Properties

Label 4304.2.a.i.1.4
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 10x^{5} + 7x^{4} + 27x^{3} - 15x^{2} - 20x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.49844\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.370477 q^{3} +2.98038 q^{5} +2.56529 q^{7} -2.86275 q^{9} +5.77573 q^{11} -0.953732 q^{13} +1.10416 q^{15} +2.51668 q^{17} +7.19922 q^{19} +0.950379 q^{21} +5.17399 q^{23} +3.88265 q^{25} -2.17201 q^{27} +4.63236 q^{29} -8.16921 q^{31} +2.13977 q^{33} +7.64552 q^{35} -9.43775 q^{37} -0.353336 q^{39} +2.46810 q^{41} -5.86496 q^{43} -8.53207 q^{45} +9.50969 q^{47} -0.419304 q^{49} +0.932373 q^{51} -7.51226 q^{53} +17.2139 q^{55} +2.66714 q^{57} +1.01485 q^{59} -5.86716 q^{61} -7.34377 q^{63} -2.84248 q^{65} -12.1288 q^{67} +1.91685 q^{69} +12.3537 q^{71} +0.650878 q^{73} +1.43843 q^{75} +14.8164 q^{77} -15.5158 q^{79} +7.78356 q^{81} +8.27171 q^{83} +7.50067 q^{85} +1.71618 q^{87} +2.89852 q^{89} -2.44660 q^{91} -3.02650 q^{93} +21.4564 q^{95} +0.956247 q^{97} -16.5345 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 4 q^{3} - 6 q^{5} + 3 q^{7} + 7 q^{9} + 12 q^{11} + 3 q^{13} + 6 q^{15} - 8 q^{17} + 7 q^{19} - 5 q^{21} + 22 q^{23} + 9 q^{25} + 22 q^{27} - 7 q^{29} + 3 q^{31} - 19 q^{33} + 25 q^{35} - 13 q^{37}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.370477 0.213895 0.106947 0.994265i \(-0.465892\pi\)
0.106947 + 0.994265i \(0.465892\pi\)
\(4\) 0 0
\(5\) 2.98038 1.33287 0.666433 0.745565i \(-0.267820\pi\)
0.666433 + 0.745565i \(0.267820\pi\)
\(6\) 0 0
\(7\) 2.56529 0.969587 0.484794 0.874629i \(-0.338895\pi\)
0.484794 + 0.874629i \(0.338895\pi\)
\(8\) 0 0
\(9\) −2.86275 −0.954249
\(10\) 0 0
\(11\) 5.77573 1.74145 0.870724 0.491772i \(-0.163651\pi\)
0.870724 + 0.491772i \(0.163651\pi\)
\(12\) 0 0
\(13\) −0.953732 −0.264518 −0.132259 0.991215i \(-0.542223\pi\)
−0.132259 + 0.991215i \(0.542223\pi\)
\(14\) 0 0
\(15\) 1.10416 0.285093
\(16\) 0 0
\(17\) 2.51668 0.610385 0.305193 0.952291i \(-0.401279\pi\)
0.305193 + 0.952291i \(0.401279\pi\)
\(18\) 0 0
\(19\) 7.19922 1.65161 0.825807 0.563953i \(-0.190720\pi\)
0.825807 + 0.563953i \(0.190720\pi\)
\(20\) 0 0
\(21\) 0.950379 0.207390
\(22\) 0 0
\(23\) 5.17399 1.07885 0.539426 0.842033i \(-0.318641\pi\)
0.539426 + 0.842033i \(0.318641\pi\)
\(24\) 0 0
\(25\) 3.88265 0.776530
\(26\) 0 0
\(27\) −2.17201 −0.418004
\(28\) 0 0
\(29\) 4.63236 0.860208 0.430104 0.902779i \(-0.358477\pi\)
0.430104 + 0.902779i \(0.358477\pi\)
\(30\) 0 0
\(31\) −8.16921 −1.46723 −0.733617 0.679563i \(-0.762169\pi\)
−0.733617 + 0.679563i \(0.762169\pi\)
\(32\) 0 0
\(33\) 2.13977 0.372487
\(34\) 0 0
\(35\) 7.64552 1.29233
\(36\) 0 0
\(37\) −9.43775 −1.55156 −0.775778 0.631006i \(-0.782642\pi\)
−0.775778 + 0.631006i \(0.782642\pi\)
\(38\) 0 0
\(39\) −0.353336 −0.0565790
\(40\) 0 0
\(41\) 2.46810 0.385453 0.192726 0.981253i \(-0.438267\pi\)
0.192726 + 0.981253i \(0.438267\pi\)
\(42\) 0 0
\(43\) −5.86496 −0.894398 −0.447199 0.894435i \(-0.647578\pi\)
−0.447199 + 0.894435i \(0.647578\pi\)
\(44\) 0 0
\(45\) −8.53207 −1.27189
\(46\) 0 0
\(47\) 9.50969 1.38713 0.693565 0.720394i \(-0.256039\pi\)
0.693565 + 0.720394i \(0.256039\pi\)
\(48\) 0 0
\(49\) −0.419304 −0.0599006
\(50\) 0 0
\(51\) 0.932373 0.130558
\(52\) 0 0
\(53\) −7.51226 −1.03189 −0.515944 0.856622i \(-0.672559\pi\)
−0.515944 + 0.856622i \(0.672559\pi\)
\(54\) 0 0
\(55\) 17.2139 2.32112
\(56\) 0 0
\(57\) 2.66714 0.353272
\(58\) 0 0
\(59\) 1.01485 0.132122 0.0660610 0.997816i \(-0.478957\pi\)
0.0660610 + 0.997816i \(0.478957\pi\)
\(60\) 0 0
\(61\) −5.86716 −0.751212 −0.375606 0.926779i \(-0.622565\pi\)
