Properties

Label 4304.2.a.i.1.5
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 10x^{5} + 7x^{4} + 27x^{3} - 15x^{2} - 20x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.30699\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.20937 q^{3} -2.40321 q^{5} -1.52017 q^{7} -1.53742 q^{9} -5.07638 q^{11} +5.11021 q^{13} -2.90637 q^{15} -6.65764 q^{17} +5.71222 q^{19} -1.83846 q^{21} +6.36685 q^{23} +0.775401 q^{25} -5.48743 q^{27} -6.00511 q^{29} -2.77822 q^{31} -6.13924 q^{33} +3.65329 q^{35} -1.59410 q^{37} +6.18015 q^{39} +9.69619 q^{41} +9.26120 q^{43} +3.69473 q^{45} +7.55235 q^{47} -4.68907 q^{49} -8.05157 q^{51} -9.42058 q^{53} +12.1996 q^{55} +6.90820 q^{57} +6.31332 q^{59} -7.97918 q^{61} +2.33714 q^{63} -12.2809 q^{65} +2.54885 q^{67} +7.69990 q^{69} -1.98957 q^{71} +12.7523 q^{73} +0.937750 q^{75} +7.71699 q^{77} -3.64283 q^{79} -2.02411 q^{81} +0.689504 q^{83} +15.9997 q^{85} -7.26242 q^{87} +2.78972 q^{89} -7.76841 q^{91} -3.35991 q^{93} -13.7276 q^{95} +11.9363 q^{97} +7.80451 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 4 q^{3} - 6 q^{5} + 3 q^{7} + 7 q^{9} + 12 q^{11} + 3 q^{13} + 6 q^{15} - 8 q^{17} + 7 q^{19} - 5 q^{21} + 22 q^{23} + 9 q^{25} + 22 q^{27} - 7 q^{29} + 3 q^{31} - 19 q^{33} + 25 q^{35} - 13 q^{37}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.20937 0.698232 0.349116 0.937079i \(-0.386482\pi\)
0.349116 + 0.937079i \(0.386482\pi\)
\(4\) 0 0
\(5\) −2.40321 −1.07475 −0.537373 0.843344i \(-0.680583\pi\)
−0.537373 + 0.843344i \(0.680583\pi\)
\(6\) 0 0
\(7\) −1.52017 −0.574572 −0.287286 0.957845i \(-0.592753\pi\)
−0.287286 + 0.957845i \(0.592753\pi\)
\(8\) 0 0
\(9\) −1.53742 −0.512472
\(10\) 0 0
\(11\) −5.07638 −1.53059 −0.765294 0.643681i \(-0.777406\pi\)
−0.765294 + 0.643681i \(0.777406\pi\)
\(12\) 0 0
\(13\) 5.11021 1.41732 0.708659 0.705552i \(-0.249301\pi\)
0.708659 + 0.705552i \(0.249301\pi\)
\(14\) 0 0
\(15\) −2.90637 −0.750423
\(16\) 0 0
\(17\) −6.65764 −1.61471 −0.807357 0.590063i \(-0.799103\pi\)
−0.807357 + 0.590063i \(0.799103\pi\)
\(18\) 0 0
\(19\) 5.71222 1.31047 0.655236 0.755424i \(-0.272569\pi\)
0.655236 + 0.755424i \(0.272569\pi\)
\(20\) 0 0
\(21\) −1.83846 −0.401184
\(22\) 0 0
\(23\) 6.36685 1.32758 0.663790 0.747919i \(-0.268947\pi\)
0.663790 + 0.747919i \(0.268947\pi\)
\(24\) 0 0
\(25\) 0.775401 0.155080
\(26\) 0 0
\(27\) −5.48743 −1.05606
\(28\) 0 0
\(29\) −6.00511 −1.11512 −0.557560 0.830137i \(-0.688262\pi\)
−0.557560 + 0.830137i \(0.688262\pi\)
\(30\) 0 0
\(31\) −2.77822 −0.498984 −0.249492 0.968377i \(-0.580264\pi\)
−0.249492 + 0.968377i \(0.580264\pi\)
\(32\) 0 0
\(33\) −6.13924 −1.06871
\(34\) 0 0
\(35\) 3.65329 0.617519
\(36\) 0 0
\(37\) −1.59410 −0.262069 −0.131034 0.991378i \(-0.541830\pi\)
−0.131034 + 0.991378i \(0.541830\pi\)
\(38\) 0 0
\(39\) 6.18015 0.989616
\(40\) 0 0
\(41\) 9.69619 1.51429 0.757146 0.653246i \(-0.226593\pi\)
0.757146 + 0.653246i \(0.226593\pi\)
\(42\) 0 0
\(43\) 9.26120 1.41232 0.706160 0.708053i \(-0.250426\pi\)
0.706160 + 0.708053i \(0.250426\pi\)
\(44\) 0 0
\(45\) 3.69473 0.550777
\(46\) 0 0
\(47\) 7.55235 1.10162 0.550811 0.834630i \(-0.314318\pi\)
0.550811 + 0.834630i \(0.314318\pi\)
\(48\) 0 0
\(49\) −4.68907 −0.669867
\(50\) 0 0
\(51\) −8.05157 −1.12745
\(52\) 0 0
\(53\) −9.42058 −1.29402 −0.647008 0.762483i \(-0.723980\pi\)
−0.647008 + 0.762483i \(0.723980\pi\)
\(54\) 0 0
\(55\) 12.1996 1.64499
\(56\) 0 0
\(57\) 6.90820 0.915014
\(58\) 0 0
\(59\) 6.31332 0.821924 0.410962 0.911652i \(-0.365193\pi\)
0.410962 + 0.911652i \(0.365193\pi\)
\(60\) 0 0
\(61\) −7.97918 −1.02163 −0.510815 0.859691i \(-0.670656\pi\)
−0.510815 + 0.859691i \(0.670656\pi\)
\(62\) 0 0
\(63\) 2.33714 0.294452
\(64\) 0 0
\(65\) −12.2809 −1.52326
\(66\) 0 0
\(67\) 2.54885 0.311392 0.155696 0.987805i \(-0.450238\pi\)
0.155696 + 0.987805i \(0.450238\pi\)
\(68\) 0 0
\(69\) 7.69990 0.926959
\(70\) 0 0
\(71\) −1.98957 −0.236118 −0.118059 0.993007i \(-0.537667\pi\)
−0.118059 + 0.993007i \(0.537667\pi\)
\(72\) 0 0
\(73\) 12.7523 1.49254 0.746269 0.665644i \(-0.231843\pi\)
0.746269 + 0.665644i \(0.231843\pi\)
\(74\) 0 0
