984i −0.0771737 0.0919720i 0.726076 0.687614i \(-0.241342\pi\)
−0.803250 + 0.595642i \(0.796898\pi\)
\(728\) 0 0
\(729\) −17.4790 + 20.5788i −0.647369 + 0.762177i
\(730\) 0 0
\(731\) 3.50089 2.93760i 0.129485 0.108651i
\(732\) 0 0
\(733\) −8.17205 + 46.3460i −0.301842 + 1.71183i 0.336170 + 0.941801i \(0.390868\pi\)
−0.638011 + 0.770027i \(0.720243\pi\)
\(734\) 0 0
\(735\) −71.1401 14.7634i −2.62404 0.544556i
\(736\) 0 0
\(737\) −12.9841 + 7.49637i −0.478276 + 0.276132i
\(738\) 0 0
\(739\) 3.41970 + 1.97436i 0.125796 + 0.0726281i 0.561577 0.827424i \(-0.310195\pi\)
−0.435782 + 0.900052i \(0.643528\pi\)
\(740\) 0 0
\(741\) 26.1477 14.0650i 0.960561 0.516691i
\(742\) 0 0
\(743\) −37.8736 31.7797i −1.38945 1.16589i −0.965563 0.260170i \(-0.916222\pi\)
−0.423885 0.905716i \(-0.639334\pi\)
\(744\) 0 0
\(745\) 20.4060 + 7.42718i 0.747618 + 0.272111i
\(746\) 0 0
\(747\) 0.420378 + 0.841229i 0.0153808 + 0.0307790i
\(748\) 0 0
\(749\) 23.7407 4.18612i 0.867465 0.152958i
\(750\) 0 0
\(751\) −16.7877 46.1239i −0.612592 1.68308i −0.724423 0.689356i \(-0.757894\pi\)
0.111830 0.993727i \(-0.464329\pi\)
\(752\) 0 0
\(753\) −30.8438 12.2891i −1.12401 0.447841i
\(754\) 0 0
\(755\) 23.9528 0.871731
\(756\) 0 0
\(757\) 23.1774 0.842397 0.421199 0.906968i \(-0.361610\pi\)
0.421199 + 0.906968i \(0.361610\pi\)
\(758\) 0 0
\(759\) 1.94378 + 13.3632i 0.0705548 + 0.485053i
\(760\) 0 0
\(761\) −2.42482 6.66214i −0.0878997 0.241502i 0.887952 0.459936i \(-0.152128\pi\)
−0.975852 + 0.218433i \(0.929905\pi\)
\(762\) 0 0
\(763\) 34.0676 6.00703i 1.23333 0.217469i
\(764\) 0 0
\(765\) 10.2375 + 4.44033i 0.370138 + 0.160540i
\(766\) 0 0
\(767\) 18.7388 + 6.82035i 0.676618 + 0.246269i
\(768\) 0 0
\(769\) −34.5271 28.9717i −1.24508 1.04475i −0.997109 0.0759780i \(-0.975792\pi\)
−0.247970 0.968768i \(-0.579763\pi\)
\(770\) 0 0
\(771\) 0.137144 4.55671i 0.00493914 0.164106i
\(772\) 0 0
\(773\) −13.9113 8.03167i −0.500353 0.288879i 0.228506 0.973542i \(-0.426616\pi\)
−0.728859 + 0.684663i \(0.759949\pi\)
\(774\) 0 0
\(775\) −8.82270 + 5.09379i −0.316921 + 0.182974i
\(776\) 0 0
\(777\) −11.8851 35.9875i −0.426374 1.29104i
\(778\) 0 0
\(779\) 2.52083 14.2963i 0.0903181 0.512219i
\(780\) 0 0
\(781\) 5.34083 4.48149i 0.191110 0.160360i
\(782\) 0 0
\(783\) 11.8872 25.2939i 0.424813 0.903929i
\(784\) 0 0
\(785\) −43.6543 52.0252i −1.55809 1.85686i
\(786\) 0 0
\(787\) 3.80955 + 0.671726i 0.135796 + 0.0239444i 0.241133 0.970492i \(-0.422481\pi\)
−0.105337 + 0.994437i \(0.533592\pi\)
\(788\) 0 0
\(789\) 9.89898 + 8.82709i 0.352413 + 0.314253i
\(790\) 0 0
\(791\) −24.9800 43.2666i −0.888185 1.53838i
\(792\) 0 0
\(793\) 8.08545 14.0044i 0.287123 0.497311i
\(794\) 0 0
\(795\)