−0.375606 + 0.926779i \(0.622565\pi\)
\(62\) 0 0
\(63\) −7.34377 −0.925228
\(64\) 0 0
\(65\) −2.84248 −0.352566
\(66\) 0 0
\(67\) −12.1288 −1.48177 −0.740883 0.671634i \(-0.765593\pi\)
−0.740883 + 0.671634i \(0.765593\pi\)
\(68\) 0 0
\(69\) 1.91685 0.230761
\(70\) 0 0
\(71\) 12.3537 1.46611 0.733057 0.680167i \(-0.238093\pi\)
0.733057 + 0.680167i \(0.238093\pi\)
\(72\) 0 0
\(73\) 0.650878 0.0761795 0.0380897 0.999274i \(-0.487873\pi\)
0.0380897 + 0.999274i \(0.487873\pi\)
\(74\) 0 0
\(75\) 1.43843 0.166096
\(76\) 0 0
\(77\) 14.8164 1.68849
\(78\) 0 0
\(79\) −15.5158 −1.74567 −0.872834 0.488018i \(-0.837720\pi\)
−0.872834 + 0.488018i \(0.837720\pi\)
\(80\) 0 0
\(81\) 7.78356 0.864840
\(82\) 0 0
\(83\) 8.27171 0.907939 0.453969 0.891017i \(-0.350008\pi\)
0.453969 + 0.891017i \(0.350008\pi\)
\(84\) 0 0
\(85\) 7.50067 0.813562
\(86\) 0 0
\(87\) 1.71618 0.183994
\(88\) 0 0
\(89\) 2.89852 0.307242 0.153621 0.988130i \(-0.450907\pi\)
0.153621 + 0.988130i \(0.450907\pi\)
\(90\) 0 0
\(91\) −2.44660 −0.256473
\(92\) 0 0
\(93\) −3.02650 −0.313834
\(94\) 0 0
\(95\) 21.4564 2.20138
\(96\) 0 0
\(97\) 0.956247 0.0970922 0.0485461 0.998821i \(-0.484541\pi\)
0.0485461 + 0.998821i \(0.484541\pi\)
\(98\) 0 0
\(99\) −16.5345 −1.66178
\(100\) 0 0
\(101\) 5.92549 0.589608 0.294804 0.955558i \(-0.404746\pi\)
0.294804 + 0.955558i \(0.404746\pi\)
\(102\) 0 0
\(103\) 7.57015 0.745909 0.372955 0.927850i \(-0.378345\pi\)
0.372955 + 0.927850i \(0.378345\pi\)
\(104\) 0 0
\(105\) 2.83249 0.276423
\(106\) 0 0
\(107\) −16.0455 −1.55118 −0.775589 0.631238i \(-0.782547\pi\)
−0.775589 + 0.631238i \(0.782547\pi\)
\(108\) 0 0
\(109\) 2.50942 0.240359 0.120179 0.992752i \(-0.461653\pi\)
0.120179 + 0.992752i \(0.461653\pi\)
\(110\) 0 0
\(111\) −3.49647 −0.331870
\(112\) 0 0
\(113\) −13.4589 −1.26611 −0.633055 0.774107i \(-0.718199\pi\)
−0.633055 + 0.774107i \(0.718199\pi\)
\(114\) 0 0
\(115\) 15.4205 1.43796
\(116\) 0 0
\(117\) 2.73029 0.252416
\(118\) 0 0
\(119\) 6.45602 0.591822
\(120\) 0 0
\(121\) 22.3591 2.03264
\(122\) 0 0
\(123\) 0.914375 0.0824464
\(124\) 0 0
\(125\) −3.33013 −0.297856
\(126\) 0 0
\(127\) −2.35435 −0.208915 −0.104458 0.994529i \(-0.533311\pi\)
−0.104458 + 0.994529i \(0.533311\pi\)
\(128\) 0 0
\(129\) −2.17283 −0.191307
\(130\) 0 0
\(131\) −8.14252 −0.711415 −0.355708 0.934597i \(-0.615760\pi\)
−0.355708 + 0.934597i \(0.615760\pi\)
\(132\) 0 0
\(133\) 18.4681 1.60138
\(134\) 0 0
\(135\) −6.47342 −0.557143
\(136\) 0 0
\(137\) −13.5630 −1.15876 −0.579382 0.815056i \(-0.696706\pi\)
−0.579382 + 0.815056i \(0.696706\pi\)
\(138\) 0 0
\(139\) 17.6145 1.49405 0.747023 0.664798i \(-0.231482\pi\)
0.747023 + 0.664798i \(0.231482\pi\)
\(140\) 0 0
\(141\) 3.52312 0.296700
\(142\) 0 0
\(143\) −5.50850 −0.460644
\(144\) 0 0
\(145\) 13.8062 1.14654
\(146\) 0 0
\(147\) −0.155342 −0.0128124
\(148\) 0 0
\(149\) 4.73354 0.387787 0.193893 0.981023i \(-0.437888\pi\)
0.193893 + 0.981023i \(0.437888\pi\)
\(150\) 0 0
\(151\) −18.5426 −1.50897 −0.754486 0.656316i \(-0.772114\pi\)
−0.754486 + 0.656316i \(0.772114\pi\)
\(152\) 0 0
\(153\) −7.20463 −0.582460
\(154\) 0 0
\(155\) −24.3473 −1.95562
\(156\) 0 0
\(157\) 6.62583 0.528799 0.264399 0.964413i \(-0.414826\pi\)
0.264399 + 0.964413i \(0.414826\pi\)
\(158\) 0 0
\(159\) −2.78312 −0.220716
\(160\) 0 0
\(161\) 13.2728 1.04604
\(162\) 0 0
\(163\) 7.35217 0.575867 0.287933 0.957650i \(-0.407032\pi\)
0.287933 + 0.957650i \(0.407032\pi\)
\(164\) 0 0
\(165\) 6.37734 0.496475
\(166\) 0 0
\(167\) 18.4854 1.43045 0.715223 0.698896i \(-0.246325\pi\)
0.715223 + 0.698896i \(0.246325\pi\)
\(168\) 0 0