\(75\) 0.937750 0.108282
\(76\) 0 0
\(77\) 7.71699 0.879432
\(78\) 0 0
\(79\) −3.64283 −0.409851 −0.204925 0.978778i \(-0.565695\pi\)
−0.204925 + 0.978778i \(0.565695\pi\)
\(80\) 0 0
\(81\) −2.02411 −0.224901
\(82\) 0 0
\(83\) 0.689504 0.0756829 0.0378415 0.999284i \(-0.487952\pi\)
0.0378415 + 0.999284i \(0.487952\pi\)
\(84\) 0 0
\(85\) 15.9997 1.73541
\(86\) 0 0
\(87\) −7.26242 −0.778613
\(88\) 0 0
\(89\) 2.78972 0.295709 0.147855 0.989009i \(-0.452763\pi\)
0.147855 + 0.989009i \(0.452763\pi\)
\(90\) 0 0
\(91\) −7.76841 −0.814350
\(92\) 0 0
\(93\) −3.35991 −0.348407
\(94\) 0 0
\(95\) −13.7276 −1.40843
\(96\) 0 0
\(97\) 11.9363 1.21194 0.605972 0.795486i \(-0.292784\pi\)
0.605972 + 0.795486i \(0.292784\pi\)
\(98\) 0 0
\(99\) 7.80451 0.784383
\(100\) 0 0
\(101\) −14.5273 −1.44552 −0.722759 0.691100i \(-0.757127\pi\)
−0.722759 + 0.691100i \(0.757127\pi\)
\(102\) 0 0
\(103\) 10.1048 0.995656 0.497828 0.867276i \(-0.334131\pi\)
0.497828 + 0.867276i \(0.334131\pi\)
\(104\) 0 0
\(105\) 4.41819 0.431172
\(106\) 0 0
\(107\) 12.2725 1.18643 0.593214 0.805045i \(-0.297859\pi\)
0.593214 + 0.805045i \(0.297859\pi\)
\(108\) 0 0
\(109\) 14.2163 1.36168 0.680838 0.732434i \(-0.261616\pi\)
0.680838 + 0.732434i \(0.261616\pi\)
\(110\) 0 0
\(111\) −1.92786 −0.182985
\(112\) 0 0
\(113\) 12.7024 1.19494 0.597471 0.801891i \(-0.296172\pi\)
0.597471 + 0.801891i \(0.296172\pi\)
\(114\) 0 0
\(115\) −15.3009 −1.42681
\(116\) 0 0
\(117\) −7.85652 −0.726335
\(118\) 0 0
\(119\) 10.1208 0.927769
\(120\) 0 0
\(121\) 14.7697 1.34270
\(122\) 0 0
\(123\) 11.7263 1.05733
\(124\) 0 0
\(125\) 10.1526 0.908075
\(126\) 0 0
\(127\) 17.1800 1.52448 0.762238 0.647297i \(-0.224101\pi\)
0.762238 + 0.647297i \(0.224101\pi\)
\(128\) 0 0
\(129\) 11.2002 0.986127
\(130\) 0 0
\(131\) −5.22919 −0.456877 −0.228438 0.973558i \(-0.573362\pi\)
−0.228438 + 0.973558i \(0.573362\pi\)
\(132\) 0 0
\(133\) −8.68356 −0.752960
\(134\) 0 0
\(135\) 13.1874 1.13499
\(136\) 0 0
\(137\) −12.9664 −1.10779 −0.553895 0.832586i \(-0.686859\pi\)
−0.553895 + 0.832586i \(0.686859\pi\)
\(138\) 0 0
\(139\) 0.692646 0.0587495 0.0293747 0.999568i \(-0.490648\pi\)
0.0293747 + 0.999568i \(0.490648\pi\)
\(140\) 0 0
\(141\) 9.13361 0.769189
\(142\) 0 0
\(143\) −25.9414 −2.16933
\(144\) 0 0
\(145\) 14.4315 1.19847
\(146\) 0 0
\(147\) −5.67084 −0.467723
\(148\) 0 0
\(149\) 11.5986 0.950197 0.475099 0.879933i \(-0.342412\pi\)
0.475099 + 0.879933i \(0.342412\pi\)
\(150\) 0 0
\(151\) −1.14291 −0.0930089 −0.0465045 0.998918i \(-0.514808\pi\)
−0.0465045 + 0.998918i \(0.514808\pi\)
\(152\) 0 0
\(153\) 10.2356 0.827496
\(154\) 0 0
\(155\) 6.67665 0.536281
\(156\) 0 0
\(157\) −12.2350 −0.976460 −0.488230 0.872715i \(-0.662357\pi\)
−0.488230 + 0.872715i \(0.662357\pi\)
\(158\) 0 0
\(159\) −11.3930 −0.903523
\(160\) 0 0
\(161\) −9.67872 −0.762790
\(162\) 0 0
\(163\) 23.6815 1.85488 0.927438 0.373978i \(-0.122006\pi\)
0.927438 + 0.373978i \(0.122006\pi\)
\(164\) 0 0
\(165\) 14.7539 1.14859
\(166\) 0 0
\(167\) 3.54694 0.274470 0.137235 0.990538i \(-0.456178\pi\)
0.137235 + 0.990538i \(0.456178\pi\)
\(168\) 0 0
\(169\) 13.1142 1.00879
\(170\) 0 0
\(171\) −8.78205 −0.671580
\(172\) 0 0
\(173\) 20.8927 1.58844 0.794220 0.607630i \(-0.207880\pi\)
0.794220 + 0.607630i \(0.207880\pi\)
\(174\) 0 0
\(175\) −1.17874 −0.0891047
\(176\) 0 0
\(177\) 7.63516 0.573894
\(178\) 0 0
\(179\) −2.13073 −0.159258 −0.0796290 0.996825i \(-0.525374\pi\)
−0.0796290 + 0.996825i \(0.525374\pi\)
\(180\) 0 0
\(181\) 18.5589 1.37948 0.689738 0.724059i \(-0.257726\pi\)
0.689738 + 0.724059i \(0.257726\pi\)
\(182\) 0 0
\(183\) −9.64981 −0.713334
\(184\) 0 0
\(185\) 3.83095 0.281657
\(186\) 0 0
\(187\) 33.7967 2.47146
\(188\) 0 0
\(189\) 8.34185 0.606780
\(190\) 0 0
\(191\) −15.6213 −1.13032 −0.565160 0.824982i \(-0.691185\pi\)
−0.565160 + 0.824982i \(0.691185\pi\)
\(192\) 0 0
\(193\) −18.5417 −1.33466 −0.667330 0.744762i \(-0.732563\pi\)
−0.667330 + 0.744762i \(0.732563\pi\)
\(194\) 0 0
\(195\) −14.8522 −1.06359
\(196\) 0 0
\(197\) −9.98285 −0.711249 −0.355624 0.934629i \(-0.615732\pi\)
−0.355624 + 0.934629i \(0.615732\pi\)
\(198\) 0 0
