Properties

Label 432.1.j.a
Level $432$
Weight $1$
Character orbit 432.j
Analytic conductor $0.216$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,1,Mod(53,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.53"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 432.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.215596085457\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.55296.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8}^{3} q^{2} - \zeta_{8}^{2} q^{4} - \zeta_{8}^{3} q^{5} + \zeta_{8}^{2} q^{7} - \zeta_{8} q^{8} - \zeta_{8}^{2} q^{10} + \zeta_{8}^{3} q^{11} + (\zeta_{8}^{2} - 1) q^{13} + \zeta_{8} q^{14} + \cdots + q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{13} - 4 q^{16} + 4 q^{28} + 4 q^{31} - 4 q^{34} - 4 q^{40} - 4 q^{43} + 4 q^{52} + 4 q^{67} + 4 q^{70} - 4 q^{85} + 4 q^{88} - 4 q^{91} + 4 q^{94} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(\zeta_{8}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i 0 1.00000i −0.707107 + 0.707107i 0 1.00000i 0.707107 + 0.707107i 0 1.00000i
53.2 0.707107 0.707107i 0 1.00000i 0.707107 0.707107i 0 1.00000i −0.707107 0.707107i 0 1.00000i
269.1 −0.707107 0.707107i 0 1.00000i −0.707107 0.707107i 0 1.00000i 0.707107 0.707107i 0 1.00000i
269.2 0.707107 + 0.707107i 0 1.00000i 0.707107 + 0.707107i 0 1.00000i −0.707107 + 0.707107i 0 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
16.e even 4 1 inner
48.i odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 432.1.j.a 4
3.b odd 2 1 inner 432.1.j.a 4
4.b odd 2 1 1728.1.j.a 4
8.b even 2 1 3456.1.j.b 4
8.d odd 2 1 3456.1.j.a 4
9.c even 3 2 1296.1.x.a 8
9.d odd 6 2 1296.1.x.a 8
12.b even 2 1 1728.1.j.a 4
16.e even 4 1 inner 432.1.j.a 4
16.e even 4 1 3456.1.j.b 4
16.f odd 4 1 1728.1.j.a 4
16.f odd 4 1 3456.1.j.a 4
24.f even 2 1 3456.1.j.a 4
24.h odd 2 1 3456.1.j.b 4
48.i odd 4 1 inner 432.1.j.a 4
48.i odd 4 1 3456.1.j.b 4
48.k even 4 1 1728.1.j.a 4
48.k even 4 1 3456.1.j.a 4
144.w odd 12 2 1296.1.x.a 8
144.x even 12 2 1296.1.x.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
432.1.j.a 4 1.a even 1 1 trivial
432.1.j.a 4 3.b odd 2 1 inner
432.1.j.a 4 16.e even 4 1 inner
432.1.j.a 4 48.i odd 4 1 inner
1296.1.x.a 8 9.c even 3 2
1296.1.x.a 8 9.d odd 6 2
1296.1.x.a 8 144.w odd 12 2
1296.1.x.a 8 144.x even 12 2
1728.1.j.a 4 4.b odd 2 1
1728.1.j.a 4 12.b even 2 1
1728.1.j.a 4 16.f odd 4 1
1728.1.j.a 4 48.k even 4 1
3456.1.j.a 4 8.d odd 2 1
3456.1.j.a 4 16.f odd 4 1
3456.1.j.a 4 24.f even 2 1
3456.1.j.a 4 48.k even 4 1
3456.1.j.b 4 8.b even 2 1
3456.1.j.b 4 16.e even 4 1
3456.1.j.b 4 24.h odd 2 1
3456.1.j.b 4 48.i odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(432, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 1 \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T - 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 1 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 1 \) Copy content Toggle raw display
$89$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$97$ \( (T - 1)^{4} \) Copy content Toggle raw display
show more
show less