\(169\) −12.0904 −0.930030
\(170\) 0 0
\(171\) −20.6095 −1.57605
\(172\) 0 0
\(173\) −15.2035 −1.15590 −0.577951 0.816071i \(-0.696148\pi\)
−0.577951 + 0.816071i \(0.696148\pi\)
\(174\) 0 0
\(175\) 9.96011 0.752913
\(176\) 0 0
\(177\) 0.375978 0.0282602
\(178\) 0 0
\(179\) 8.92937 0.667412 0.333706 0.942677i \(-0.391701\pi\)
0.333706 + 0.942677i \(0.391701\pi\)
\(180\) 0 0
\(181\) 8.96265 0.666189 0.333094 0.942894i \(-0.391907\pi\)
0.333094 + 0.942894i \(0.391907\pi\)
\(182\) 0 0
\(183\) −2.17365 −0.160680
\(184\) 0 0
\(185\) −28.1280 −2.06802
\(186\) 0 0
\(187\) 14.5357 1.06295
\(188\) 0 0
\(189\) −5.57183 −0.405291
\(190\) 0 0
\(191\) 2.71179 0.196218 0.0981091 0.995176i \(-0.468721\pi\)
0.0981091 + 0.995176i \(0.468721\pi\)
\(192\) 0 0
\(193\) −10.4616 −0.753042 −0.376521 0.926408i \(-0.622880\pi\)
−0.376521 + 0.926408i \(0.622880\pi\)
\(194\) 0 0
\(195\) −1.05307 −0.0754122
\(196\) 0 0
\(197\) −8.17270 −0.582280 −0.291140 0.956680i \(-0.594035\pi\)
−0.291140 + 0.956680i \(0.594035\pi\)
\(198\) 0 0
\(199\) −23.4576 −1.66287 −0.831433 0.555625i \(-0.812479\pi\)
−0.831433 + 0.555625i \(0.812479\pi\)
\(200\) 0 0
\(201\) −4.49343 −0.316942
\(202\) 0 0
\(203\) 11.8833 0.834047
\(204\) 0 0
\(205\) 7.35587 0.513757
\(206\) 0 0
\(207\) −14.8118 −1.02949
\(208\) 0 0
\(209\) 41.5807 2.87620
\(210\) 0 0
\(211\) −23.7236 −1.63320 −0.816600 0.577203i \(-0.804144\pi\)
−0.816600 + 0.577203i \(0.804144\pi\)
\(212\) 0 0
\(213\) 4.57676 0.313594
\(214\) 0 0
\(215\) −17.4798 −1.19211
\(216\) 0 0
\(217\) −20.9564 −1.42261
\(218\) 0 0
\(219\) 0.241135 0.0162944
\(220\) 0 0
\(221\) −2.40024 −0.161458
\(222\) 0 0
\(223\) 4.63802 0.310585 0.155292 0.987869i \(-0.450368\pi\)
0.155292 + 0.987869i \(0.450368\pi\)
\(224\) 0 0
\(225\) −11.1150 −0.741003
\(226\) 0 0
\(227\) −2.30295 −0.152852 −0.0764261 0.997075i \(-0.524351\pi\)
−0.0764261 + 0.997075i \(0.524351\pi\)
\(228\) 0 0
\(229\) 1.98890 0.131430 0.0657150 0.997838i \(-0.479067\pi\)
0.0657150 + 0.997838i \(0.479067\pi\)
\(230\) 0 0
\(231\) 5.48913 0.361159
\(232\) 0 0
\(233\) 5.58928 0.366166 0.183083 0.983097i \(-0.441392\pi\)
0.183083 + 0.983097i \(0.441392\pi\)
\(234\) 0 0
\(235\) 28.3425 1.84886
\(236\) 0 0
\(237\) −5.74826 −0.373389
\(238\) 0 0
\(239\) 3.34553 0.216404 0.108202 0.994129i \(-0.465491\pi\)
0.108202 + 0.994129i \(0.465491\pi\)
\(240\) 0 0
\(241\) 26.7139 1.72079 0.860395 0.509627i \(-0.170217\pi\)
0.860395 + 0.509627i \(0.170217\pi\)
\(242\) 0 0
\(243\) 9.39967 0.602989
\(244\) 0 0
\(245\) −1.24968 −0.0798394
\(246\) 0 0
\(247\) −6.86613 −0.436881
\(248\) 0 0
\(249\) 3.06448 0.194203
\(250\) 0 0
\(251\) 29.3076 1.84988 0.924940 0.380112i \(-0.124115\pi\)
0.924940 + 0.380112i \(0.124115\pi\)
\(252\) 0 0
\(253\) 29.8836 1.87877
\(254\) 0 0
\(255\) 2.77882 0.174017
\(256\) 0 0
\(257\) 10.3803 0.647504 0.323752 0.946142i \(-0.395056\pi\)
0.323752 + 0.946142i \(0.395056\pi\)
\(258\) 0 0
\(259\) −24.2105 −1.50437
\(260\) 0 0
\(261\) −13.2613 −0.820853
\(262\) 0 0
\(263\) 8.83916 0.545046 0.272523 0.962149i \(-0.412142\pi\)
0.272523 + 0.962149i \(0.412142\pi\)
\(264\) 0 0
\(265\) −22.3894 −1.37537
\(266\) 0 0
\(267\) 1.07383 0.0657175
\(268\) 0 0
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) −7.39604 −0.449277 −0.224639 0.974442i \(-0.572120\pi\)
−0.224639 + 0.974442i \(0.572120\pi\)
\(272\) 0 0
\(273\) −0.906407 −0.0548583
\(274\) 0 0
\(275\) 22.4251 1.35229
\(276\) 0 0
\(277\) 13.5773 0.815779 0.407890 0.913031i \(-0.366265\pi\)
0.407890 + 0.913031i \(0.366265\pi\)
\(278\) 0 0
\(279\) 23.3864 1.40011
\(280\) 0 0
\(281\) 13.5723 0.809653 0.404826 0.914394i \(-0.367332\pi\)