\(199\) −5.33431 −0.378139 −0.189070 0.981964i \(-0.560547\pi\)
−0.189070 + 0.981964i \(0.560547\pi\)
\(200\) 0 0
\(201\) 3.08251 0.217424
\(202\) 0 0
\(203\) 9.12880 0.640716
\(204\) 0 0
\(205\) −23.3020 −1.62748
\(206\) 0 0
\(207\) −9.78850 −0.680348
\(208\) 0 0
\(209\) −28.9974 −2.00579
\(210\) 0 0
\(211\) 19.7945 1.36271 0.681355 0.731953i \(-0.261391\pi\)
0.681355 + 0.731953i \(0.261391\pi\)
\(212\) 0 0
\(213\) −2.40613 −0.164865
\(214\) 0 0
\(215\) −22.2566 −1.51789
\(216\) 0 0
\(217\) 4.22338 0.286702
\(218\) 0 0
\(219\) 15.4222 1.04214
\(220\) 0 0
\(221\) −34.0219 −2.28856
\(222\) 0 0
\(223\) −29.2824 −1.96089 −0.980447 0.196783i \(-0.936951\pi\)
−0.980447 + 0.196783i \(0.936951\pi\)
\(224\) 0 0
\(225\) −1.19211 −0.0794743
\(226\) 0 0
\(227\) 5.90479 0.391915 0.195957 0.980612i \(-0.437219\pi\)
0.195957 + 0.980612i \(0.437219\pi\)
\(228\) 0 0
\(229\) 14.2761 0.943391 0.471695 0.881762i \(-0.343642\pi\)
0.471695 + 0.881762i \(0.343642\pi\)
\(230\) 0 0
\(231\) 9.33272 0.614048
\(232\) 0 0
\(233\) −27.0850 −1.77440 −0.887198 0.461389i \(-0.847351\pi\)
−0.887198 + 0.461389i \(0.847351\pi\)
\(234\) 0 0
\(235\) −18.1498 −1.18397
\(236\) 0 0
\(237\) −4.40555 −0.286171
\(238\) 0 0
\(239\) −7.97200 −0.515666 −0.257833 0.966190i \(-0.583008\pi\)
−0.257833 + 0.966190i \(0.583008\pi\)
\(240\) 0 0
\(241\) −2.36516 −0.152353 −0.0761767 0.997094i \(-0.524271\pi\)
−0.0761767 + 0.997094i \(0.524271\pi\)
\(242\) 0 0
\(243\) 14.0144 0.899024
\(244\) 0 0
\(245\) 11.2688 0.719938
\(246\) 0 0
\(247\) 29.1906 1.85735
\(248\) 0 0
\(249\) 0.833868 0.0528443
\(250\) 0 0
\(251\) 23.0435 1.45449 0.727246 0.686376i \(-0.240800\pi\)
0.727246 + 0.686376i \(0.240800\pi\)
\(252\) 0 0
\(253\) −32.3206 −2.03198
\(254\) 0 0
\(255\) 19.3496 1.21172
\(256\) 0 0
\(257\) 23.2436 1.44990 0.724948 0.688803i \(-0.241864\pi\)
0.724948 + 0.688803i \(0.241864\pi\)
\(258\) 0 0
\(259\) 2.42331 0.150577
\(260\) 0 0
\(261\) 9.23234 0.571468
\(262\) 0 0
\(263\) −4.62308 −0.285072 −0.142536 0.989790i \(-0.545526\pi\)
−0.142536 + 0.989790i \(0.545526\pi\)
\(264\) 0 0
\(265\) 22.6396 1.39074
\(266\) 0 0
\(267\) 3.37381 0.206474
\(268\) 0 0
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) −12.4311 −0.755135 −0.377568 0.925982i \(-0.623239\pi\)
−0.377568 + 0.925982i \(0.623239\pi\)
\(272\) 0 0
\(273\) −9.39490 −0.568605
\(274\) 0 0
\(275\) −3.93623 −0.237364
\(276\) 0 0
\(277\) −4.92762 −0.296072 −0.148036 0.988982i \(-0.547295\pi\)
−0.148036 + 0.988982i \(0.547295\pi\)
\(278\) 0 0
\(279\) 4.27129 0.255715
\(280\) 0 0
\(281\) −21.3194 −1.27181 −0.635905 0.771767i \(-0.719373\pi\)
−0.635905 + 0.771767i \(0.719373\pi\)
\(282\) 0 0
\(283\) 29.9997 1.78330 0.891649 0.452728i \(-0.149549\pi\)
0.891649 + 0.452728i \(0.149549\pi\)
\(284\) 0 0
\(285\) −16.6018 −0.983408
\(286\) 0 0
\(287\) −14.7399 −0.870069
\(288\) 0 0
\(289\) 27.3241 1.60730
\(290\) 0 0
\(291\) 14.4354 0.846218
\(292\) 0 0
\(293\) 16.9481 0.990120 0.495060 0.868859i \(-0.335146\pi\)
0.495060 + 0.868859i \(0.335146\pi\)
\(294\) 0 0
\(295\) −15.1722 −0.883360
\(296\) 0 0
\(297\) 27.8563 1.61639
\(298\) 0 0
\(299\) 32.5360 1.88160
\(300\) 0 0
\(301\) −14.0786 −0.811479
\(302\) 0 0
\(303\) −17.5689 −1.00931
\(304\) 0 0
\(305\) 19.1756 1.09799
\(306\) 0 0
\(307\) −18.4715 −1.05422 −0.527112 0.849796i \(-0.676725\pi\)
−0.527112 + 0.849796i \(0.676725\pi\)
\(308\) 0 0
\(309\) 12.2205 0.695199
\(310\) 0 0
\(311\) −13.9141 −0.788995 −0.394497 0.918897i \(-0.629081\pi\)
−0.394497 + 0.918897i \(0.629081\pi\)
\(312\) 0 0
\(313\) 21.9666 1.24162 0.620812 0.783959i \(-0.286803\pi\)
0.620812 + 0.783959i \(0.286803\pi\)
\(314\) 0 0
\(315\) −5.61663 −0.316461
\(316\) 0 0
\(317\) −3.38070 −0.189879 −0.0949395 0.995483i \(-0.530266\pi\)
−0.0949395 + 0.995483i \(0.530266\pi\)
\(318\) 0 0
\(319\) 30.4842 1.70679
\(320\) 0 0
\(321\) 14.8420 0.828402
\(322\) 0 0
\(323\) −38.0299 −2.11604
\(324\) 0 0
\(325\) 3.96246 0.219798
\(326\) 0 0
\(327\) 17.1928 0.950765
\(328\) 0 0
\(329\) −11.4809 −0.632961
\(330\) 0 0
\(331\) −21.9585 −1.20695 −0.603476 0.797382i \(-0.706218\pi\)
−0.603476 + 0.797382i \(0.706218\pi\)