0.404826 + 0.914394i \(0.367332\pi\)
\(282\) 0 0
\(283\) −20.5026 −1.21875 −0.609377 0.792880i \(-0.708581\pi\)
−0.609377 + 0.792880i \(0.708581\pi\)
\(284\) 0 0
\(285\) 7.94909 0.470864
\(286\) 0 0
\(287\) 6.33139 0.373730
\(288\) 0 0
\(289\) −10.6663 −0.627430
\(290\) 0 0
\(291\) 0.354267 0.0207675
\(292\) 0 0
\(293\) −26.0133 −1.51971 −0.759857 0.650090i \(-0.774731\pi\)
−0.759857 + 0.650090i \(0.774731\pi\)
\(294\) 0 0
\(295\) 3.02463 0.176101
\(296\) 0 0
\(297\) −12.5450 −0.727932
\(298\) 0 0
\(299\) −4.93460 −0.285376
\(300\) 0 0
\(301\) −15.0453 −0.867197
\(302\) 0 0
\(303\) 2.19526 0.126114
\(304\) 0 0
\(305\) −17.4863 −1.00126
\(306\) 0 0
\(307\) 17.3993 0.993031 0.496516 0.868028i \(-0.334613\pi\)
0.496516 + 0.868028i \(0.334613\pi\)
\(308\) 0 0
\(309\) 2.80457 0.159546
\(310\) 0 0
\(311\) 13.4740 0.764038 0.382019 0.924155i \(-0.375229\pi\)
0.382019 + 0.924155i \(0.375229\pi\)
\(312\) 0 0
\(313\) −9.89195 −0.559126 −0.279563 0.960127i \(-0.590190\pi\)
−0.279563 + 0.960127i \(0.590190\pi\)
\(314\) 0 0
\(315\) −21.8872 −1.23320
\(316\) 0 0
\(317\) 19.2200 1.07950 0.539751 0.841825i \(-0.318518\pi\)
0.539751 + 0.841825i \(0.318518\pi\)
\(318\) 0 0
\(319\) 26.7553 1.49801
\(320\) 0 0
\(321\) −5.94449 −0.331789
\(322\) 0 0
\(323\) 18.1182 1.00812
\(324\) 0 0
\(325\) −3.70301 −0.205406
\(326\) 0 0
\(327\) 0.929682 0.0514115
\(328\) 0 0
\(329\) 24.3951 1.34494
\(330\) 0 0
\(331\) 10.6168 0.583550 0.291775 0.956487i \(-0.405754\pi\)
0.291775 + 0.956487i \(0.405754\pi\)
\(332\) 0 0
\(333\) 27.0179 1.48057
\(334\) 0 0
\(335\) −36.1483 −1.97499
\(336\) 0 0
\(337\) −4.73621 −0.257998 −0.128999 0.991645i \(-0.541176\pi\)
−0.128999 + 0.991645i \(0.541176\pi\)
\(338\) 0 0
\(339\) −4.98622 −0.270814
\(340\) 0 0
\(341\) −47.1832 −2.55511
\(342\) 0 0
\(343\) −19.0326 −1.02767
\(344\) 0 0
\(345\) 5.71292 0.307573
\(346\) 0 0
\(347\) 9.70333 0.520902 0.260451 0.965487i \(-0.416129\pi\)
0.260451 + 0.965487i \(0.416129\pi\)
\(348\) 0 0
\(349\) −34.9874 −1.87283 −0.936416 0.350893i \(-0.885878\pi\)
−0.936416 + 0.350893i \(0.885878\pi\)
\(350\) 0 0
\(351\) 2.07152 0.110569
\(352\) 0 0
\(353\) 17.9950 0.957777 0.478888 0.877876i \(-0.341040\pi\)
0.478888 + 0.877876i \(0.341040\pi\)
\(354\) 0 0
\(355\) 36.8187 1.95413
\(356\) 0 0
\(357\) 2.39180 0.126588
\(358\) 0 0
\(359\) 8.64349 0.456186 0.228093 0.973639i \(-0.426751\pi\)
0.228093 + 0.973639i \(0.426751\pi\)
\(360\) 0 0
\(361\) 32.8287 1.72783
\(362\) 0 0
\(363\) 8.28351 0.434772
\(364\) 0 0
\(365\) 1.93986 0.101537
\(366\) 0 0
\(367\) 25.4599 1.32899 0.664497 0.747291i \(-0.268646\pi\)
0.664497 + 0.747291i \(0.268646\pi\)
\(368\) 0 0
\(369\) −7.06555 −0.367818
\(370\) 0 0
\(371\) −19.2711 −1.00051
\(372\) 0 0
\(373\) −5.63673 −0.291859 −0.145929 0.989295i \(-0.546617\pi\)
−0.145929 + 0.989295i \(0.546617\pi\)
\(374\) 0 0
\(375\) −1.23374 −0.0637098
\(376\) 0 0
\(377\) −4.41803 −0.227540
\(378\) 0 0
\(379\) 16.2741 0.835944 0.417972 0.908460i \(-0.362741\pi\)
0.417972 + 0.908460i \(0.362741\pi\)
\(380\) 0 0
\(381\) −0.872233 −0.0446859
\(382\) 0 0
\(383\) −17.3292 −0.885483 −0.442742 0.896649i \(-0.645994\pi\)
−0.442742 + 0.896649i \(0.645994\pi\)
\(384\) 0 0
\(385\) 44.1585 2.25052
\(386\) 0 0
\(387\) 16.7899 0.853478
\(388\) 0 0
\(389\) 32.7406 1.66002 0.830008 0.557752i \(-0.188336\pi\)
0.830008 + 0.557752i \(0.188336\pi\)
\(390\) 0 0
\(391\) 13.0213 0.658516
\(392\) 0 0
\(393\) −3.01661 −0.152168
\(394\) 0 0
\(395\) −46.2430 −2.32674
\(396\) 0 0
\(397\) −10.1894 −0.511392 −0.255696 0.966757i \(-0.582305\pi\)
−0.255696 + 0.966757i \(0.582305\pi\)
\(398\) 0 0