\(332\) 0 0
\(333\) 2.45080 0.134303
\(334\) 0 0
\(335\) −6.12542 −0.334667
\(336\) 0 0
\(337\) 3.21883 0.175341 0.0876705 0.996150i \(-0.472058\pi\)
0.0876705 + 0.996150i \(0.472058\pi\)
\(338\) 0 0
\(339\) 15.3619 0.834346
\(340\) 0 0
\(341\) 14.1033 0.763738
\(342\) 0 0
\(343\) 17.7694 0.959459
\(344\) 0 0
\(345\) −18.5045 −0.996246
\(346\) 0 0
\(347\) −15.8474 −0.850734 −0.425367 0.905021i \(-0.639855\pi\)
−0.425367 + 0.905021i \(0.639855\pi\)
\(348\) 0 0
\(349\) −17.0834 −0.914451 −0.457226 0.889351i \(-0.651157\pi\)
−0.457226 + 0.889351i \(0.651157\pi\)
\(350\) 0 0
\(351\) −28.0419 −1.49677
\(352\) 0 0
\(353\) −4.73633 −0.252090 −0.126045 0.992025i \(-0.540228\pi\)
−0.126045 + 0.992025i \(0.540228\pi\)
\(354\) 0 0
\(355\) 4.78134 0.253767
\(356\) 0 0
\(357\) 12.2398 0.647798
\(358\) 0 0
\(359\) −18.2662 −0.964051 −0.482025 0.876157i \(-0.660099\pi\)
−0.482025 + 0.876157i \(0.660099\pi\)
\(360\) 0 0
\(361\) 13.6294 0.717338
\(362\) 0 0
\(363\) 17.8620 0.937514
\(364\) 0 0
\(365\) −30.6463 −1.60410
\(366\) 0 0
\(367\) −5.99172 −0.312765 −0.156383 0.987697i \(-0.549983\pi\)
−0.156383 + 0.987697i \(0.549983\pi\)
\(368\) 0 0
\(369\) −14.9071 −0.776032
\(370\) 0 0
\(371\) 14.3209 0.743505
\(372\) 0 0
\(373\) −16.9416 −0.877203 −0.438601 0.898682i \(-0.644526\pi\)
−0.438601 + 0.898682i \(0.644526\pi\)
\(374\) 0 0
\(375\) 12.2783 0.634047
\(376\) 0 0
\(377\) −30.6873 −1.58048
\(378\) 0 0
\(379\) 16.7293 0.859325 0.429663 0.902989i \(-0.358632\pi\)
0.429663 + 0.902989i \(0.358632\pi\)
\(380\) 0 0
\(381\) 20.7770 1.06444
\(382\) 0 0
\(383\) 26.8421 1.37157 0.685785 0.727804i \(-0.259459\pi\)
0.685785 + 0.727804i \(0.259459\pi\)
\(384\) 0 0
\(385\) −18.5455 −0.945167
\(386\) 0 0
\(387\) −14.2383 −0.723774
\(388\) 0 0
\(389\) 8.89100 0.450792 0.225396 0.974267i \(-0.427632\pi\)
0.225396 + 0.974267i \(0.427632\pi\)
\(390\) 0 0
\(391\) −42.3882 −2.14366
\(392\) 0 0
\(393\) −6.32405 −0.319006
\(394\) 0 0
\(395\) 8.75448 0.440486
\(396\) 0 0
\(397\) −15.3011 −0.767939 −0.383970 0.923346i \(-0.625443\pi\)
−0.383970 + 0.923346i \(0.625443\pi\)
\(398\) 0 0
\(399\) −10.5017 −0.525741
\(400\) 0 0
\(401\) −9.91869 −0.495316 −0.247658 0.968848i \(-0.579661\pi\)
−0.247658 + 0.968848i \(0.579661\pi\)
\(402\) 0 0
\(403\) −14.1973 −0.707218
\(404\) 0 0
\(405\) 4.86434 0.241711
\(406\) 0 0
\(407\) 8.09227 0.401119
\(408\) 0 0
\(409\) −13.4737 −0.666233 −0.333117 0.942886i \(-0.608100\pi\)
−0.333117 + 0.942886i \(0.608100\pi\)
\(410\) 0 0
\(411\) −15.6812 −0.773495
\(412\) 0 0
\(413\) −9.59734 −0.472254
\(414\) 0 0
\(415\) −1.65702 −0.0813400
\(416\) 0 0
\(417\) 0.837668 0.0410208
\(418\) 0 0
\(419\) 24.5320 1.19847 0.599233 0.800574i \(-0.295472\pi\)
0.599233 + 0.800574i \(0.295472\pi\)
\(420\) 0 0
\(421\) −27.8189 −1.35581 −0.677906 0.735149i \(-0.737112\pi\)
−0.677906 + 0.735149i \(0.737112\pi\)
\(422\) 0 0
\(423\) −11.6111 −0.564551
\(424\) 0 0
\(425\) −5.16234 −0.250410
\(426\) 0 0
\(427\) 12.1297 0.586999
\(428\) 0 0
\(429\) −31.3728 −1.51469
\(430\) 0 0
\(431\) −32.5743 −1.56905 −0.784525 0.620097i \(-0.787093\pi\)
−0.784525 + 0.620097i \(0.787093\pi\)
\(432\) 0 0
\(433\) −5.11693 −0.245904 −0.122952 0.992413i \(-0.539236\pi\)
−0.122952 + 0.992413i \(0.539236\pi\)
\(434\) 0 0
\(435\) 17.4531 0.836811
\(436\) 0 0
\(437\) 36.3688 1.73976
\(438\) 0 0
\(439\) −18.8040 −0.897466 −0.448733 0.893666i \(-0.648125\pi\)
−0.448733 + 0.893666i \(0.648125\pi\)
\(440\) 0 0
\(441\) 7.20905 0.343288
\(442\) 0 0
\(443\) −16.7817 −0.797325 −0.398662 0.917098i \(-0.630525\pi\)
−0.398662 + 0.917098i \(0.630525\pi\)
\(444\) 0 0
\(445\) −6.70426 −0.317812
\(446\) 0 0
\(447\) 14.0271 0.663458
\(448\) 0 0
\(449\) 29.1983 1.37795 0.688977 0.724784i \(-0.258060\pi\)
0.688977 + 0.724784i \(0.258060\pi\)
\(450\) 0 0
\(451\) −49.2216 −2.31775
\(452\) 0 0
\(453\) −1.38221 −0.0649418
\(454\) 0 0
\(455\) 18.6691 0.875220
\(456\) 0 0
\(457\) 6.74219 0.315387 0.157693 0.987488i \(-0.449594\pi\)
0.157693 + 0.987488i \(0.449594\pi\)
\(458\) 0 0
\(459\) 36.5333 1.70523
\(460\) 0 0
\(461\) 17.8901 0.833226 0.416613 0.909084i \(-0.363217\pi\)