\(399\) 6.84199 0.342528
\(400\) 0 0
\(401\) 27.6214 1.37935 0.689673 0.724121i \(-0.257754\pi\)
0.689673 + 0.724121i \(0.257754\pi\)
\(402\) 0 0
\(403\) 7.79124 0.388109
\(404\) 0 0
\(405\) 23.1979 1.15272
\(406\) 0 0
\(407\) −54.5099 −2.70195
\(408\) 0 0
\(409\) −32.3617 −1.60018 −0.800092 0.599877i \(-0.795216\pi\)
−0.800092 + 0.599877i \(0.795216\pi\)
\(410\) 0 0
\(411\) −5.02477 −0.247854
\(412\) 0 0
\(413\) 2.60338 0.128104
\(414\) 0 0
\(415\) 24.6528 1.21016
\(416\) 0 0
\(417\) 6.52578 0.319569
\(418\) 0 0
\(419\) 20.7391 1.01317 0.506586 0.862189i \(-0.330907\pi\)
0.506586 + 0.862189i \(0.330907\pi\)
\(420\) 0 0
\(421\) −2.74188 −0.133631 −0.0668155 0.997765i \(-0.521284\pi\)
−0.0668155 + 0.997765i \(0.521284\pi\)
\(422\) 0 0
\(423\) −27.2238 −1.32367
\(424\) 0 0
\(425\) 9.77140 0.473983
\(426\) 0 0
\(427\) −15.0509 −0.728366
\(428\) 0 0
\(429\) −2.04077 −0.0985294
\(430\) 0 0
\(431\) 1.93294 0.0931065 0.0465533 0.998916i \(-0.485176\pi\)
0.0465533 + 0.998916i \(0.485176\pi\)
\(432\) 0 0
\(433\) 4.35794 0.209429 0.104715 0.994502i \(-0.466607\pi\)
0.104715 + 0.994502i \(0.466607\pi\)
\(434\) 0 0
\(435\) 5.11487 0.245239
\(436\) 0 0
\(437\) 37.2487 1.78185
\(438\) 0 0
\(439\) −8.19465 −0.391109 −0.195555 0.980693i \(-0.562651\pi\)
−0.195555 + 0.980693i \(0.562651\pi\)
\(440\) 0 0
\(441\) 1.20036 0.0571601
\(442\) 0 0
\(443\) 5.51425 0.261990 0.130995 0.991383i \(-0.458183\pi\)
0.130995 + 0.991383i \(0.458183\pi\)
\(444\) 0 0
\(445\) 8.63867 0.409512
\(446\) 0 0
\(447\) 1.75367 0.0829456
\(448\) 0 0
\(449\) −19.1545 −0.903956 −0.451978 0.892029i \(-0.649281\pi\)
−0.451978 + 0.892029i \(0.649281\pi\)
\(450\) 0 0
\(451\) 14.2551 0.671246
\(452\) 0 0
\(453\) −6.86959 −0.322762
\(454\) 0 0
\(455\) −7.29178 −0.341844
\(456\) 0 0
\(457\) −41.6610 −1.94882 −0.974409 0.224783i \(-0.927833\pi\)
−0.974409 + 0.224783i \(0.927833\pi\)
\(458\) 0 0
\(459\) −5.46627 −0.255144
\(460\) 0 0
\(461\) 28.7942 1.34108 0.670539 0.741874i \(-0.266063\pi\)
0.670539 + 0.741874i \(0.266063\pi\)
\(462\) 0 0
\(463\) −1.89638 −0.0881321 −0.0440660 0.999029i \(-0.514031\pi\)
−0.0440660 + 0.999029i \(0.514031\pi\)
\(464\) 0 0
\(465\) −9.02012 −0.418298
\(466\) 0 0
\(467\) 9.53499 0.441227 0.220613 0.975361i \(-0.429194\pi\)
0.220613 + 0.975361i \(0.429194\pi\)
\(468\) 0 0
\(469\) −31.1138 −1.43670
\(470\) 0 0
\(471\) 2.45472 0.113107
\(472\) 0 0
\(473\) −33.8744 −1.55755
\(474\) 0 0
\(475\) 27.9520 1.28253
\(476\) 0 0
\(477\) 21.5057 0.984678
\(478\) 0 0
\(479\) −11.2845 −0.515602 −0.257801 0.966198i \(-0.582998\pi\)
−0.257801 + 0.966198i \(0.582998\pi\)
\(480\) 0 0
\(481\) 9.00108 0.410414
\(482\) 0 0
\(483\) 4.91726 0.223743
\(484\) 0 0
\(485\) 2.84998 0.129411
\(486\) 0 0
\(487\) −13.3515 −0.605014 −0.302507 0.953147i \(-0.597824\pi\)
−0.302507 + 0.953147i \(0.597824\pi\)
\(488\) 0 0
\(489\) 2.72381 0.123175
\(490\) 0 0
\(491\) −37.9516 −1.71273 −0.856365 0.516370i \(-0.827283\pi\)
−0.856365 + 0.516370i \(0.827283\pi\)
\(492\) 0 0
\(493\) 11.6582 0.525058
\(494\) 0 0
\(495\) −49.2789 −2.21492
\(496\) 0 0
\(497\) 31.6908 1.42153
\(498\) 0 0
\(499\) 27.6365 1.23718 0.618590 0.785714i \(-0.287704\pi\)
0.618590 + 0.785714i \(0.287704\pi\)
\(500\) 0 0
\(501\) 6.84842 0.305965
\(502\) 0 0
\(503\) −20.9442 −0.933855 −0.466927 0.884296i \(-0.654639\pi\)
−0.466927 + 0.884296i \(0.654639\pi\)
\(504\) 0 0
\(505\) 17.6602 0.785868
\(506\) 0 0
\(507\) −4.47921 −0.198929
\(508\) 0 0
\(509\) −25.5377 −1.13194 −0.565969 0.824426i \(-0.691498\pi\)
−0.565969 + 0.824426i \(0.691498\pi\)
\(510\) 0 0
\(511\) 1.66969 0.0738627
\(512\) 0 0
\(513\) −15.6368 −0.690381