0.416613 + 0.909084i \(0.363217\pi\)
\(462\) 0 0
\(463\) −17.2936 −0.803703 −0.401851 0.915705i \(-0.631633\pi\)
−0.401851 + 0.915705i \(0.631633\pi\)
\(464\) 0 0
\(465\) 8.07456 0.374449
\(466\) 0 0
\(467\) 3.00187 0.138910 0.0694550 0.997585i \(-0.477874\pi\)
0.0694550 + 0.997585i \(0.477874\pi\)
\(468\) 0 0
\(469\) −3.87470 −0.178917
\(470\) 0 0
\(471\) −14.7967 −0.681796
\(472\) 0 0
\(473\) −47.0134 −2.16168
\(474\) 0 0
\(475\) 4.42926 0.203228
\(476\) 0 0
\(477\) 14.4833 0.663147
\(478\) 0 0
\(479\) 25.7701 1.17747 0.588734 0.808327i \(-0.299627\pi\)
0.588734 + 0.808327i \(0.299627\pi\)
\(480\) 0 0
\(481\) −8.14619 −0.371434
\(482\) 0 0
\(483\) −11.7052 −0.532605
\(484\) 0 0
\(485\) −28.6853 −1.30253
\(486\) 0 0
\(487\) −9.85904 −0.446756 −0.223378 0.974732i \(-0.571708\pi\)
−0.223378 + 0.974732i \(0.571708\pi\)
\(488\) 0 0
\(489\) 28.6397 1.29513
\(490\) 0 0
\(491\) −9.75565 −0.440266 −0.220133 0.975470i \(-0.570649\pi\)
−0.220133 + 0.975470i \(0.570649\pi\)
\(492\) 0 0
\(493\) 39.9798 1.80060
\(494\) 0 0
\(495\) −18.7559 −0.843013
\(496\) 0 0
\(497\) 3.02448 0.135667
\(498\) 0 0
\(499\) 3.06163 0.137058 0.0685288 0.997649i \(-0.478170\pi\)
0.0685288 + 0.997649i \(0.478170\pi\)
\(500\) 0 0
\(501\) 4.28957 0.191644
\(502\) 0 0
\(503\) 15.0940 0.673010 0.336505 0.941682i \(-0.390755\pi\)
0.336505 + 0.941682i \(0.390755\pi\)
\(504\) 0 0
\(505\) 34.9121 1.55357
\(506\) 0 0
\(507\) 15.8600 0.704368
\(508\) 0 0
\(509\) 13.2575 0.587629 0.293814 0.955863i \(-0.405075\pi\)
0.293814 + 0.955863i \(0.405075\pi\)
\(510\) 0 0
\(511\) −19.3856 −0.857570
\(512\) 0 0
\(513\) −31.3454 −1.38393
\(514\) 0 0
\(515\) −24.2839 −1.07008
\(516\) 0 0
\(517\) −38.3386 −1.68613
\(518\) 0 0
\(519\) 25.2670 1.10910
\(520\) 0 0
\(521\) 20.2639 0.887776 0.443888 0.896082i \(-0.353599\pi\)
0.443888 + 0.896082i \(0.353599\pi\)
\(522\) 0 0
\(523\) 2.18471 0.0955307 0.0477654 0.998859i \(-0.484790\pi\)
0.0477654 + 0.998859i \(0.484790\pi\)
\(524\) 0 0
\(525\) −1.42554 −0.0622158
\(526\) 0 0
\(527\) 18.4964 0.805716
\(528\) 0 0
\(529\) 17.5368 0.762470
\(530\) 0 0
\(531\) −9.70620 −0.421213
\(532\) 0 0
\(533\) 49.5496 2.14623
\(534\) 0 0
\(535\) −29.4933 −1.27511
\(536\) 0 0
\(537\) −2.57685 −0.111199
\(538\) 0 0
\(539\) 23.8035 1.02529
\(540\) 0 0
\(541\) 21.9779 0.944903 0.472452 0.881357i \(-0.343369\pi\)
0.472452 + 0.881357i \(0.343369\pi\)
\(542\) 0 0
\(543\) 22.4447 0.963194
\(544\) 0 0
\(545\) −34.1647 −1.46346
\(546\) 0 0
\(547\) 2.59714 0.111046 0.0555229 0.998457i \(-0.482317\pi\)
0.0555229 + 0.998457i \(0.482317\pi\)
\(548\) 0 0
\(549\) 12.2673 0.523556
\(550\) 0 0
\(551\) −34.3025 −1.46133
\(552\) 0 0
\(553\) 5.53774 0.235489
\(554\) 0 0
\(555\) 4.63305 0.196662
\(556\) 0 0
\(557\) 32.9165 1.39471 0.697357 0.716724i \(-0.254359\pi\)
0.697357 + 0.716724i \(0.254359\pi\)
\(558\) 0 0
\(559\) 47.3266 2.00170
\(560\) 0 0
\(561\) 40.8729 1.72565
\(562\) 0 0
\(563\) 16.1700 0.681485 0.340742 0.940157i \(-0.389322\pi\)
0.340742 + 0.940157i \(0.389322\pi\)
\(564\) 0 0
\(565\) −30.5265 −1.28426
\(566\) 0 0
\(567\) 3.07699 0.129222
\(568\) 0 0
\(569\) −11.9495 −0.500951 −0.250476 0.968123i \(-0.580587\pi\)
−0.250476 + 0.968123i \(0.580587\pi\)
\(570\) 0 0
\(571\) 18.1326 0.758824 0.379412 0.925228i \(-0.376126\pi\)
0.379412 + 0.925228i \(0.376126\pi\)
\(572\) 0 0
\(573\) −18.8920 −0.789225
\(574\) 0 0
\(575\) 4.93687 0.205882
\(576\) 0 0
\(577\) 22.5512 0.938817 0.469408 0.882981i \(-0.344467\pi\)
0.469408 + 0.882981i \(0.344467\pi\)
\(578\) 0 0
\(579\) −22.4238 −0.931903
\(580\) 0 0
\(581\) −1.04817 −0.0434853
\(582\) 0 0
\(583\) 47.8225 1.98060
\(584\) 0 0
\(585\) 18.8808 0.780626
\(586\) 0 0
\(587\) −22.1880 −0.915796 −0.457898 0.889005i \(-0.651397\pi\)
−0.457898 + 0.889005i \(0.651397\pi\)
\(588\) 0 0
\(589\) −15.8698 −0.653905
\(590\) 0 0
\(591\) −12.0730 −0.496617
\(592\) 0 0
\(593\) 30.4282 1.24954 0.624768 0.780811i \(-0.285194\pi\)
0.624768 + 0.780811i \(0.285194\pi\)
\(594\) 0 0
\(595\) −24.3223 −0.997117
\(596\) 0 0
\(597\) −6.45118 −0.264029
\(598\) 0 0
\(599\) −15.6413 −0.639086 −0.319543 0.947572i \(-0.603529\pi\)