\(514\) 0 0
\(515\) 22.5619 0.994197
\(516\) 0 0
\(517\) 54.9254 2.41562
\(518\) 0 0
\(519\) −5.63255 −0.247242
\(520\) 0 0
\(521\) −38.8849 −1.70358 −0.851788 0.523886i \(-0.824482\pi\)
−0.851788 + 0.523886i \(0.824482\pi\)
\(522\) 0 0
\(523\) 25.0299 1.09448 0.547240 0.836976i \(-0.315679\pi\)
0.547240 + 0.836976i \(0.315679\pi\)
\(524\) 0 0
\(525\) 3.68999 0.161044
\(526\) 0 0
\(527\) −20.5593 −0.895578
\(528\) 0 0
\(529\) 3.77022 0.163922
\(530\) 0 0
\(531\) −2.90525 −0.126077
\(532\) 0 0
\(533\) −2.35391 −0.101959
\(534\) 0 0
\(535\) −47.8217 −2.06751
\(536\) 0 0
\(537\) 3.30812 0.142756
\(538\) 0 0
\(539\) −2.42179 −0.104314
\(540\) 0 0
\(541\) 0.997803 0.0428989 0.0214494 0.999770i \(-0.493172\pi\)
0.0214494 + 0.999770i \(0.493172\pi\)
\(542\) 0 0
\(543\) 3.32046 0.142494
\(544\) 0 0
\(545\) 7.47902 0.320366
\(546\) 0 0
\(547\) 15.8011 0.675608 0.337804 0.941217i \(-0.390316\pi\)
0.337804 + 0.941217i \(0.390316\pi\)
\(548\) 0 0
\(549\) 16.7962 0.716843
\(550\) 0 0
\(551\) 33.3494 1.42073
\(552\) 0 0
\(553\) −39.8026 −1.69258
\(554\) 0 0
\(555\) −10.4208 −0.442338
\(556\) 0 0
\(557\) −36.3525 −1.54031 −0.770153 0.637860i \(-0.779820\pi\)
−0.770153 + 0.637860i \(0.779820\pi\)
\(558\) 0 0
\(559\) 5.59360 0.236584
\(560\) 0 0
\(561\) 5.38514 0.227361
\(562\) 0 0
\(563\) 20.1622 0.849736 0.424868 0.905255i \(-0.360320\pi\)
0.424868 + 0.905255i \(0.360320\pi\)
\(564\) 0 0
\(565\) −40.1127 −1.68755
\(566\) 0 0
\(567\) 19.9671 0.838538
\(568\) 0 0
\(569\) −16.0424 −0.672530 −0.336265 0.941767i \(-0.609164\pi\)
−0.336265 + 0.941767i \(0.609164\pi\)
\(570\) 0 0
\(571\) 32.2187 1.34831 0.674156 0.738589i \(-0.264507\pi\)
0.674156 + 0.738589i \(0.264507\pi\)
\(572\) 0 0
\(573\) 1.00466 0.0419701
\(574\) 0 0
\(575\) 20.0888 0.837761
\(576\) 0 0
\(577\) 42.6582 1.77589 0.887943 0.459954i \(-0.152134\pi\)
0.887943 + 0.459954i \(0.152134\pi\)
\(578\) 0 0
\(579\) −3.87578 −0.161072
\(580\) 0 0
\(581\) 21.2193 0.880326
\(582\) 0 0
\(583\) −43.3888 −1.79698
\(584\) 0 0
\(585\) 8.13731 0.336436
\(586\) 0 0
\(587\) 13.8741 0.572646 0.286323 0.958133i \(-0.407567\pi\)
0.286323 + 0.958133i \(0.407567\pi\)
\(588\) 0 0
\(589\) −58.8119 −2.42330
\(590\) 0 0
\(591\) −3.02779 −0.124547
\(592\) 0 0
\(593\) 33.6435 1.38157 0.690786 0.723059i \(-0.257265\pi\)
0.690786 + 0.723059i \(0.257265\pi\)
\(594\) 0 0
\(595\) 19.2414 0.788819
\(596\) 0 0
\(597\) −8.69051 −0.355679
\(598\) 0 0
\(599\) −12.8677 −0.525761 −0.262881 0.964828i \(-0.584673\pi\)
−0.262881 + 0.964828i \(0.584673\pi\)
\(600\) 0 0
\(601\) 17.2785 0.704804 0.352402 0.935849i \(-0.385365\pi\)
0.352402 + 0.935849i \(0.385365\pi\)
\(602\) 0 0
\(603\) 34.7216 1.41397
\(604\) 0 0
\(605\) 66.6384 2.70924
\(606\) 0 0
\(607\) 36.7366 1.49109 0.745547 0.666453i \(-0.232188\pi\)
0.745547 + 0.666453i \(0.232188\pi\)
\(608\) 0 0
\(609\) 4.40250 0.178398
\(610\) 0 0
\(611\) −9.06970 −0.366921
\(612\) 0 0
\(613\) −35.5029 −1.43395 −0.716975 0.697099i \(-0.754474\pi\)
−0.716975 + 0.697099i \(0.754474\pi\)
\(614\) 0 0
\(615\) 2.72518 0.109890
\(616\) 0 0
\(617\) 5.97403 0.240505 0.120253 0.992743i \(-0.461630\pi\)
0.120253 + 0.992743i \(0.461630\pi\)
\(618\) 0 0
\(619\) −1.54631 −0.0621513 −0.0310757 0.999517i \(-0.509893\pi\)
−0.0310757 + 0.999517i \(0.509893\pi\)
\(620\) 0 0
\(621\) −11.2380 −0.450965
\(622\) 0 0
\(623\) 7.43552 0.297898
\(624\) 0 0
\(625\) −29.3383 −1.17353
\(626\) 0 0
\(627\) 15.4047 0.615205
\(628\) 0 0
\(629\) −23.7518 −0.947047
\(630\) 0 0
\(631\) −33.5953 −1.33741 −0.668705 0.743528i \(-0.733151\pi\)
−0.668705 + 0.743528i \(0.733151\pi\)
\(632\) 0 0