−0.319543 + 0.947572i \(0.603529\pi\)
\(600\) 0 0
\(601\) −19.9435 −0.813512 −0.406756 0.913537i \(-0.633340\pi\)
−0.406756 + 0.913537i \(0.633340\pi\)
\(602\) 0 0
\(603\) −3.91864 −0.159580
\(604\) 0 0
\(605\) −35.4946 −1.44306
\(606\) 0 0
\(607\) 11.4793 0.465932 0.232966 0.972485i \(-0.425157\pi\)
0.232966 + 0.972485i \(0.425157\pi\)
\(608\) 0 0
\(609\) 11.0401 0.447369
\(610\) 0 0
\(611\) 38.5941 1.56135
\(612\) 0 0
\(613\) 11.2663 0.455044 0.227522 0.973773i \(-0.426938\pi\)
0.227522 + 0.973773i \(0.426938\pi\)
\(614\) 0 0
\(615\) −28.1808 −1.13636
\(616\) 0 0
\(617\) 10.0317 0.403861 0.201930 0.979400i \(-0.435279\pi\)
0.201930 + 0.979400i \(0.435279\pi\)
\(618\) 0 0
\(619\) −10.0658 −0.404579 −0.202289 0.979326i \(-0.564838\pi\)
−0.202289 + 0.979326i \(0.564838\pi\)
\(620\) 0 0
\(621\) −34.9377 −1.40200
\(622\) 0 0
\(623\) −4.24085 −0.169906
\(624\) 0 0
\(625\) −28.2758 −1.13103
\(626\) 0 0
\(627\) −35.0687 −1.40051
\(628\) 0 0
\(629\) 10.6129 0.423166
\(630\) 0 0
\(631\) 35.3530 1.40738 0.703691 0.710506i \(-0.251534\pi\)
0.703691 + 0.710506i \(0.251534\pi\)
\(632\) 0 0
\(633\) 23.9389 0.951488
\(634\) 0 0
\(635\) −41.2870 −1.63842
\(636\) 0 0
\(637\) −23.9621 −0.949414
\(638\) 0 0
\(639\) 3.05879 0.121004
\(640\) 0 0
\(641\) 0.166926 0.00659316 0.00329658 0.999995i \(-0.498951\pi\)
0.00329658 + 0.999995i \(0.498951\pi\)
\(642\) 0 0
\(643\) 30.9571 1.22083 0.610415 0.792082i \(-0.291003\pi\)
0.610415 + 0.792082i \(0.291003\pi\)
\(644\) 0 0
\(645\) −26.9165 −1.05984
\(646\) 0 0
\(647\) 0.959927 0.0377386 0.0188693 0.999822i \(-0.493993\pi\)
0.0188693 + 0.999822i \(0.493993\pi\)
\(648\) 0 0
\(649\) −32.0488 −1.25803
\(650\) 0 0
\(651\) 5.10765 0.200185
\(652\) 0 0
\(653\) 27.5173 1.07684 0.538418 0.842678i \(-0.319022\pi\)
0.538418 + 0.842678i \(0.319022\pi\)
\(654\) 0 0
\(655\) 12.5668 0.491027
\(656\) 0 0
\(657\) −19.6055 −0.764884
\(658\) 0 0
\(659\) −3.87281 −0.150863 −0.0754316 0.997151i \(-0.524033\pi\)
−0.0754316 + 0.997151i \(0.524033\pi\)
\(660\) 0 0
\(661\) 2.60845 0.101457 0.0507285 0.998712i \(-0.483846\pi\)
0.0507285 + 0.998712i \(0.483846\pi\)
\(662\) 0 0
\(663\) −41.1452 −1.59795
\(664\) 0 0
\(665\) 20.8684 0.809242
\(666\) 0 0
\(667\) −38.2336 −1.48041
\(668\) 0 0
\(669\) −35.4134 −1.36916
\(670\) 0 0
\(671\) 40.5054 1.56369
\(672\) 0 0
\(673\) −12.9907 −0.500753 −0.250376 0.968149i \(-0.580554\pi\)
−0.250376 + 0.968149i \(0.580554\pi\)
\(674\) 0 0
\(675\) −4.25496 −0.163774
\(676\) 0 0
\(677\) 30.7406 1.18146 0.590728 0.806871i \(-0.298841\pi\)
0.590728 + 0.806871i \(0.298841\pi\)
\(678\) 0 0
\(679\) −18.1452 −0.696349
\(680\) 0 0
\(681\) 7.14110 0.273648
\(682\) 0 0
\(683\) 6.20328 0.237362 0.118681 0.992932i \(-0.462133\pi\)
0.118681 + 0.992932i \(0.462133\pi\)
\(684\) 0 0
\(685\) 31.1608 1.19059
\(686\) 0 0
\(687\) 17.2651 0.658706
\(688\) 0 0
\(689\) −48.1411 −1.83403
\(690\) 0 0
\(691\) −18.1544 −0.690626 −0.345313 0.938488i \(-0.612227\pi\)
−0.345313 + 0.938488i \(0.612227\pi\)
\(692\) 0 0
\(693\) −11.8642 −0.450684
\(694\) 0 0
\(695\) −1.66457 −0.0631408
\(696\) 0 0
\(697\) −64.5537 −2.44515
\(698\) 0 0
\(699\) −32.7559 −1.23894
\(700\) 0 0
\(701\) −46.2492 −1.74681 −0.873404 0.486996i \(-0.838093\pi\)
−0.873404 + 0.486996i \(0.838093\pi\)
\(702\) 0 0
\(703\) −9.10585 −0.343434
\(704\) 0 0
\(705\) −21.9499 −0.826683
\(706\) 0 0
\(707\) 22.0840 0.830554
\(708\) 0 0
\(709\) −35.6219 −1.33781 −0.668904 0.743349i \(-0.733236\pi\)
−0.668904 + 0.743349i \(0.733236\pi\)
\(710\) 0 0
\(711\) 5.60055 0.210037
\(712\) 0 0
\(713\) −17.6885 −0.662441
\(714\) 0 0
\(715\) 62.3425 2.33148
\(716\) 0 0
\(717\) −9.64112 −0.360054
\(718\) 0 0
\(719\) 37.4220 1.39561 0.697803 0.716290i \(-0.254161\pi\)
0.697803 + 0.716290i \(0.254161\pi\)
\(720\) 0 0
\(721\) −15.3611 −0.572076
\(722\) 0 0
\(723\) −2.86036 −0.106378
\(724\) 0 0
\(725\) −4.65637 −0.172933
\(726\) 0 0
\(727\) 24.4331 0.906172 0.453086 0.891467i \(-0.350323\pi\)
0.453086 + 0.891467i \(0.350323\pi\)
\(728\) 0 0
\(729\) 23.0209 0.852628
\(730\) 0 0
\(731\) −61.6577 −2.28049
\(732\) 0 0
\(733\) 37.4726 1.38408 0.692042 0.721857i \(-0.256711\pi\)
0.692042 + 0.721857i \(0.256711\pi\)
\(734\) 0 0
\(735\) 13.6282 0.502684
\(736\) 0 0
\(737\) −12.9389 −0.476612
\(738\) 0 0
\(739\) 18.6134 0.684707 0.342353 0.939571i \(-0.388776\pi\)
0.342353 + 0.939571i \(0.388776\pi\)
\(740\) 0 0
\(741\) 35.3024 1.29686
\(742\) 0 0
\(743\) −0.773612 −0.0283811 −0.0141905 0.999899i \(-0.504517\pi\)
−0.0141905 + 0.999899i \(0.504517\pi\)
\(744\) 0 0
\(745\) −27.8739 −1.02122
\(746\) 0 0
\(747\) −1.06005 −0.0387854
\(748\) 0 0
\(749\) −18.6563 −0.681688
\(750\) 0 0
\(751\) 11.0543 0.403377 0.201689 0.979450i \(-0.435357\pi\)
0.201689 + 0.979450i \(0.435357\pi\)
\(752\) 0 0
\(753\) 27.8682 1.01557
\(754\) 0 0
\(755\) 2.74666 0.0999610
\(756\) 0 0
\(757\) 31.9235 1.16028 0.580140 0.814517i \(-0.302998\pi\)
0.580140 + 0.814517i \(0.302998\pi\)
\(758\) 0 0
\(759\) −39.0877 −1.41879
\(760\) 0 0
\(761\) 14.7166 0.533477 0.266739 0.963769i \(-0.414054\pi\)
0.266739 + 0.963769i \(0.414054\pi\)
\(762\) 0 0
\(763\) −21.6113 −0.782380
\(764\) 0 0
\(765\) −24.5982 −0.889348
\(766\) 0 0
\(767\) 32.2624 1.16493
\(768\) 0 0
\(769\) −18.0186 −0.649768 −0.324884 0.945754i \(-0.605325\pi\)
−0.324884 + 0.945754i \(0.605325\pi\)
\(770\) 0 0
\(771\) 28.1102 1.01236
\(772\) 0 0
\(773\) 48.8663 1.75760 0.878799 0.477193i \(-0.158346\pi\)
0.878799 + 0.477193i \(0.158346\pi\)
\(774\) 0 0
\(775\) −2.15424 −0.0773825
\(776\) 0 0
\(777\) 2.93069 0.105138
\(778\) 0 0
\(779\) 55.3868 1.98444
\(780\) 0 0
\(781\) 10.0998 0.361399
\(782\) 0 0
\(783\) 32.9526 1.17763
\(784\) 0 0
\(785\) 29.4033 1.04945
\(786\) 0 0
\(787\) 31.8942 1.13691 0.568453 0.822715i \(-0.307542\pi\)
0.568453 + 0.822715i \(0.307542\pi\)
\(788\) 0 0
\(789\) −5.59103 −0.199046
\(790\) 0 0
\(791\) −19.3099 −0.686579
\(792\) 0 0
\(793\) −40.7753 −1.44797
\(794\) 0 0
\(795\) 27.3797 0.971059
\(796\) 0 0
\(797\) −26.0846 −0.923964 −0.461982 0.886889i \(-0.652861\pi\)
−0.461982 + 0.886889i \(0.652861\pi\)
\(798\) 0 0
\(799\) −50.2808 −1.77881
\(800\) 0 0
\(801\) −4.28895 −0.151543
\(802\) 0 0
\(803\) −64.7353 −2.28446
\(804\) 0 0
\(805\) 23.2600 0.819806
\(806\) 0 0
\(807\) −1.20937 −0.0425720
\(808\) 0 0
\(809\) −2.45878 −0.0864461 −0.0432231 0.999065i \(-0.513763\pi\)
−0.0432231 + 0.999065i \(0.513763\pi\)
\(810\) 0 0
\(811\) 20.3841 0.715783 0.357891 0.933763i \(-0.383496\pi\)
0.357891 + 0.933763i \(0.383496\pi\)
\(812\) 0 0
\(813\) −15.0338 −0.527260
\(814\) 0 0
\(815\) −56.9114 −1.99352
\(816\) 0 0
\(817\) 52.9020 1.85081
\(818\) 0 0
\(819\) 11.9433 0.417332
\(820\) 0 0
\(821\) −8.31824 −0.290309 −0.145154 0.989409i \(-0.546368\pi\)
−0.145154 + 0.989409i \(0.546368\pi\)
\(822\) 0 0
\(823\) 25.5967 0.892244 0.446122 0.894972i \(-0.352805\pi\)
0.446122 + 0.894972i \(0.352805\pi\)
\(824\) 0 0
\(825\) −4.76038 −0.165735
\(826\) 0 0
\(827\) −28.4900 −0.990693 −0.495347 0.868695i \(-0.664959\pi\)
−0.495347 + 0.868695i \(0.664959\pi\)
\(828\) 0 0
\(829\) −15.2875 −0.530956 −0.265478 0.964117i \(-0.585530\pi\)
−0.265478 + 0.964117i \(0.585530\pi\)
\(830\) 0 0
\(831\) −5.95933 −0.206727
\(832\) 0 0
\(833\) 31.2181 1.08164
\(834\) 0 0
\(835\) −8.52403 −0.294986
\(836\) 0 0
\(837\) 15.2453 0.526955
\(838\) 0 0
\(839\) −33.9640 −1.17257 −0.586283 0.810106i \(-0.699409\pi\)
−0.586283 + 0.810106i \(0.699409\pi\)
\(840\) 0 0
\(841\) 7.06129 0.243493
\(842\) 0 0
\(843\) −25.7832 −0.888019
\(844\) 0 0
\(845\) −31.5162 −1.08419
\(846\) 0 0
\(847\) −22.4525 −0.771476
\(848\) 0 0
\(849\) 36.2808 1.24516
\(850\) 0 0
\(851\) −10.1494 −0.347917
\(852\) 0 0
\(853\) −18.6395 −0.638203 −0.319102 0.947720i \(-0.603381\pi\)
−0.319102 + 0.947720i \(0.603381\pi\)
\(854\) 0 0
\(855\) 21.1051 0.721779
\(856\) 0 0
\(857\) 38.5929 1.31831 0.659154 0.752008i \(-0.270915\pi\)
0.659154 + 0.752008i \(0.270915\pi\)
\(858\) 0 0
\(859\) −36.7533 −1.25400 −0.627002 0.779017i \(-0.715718\pi\)
−0.627002 + 0.779017i \(0.715718\pi\)
\(860\) 0 0
\(861\) −17.8260 −0.607510
\(862\) 0 0
\(863\) −39.5677 −1.34690 −0.673450 0.739233i \(-0.735188\pi\)
−0.673450 + 0.739233i \(0.735188\pi\)
\(864\) 0 0
\(865\) −50.2094 −1.70717
\(866\) 0 0
\(867\) 33.0451 1.12227