\(633\) −8.78905 −0.349333
\(634\) 0 0
\(635\) −7.01686 −0.278456
\(636\) 0 0
\(637\) 0.399904 0.0158448
\(638\) 0 0
\(639\) −35.3655 −1.39904
\(640\) 0 0
\(641\) 22.6820 0.895884 0.447942 0.894063i \(-0.352157\pi\)
0.447942 + 0.894063i \(0.352157\pi\)
\(642\) 0 0
\(643\) −35.9742 −1.41868 −0.709341 0.704865i \(-0.751007\pi\)
−0.709341 + 0.704865i \(0.751007\pi\)
\(644\) 0 0
\(645\) −6.47586 −0.254987
\(646\) 0 0
\(647\) 29.8868 1.17497 0.587485 0.809235i \(-0.300118\pi\)
0.587485 + 0.809235i \(0.300118\pi\)
\(648\) 0 0
\(649\) 5.86149 0.230084
\(650\) 0 0
\(651\) −7.76385 −0.304289
\(652\) 0 0
\(653\) −48.1187 −1.88303 −0.941516 0.336968i \(-0.890598\pi\)
−0.941516 + 0.336968i \(0.890598\pi\)
\(654\) 0 0
\(655\) −24.2678 −0.948220
\(656\) 0 0
\(657\) −1.86330 −0.0726942
\(658\) 0 0
\(659\) 27.3372 1.06491 0.532454 0.846459i \(-0.321270\pi\)
0.532454 + 0.846459i \(0.321270\pi\)
\(660\) 0 0
\(661\) −20.6868 −0.804623 −0.402311 0.915503i \(-0.631793\pi\)
−0.402311 + 0.915503i \(0.631793\pi\)
\(662\) 0 0
\(663\) −0.889234 −0.0345350
\(664\) 0 0
\(665\) 55.0418 2.13443
\(666\) 0 0
\(667\) 23.9678 0.928037
\(668\) 0 0
\(669\) 1.71828 0.0664325
\(670\) 0 0
\(671\) −33.8871 −1.30820
\(672\) 0 0
\(673\) −3.68048 −0.141872 −0.0709360 0.997481i \(-0.522599\pi\)
−0.0709360 + 0.997481i \(0.522599\pi\)
\(674\) 0 0
\(675\) −8.43316 −0.324593
\(676\) 0 0
\(677\) −17.3358 −0.666268 −0.333134 0.942880i \(-0.608106\pi\)
−0.333134 + 0.942880i \(0.608106\pi\)
\(678\) 0 0
\(679\) 2.45305 0.0941393
\(680\) 0 0
\(681\) −0.853190 −0.0326943
\(682\) 0 0
\(683\) −2.26489 −0.0866636 −0.0433318 0.999061i \(-0.513797\pi\)
−0.0433318 + 0.999061i \(0.513797\pi\)
\(684\) 0 0
\(685\) −40.4228 −1.54448
\(686\) 0 0
\(687\) 0.736840 0.0281122
\(688\) 0 0
\(689\) 7.16468 0.272953
\(690\) 0 0
\(691\) 34.9262 1.32865 0.664327 0.747442i \(-0.268718\pi\)
0.664327 + 0.747442i \(0.268718\pi\)
\(692\) 0 0
\(693\) −42.4156 −1.61124
\(694\) 0 0
\(695\) 52.4980 1.99136
\(696\) 0 0
\(697\) 6.21143 0.235275
\(698\) 0 0
\(699\) 2.07070 0.0783210
\(700\) 0 0
\(701\) −8.67601 −0.327688 −0.163844 0.986486i \(-0.552389\pi\)
−0.163844 + 0.986486i \(0.552389\pi\)
\(702\) 0 0
\(703\) −67.9444 −2.56257
\(704\) 0 0
\(705\) 10.5002 0.395461
\(706\) 0 0
\(707\) 15.2006 0.571676
\(708\) 0 0
\(709\) −52.4850 −1.97111 −0.985557 0.169342i \(-0.945836\pi\)
−0.985557 + 0.169342i \(0.945836\pi\)
\(710\) 0 0
\(711\) 44.4179 1.66580
\(712\) 0 0
\(713\) −42.2675 −1.58293
\(714\) 0 0
\(715\) −16.4174 −0.613976
\(716\) 0 0
\(717\) 1.23944 0.0462878
\(718\) 0 0
\(719\) −12.2225 −0.455822 −0.227911 0.973682i \(-0.573190\pi\)
−0.227911 + 0.973682i \(0.573190\pi\)
\(720\) 0 0
\(721\) 19.4196 0.723224
\(722\) 0 0
\(723\) 9.89686 0.368068
\(724\) 0 0
\(725\) 17.9858 0.667977
\(726\) 0 0
\(727\) −32.8117 −1.21692 −0.608460 0.793585i \(-0.708212\pi\)
−0.608460 + 0.793585i \(0.708212\pi\)
\(728\) 0 0
\(729\) −19.8683 −0.735864
\(730\) 0 0
\(731\) −14.7602 −0.545927
\(732\) 0 0
\(733\) −11.8567 −0.437937 −0.218968 0.975732i \(-0.570269\pi\)
−0.218968 + 0.975732i \(0.570269\pi\)
\(734\) 0 0
\(735\) −0.462979 −0.0170772
\(736\) 0 0
\(737\) −70.0525 −2.58042
\(738\) 0 0
\(739\) −23.7096 −0.872173 −0.436086 0.899905i \(-0.643636\pi\)
−0.436086 + 0.899905i \(0.643636\pi\)
\(740\) 0 0
\(741\) −2.54374 −0.0934466
\(742\) 0 0
\(743\) −16.3166 −0.598600 −0.299300 0.954159i \(-0.596753\pi\)
−0.299300 + 0.954159i \(0.596753\pi\)
\(744\) 0 0
\(745\) 14.1077 0.516867
\(746\) 0 0
\(747\) −23.6798 −0.866399
\(748\) 0 0
\(749\) −41.1613 −1.50400
\(750\) 0 0
\(751\) −30.5188 −1.11365 −0.556824 0.830630i \(-0.687980\pi\)