\(868\) 0 0
\(869\) 18.4924 0.627313
\(870\) 0 0
\(871\) 13.0252 0.441341
\(872\) 0 0
\(873\) −18.3510 −0.621087
\(874\) 0 0
\(875\) −15.4337 −0.521754
\(876\) 0 0
\(877\) 4.55367 0.153766 0.0768832 0.997040i \(-0.475503\pi\)
0.0768832 + 0.997040i \(0.475503\pi\)
\(878\) 0 0
\(879\) 20.4966 0.691334
\(880\) 0 0
\(881\) −16.4979 −0.555828 −0.277914 0.960606i \(-0.589643\pi\)
−0.277914 + 0.960606i \(0.589643\pi\)
\(882\) 0 0
\(883\) 43.4286 1.46149 0.730744 0.682652i \(-0.239173\pi\)
0.730744 + 0.682652i \(0.239173\pi\)
\(884\) 0 0
\(885\) −18.3489 −0.616790
\(886\) 0 0
\(887\) 9.36355 0.314397 0.157199 0.987567i \(-0.449754\pi\)
0.157199 + 0.987567i \(0.449754\pi\)
\(888\) 0 0
\(889\) −26.1165 −0.875920
\(890\) 0 0
\(891\) 10.2751 0.344230
\(892\) 0 0
\(893\) 43.1406 1.44365
\(894\) 0 0
\(895\) 5.12058 0.171162
\(896\) 0 0
\(897\) 39.3481 1.31380
\(898\) 0 0
\(899\) 16.6835 0.556427
\(900\) 0 0
\(901\) 62.7188 2.08947
\(902\) 0 0
\(903\) −17.0263 −0.566600
\(904\) 0 0
\(905\) −44.6010 −1.48259
\(906\) 0 0
\(907\) 43.0813 1.43049 0.715246 0.698873i \(-0.246315\pi\)
0.715246 + 0.698873i \(0.246315\pi\)
\(908\) 0 0
\(909\) 22.3345 0.740788
\(910\) 0 0
\(911\) 3.70489 0.122749 0.0613743 0.998115i \(-0.480452\pi\)
0.0613743 + 0.998115i \(0.480452\pi\)
\(912\) 0 0
\(913\) −3.50019 −0.115839
\(914\) 0 0
\(915\) 23.1905 0.766654
\(916\) 0 0
\(917\) 7.94928 0.262508
\(918\) 0 0
\(919\) −42.2046 −1.39220 −0.696101 0.717944i \(-0.745083\pi\)
−0.696101 + 0.717944i \(0.745083\pi\)
\(920\) 0 0
\(921\) −22.3390 −0.736093
\(922\) 0 0
\(923\) −10.1671 −0.334654
\(924\) 0 0
\(925\) −1.23607 −0.0406417
\(926\) 0 0
\(927\) −15.5353 −0.510246
\(928\) 0 0
\(929\) −40.9616 −1.34391 −0.671954 0.740593i \(-0.734545\pi\)
−0.671954 + 0.740593i \(0.734545\pi\)
\(930\) 0 0
\(931\) −26.7850 −0.877843
\(932\) 0 0
\(933\) −16.8273 −0.550901
\(934\) 0 0
\(935\) −81.2205 −2.65619
\(936\) 0 0
\(937\) −11.2419 −0.367258 −0.183629 0.982996i \(-0.558785\pi\)
−0.183629 + 0.982996i \(0.558785\pi\)
\(938\) 0 0
\(939\) 26.5658 0.866942
\(940\) 0 0
\(941\) 1.14007 0.0371652 0.0185826 0.999827i \(-0.494085\pi\)
0.0185826 + 0.999827i \(0.494085\pi\)
\(942\) 0 0
\(943\) 61.7342 2.01034
\(944\) 0 0
\(945\) −20.0472 −0.652135
\(946\) 0 0
\(947\) 20.5389 0.667424 0.333712 0.942675i \(-0.391699\pi\)
0.333712 + 0.942675i \(0.391699\pi\)
\(948\) 0 0
\(949\) 65.1667 2.11540
\(950\) 0 0
\(951\) −4.08853 −0.132580
\(952\) 0 0
\(953\) −18.6016 −0.602567 −0.301283 0.953535i \(-0.597415\pi\)
−0.301283 + 0.953535i \(0.597415\pi\)
\(954\) 0 0
\(955\) 37.5413 1.21481
\(956\) 0 0
\(957\) 36.8668 1.19173
\(958\) 0 0
\(959\) 19.7111 0.636505
\(960\) 0 0
\(961\) −23.2815 −0.751015
\(962\) 0 0
\(963\) −18.8679 −0.608011
\(964\) 0 0
\(965\) 44.5595 1.43442
\(966\) 0 0
\(967\) 21.3331 0.686026 0.343013 0.939331i \(-0.388553\pi\)
0.343013 + 0.939331i \(0.388553\pi\)
\(968\) 0 0
\(969\) −45.9923 −1.47749
\(970\) 0 0
\(971\) −13.0827 −0.419844 −0.209922 0.977718i \(-0.567321\pi\)
−0.209922 + 0.977718i \(0.567321\pi\)
\(972\) 0 0
\(973\) −1.05294 −0.0337558
\(974\) 0 0
\(975\) 4.79210 0.153470
\(976\) 0 0
\(977\) −22.6902 −0.725924 −0.362962 0.931804i \(-0.618234\pi\)
−0.362962 + 0.931804i \(0.618234\pi\)
\(978\) 0 0
\(979\) −14.1617 −0.452609
\(980\) 0 0
\(981\) −21.8564 −0.697820
\(982\) 0 0
\(983\) 51.3612 1.63817 0.819084 0.573674i \(-0.194482\pi\)
0.819084 + 0.573674i \(0.194482\pi\)
\(984\) 0 0
\(985\) 23.9909 0.764412
\(986\) 0 0
\(987\) −13.8847 −0.441954
\(988\) 0 0
\(989\) 58.9647 1.87497
\(990\) 0 0
\(991\) 11.0015 0.349475 0.174737 0.984615i \(-0.444092\pi\)
0.174737 + 0.984615i \(0.444092\pi\)
\(992\) 0 0
\(993\) −26.5561 −0.842732
\(994\) 0 0
\(995\) 12.8195 0.406404
\(996\) 0 0
\(997\) 12.2415 0.387693 0.193846 0.981032i \(-0.437904\pi\)
0.193846 + 0.981032i \(0.437904\pi\)
\(998\) 0 0
\(999\) 8.74752 0.276759
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.i.1.5 7
4.3 odd 2 538.2.a.d.1.3 7
12.11 even 2 4842.2.a.o.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.d.1.3 7 4.3 odd 2
4304.2.a.i.1.5 7 1.1 even 1 trivial
4842.2.a.o.1.5 7 12.11 even 2