−0.556824 + 0.830630i \(0.687980\pi\)
\(752\) 0 0
\(753\) 10.8578 0.395680
\(754\) 0 0
\(755\) −55.2639 −2.01126
\(756\) 0 0
\(757\) 21.0756 0.766007 0.383003 0.923747i \(-0.374890\pi\)
0.383003 + 0.923747i \(0.374890\pi\)
\(758\) 0 0
\(759\) 11.0712 0.401858
\(760\) 0 0
\(761\) −9.37156 −0.339719 −0.169859 0.985468i \(-0.554331\pi\)
−0.169859 + 0.985468i \(0.554331\pi\)
\(762\) 0 0
\(763\) 6.43738 0.233049
\(764\) 0 0
\(765\) −21.4725 −0.776340
\(766\) 0 0
\(767\) −0.967894 −0.0349486
\(768\) 0 0
\(769\) 26.9367 0.971363 0.485681 0.874136i \(-0.338572\pi\)
0.485681 + 0.874136i \(0.338572\pi\)
\(770\) 0 0
\(771\) 3.84565 0.138498
\(772\) 0 0
\(773\) −14.7111 −0.529121 −0.264560 0.964369i \(-0.585227\pi\)
−0.264560 + 0.964369i \(0.585227\pi\)
\(774\) 0 0
\(775\) −31.7182 −1.13935
\(776\) 0 0
\(777\) −8.96944 −0.321777
\(778\) 0 0
\(779\) 17.7684 0.636619
\(780\) 0 0
\(781\) 71.3516 2.55316
\(782\) 0 0
\(783\) −10.0615 −0.359570
\(784\) 0 0
\(785\) 19.7475 0.704818
\(786\) 0 0
\(787\) −3.73905 −0.133283 −0.0666414 0.997777i \(-0.521228\pi\)
−0.0666414 + 0.997777i \(0.521228\pi\)
\(788\) 0 0
\(789\) 3.27471 0.116583
\(790\) 0 0
\(791\) −34.5260 −1.22760
\(792\) 0 0
\(793\) 5.59569 0.198709
\(794\) 0 0
\(795\) −8.29474 −0.294184
\(796\) 0 0
\(797\) 7.11196 0.251919 0.125959 0.992035i \(-0.459799\pi\)
0.125959 + 0.992035i \(0.459799\pi\)
\(798\) 0 0
\(799\) 23.9329 0.846685
\(800\) 0 0
\(801\) −8.29772 −0.293185
\(802\) 0 0
\(803\) 3.75929 0.132663
\(804\) 0 0
\(805\) 39.5579 1.39423
\(806\) 0 0
\(807\) −0.370477 −0.0130414
\(808\) 0 0
\(809\) −10.2508 −0.360398 −0.180199 0.983630i \(-0.557674\pi\)
−0.180199 + 0.983630i \(0.557674\pi\)
\(810\) 0 0
\(811\) 17.6750 0.620655 0.310327 0.950630i \(-0.399561\pi\)
0.310327 + 0.950630i \(0.399561\pi\)
\(812\) 0 0
\(813\) −2.74006 −0.0960981
\(814\) 0 0
\(815\) 21.9123 0.767553
\(816\) 0 0
\(817\) −42.2231 −1.47720
\(818\) 0 0
\(819\) 7.00399 0.244739
\(820\) 0 0
\(821\) 14.4456 0.504153 0.252077 0.967707i \(-0.418886\pi\)
0.252077 + 0.967707i \(0.418886\pi\)
\(822\) 0 0
\(823\) 5.39437 0.188036 0.0940179 0.995571i \(-0.470029\pi\)
0.0940179 + 0.995571i \(0.470029\pi\)
\(824\) 0 0
\(825\) 8.30799 0.289247
\(826\) 0 0
\(827\) 40.7336 1.41645 0.708223 0.705989i \(-0.249497\pi\)
0.708223 + 0.705989i \(0.249497\pi\)
\(828\) 0 0
\(829\) −15.9379 −0.553547 −0.276773 0.960935i \(-0.589265\pi\)
−0.276773 + 0.960935i \(0.589265\pi\)
\(830\) 0 0
\(831\) 5.03007 0.174491
\(832\) 0 0
\(833\) −1.05526 −0.0365625
\(834\) 0 0
\(835\) 55.0936 1.90659
\(836\) 0 0
\(837\) 17.7436 0.613309
\(838\) 0 0
\(839\) −47.0290 −1.62362 −0.811811 0.583921i \(-0.801518\pi\)
−0.811811 + 0.583921i \(0.801518\pi\)
\(840\) 0 0
\(841\) −7.54122 −0.260042
\(842\) 0 0
\(843\) 5.02821 0.173181
\(844\) 0 0
\(845\) −36.0339 −1.23961
\(846\) 0 0
\(847\) 57.3574 1.97082
\(848\) 0 0
\(849\) −7.59575 −0.260685
\(850\) 0 0
\(851\) −48.8308 −1.67390
\(852\) 0 0
\(853\) 5.50121 0.188358 0.0941790 0.995555i \(-0.469977\pi\)
0.0941790 + 0.995555i \(0.469977\pi\)
\(854\) 0 0
\(855\) −61.4242 −2.10066
\(856\) 0 0
\(857\) −6.74343 −0.230351 −0.115176 0.993345i \(-0.536743\pi\)
−0.115176 + 0.993345i \(0.536743\pi\)
\(858\) 0 0
\(859\) −38.3733 −1.30928 −0.654641 0.755940i \(-0.727180\pi\)
−0.654641 + 0.755940i \(0.727180\pi\)
\(860\) 0 0
\(861\) 2.34563 0.0799390
\(862\) 0 0
\(863\) −27.5099 −0.936449 −0.468224 0.883610i \(-0.655106\pi\)
−0.468224 + 0.883610i \(0.655106\pi\)
\(864\) 0 0
\(865\) −45.3122 −1.54066
\(866\) 0 0
\(867\) −3.95162 −0.134204
\(868\) 0 0
\(869\) −89.6153 −3.03999
\(870\) 0 0
\(871\) 11.5676 0.391953
\(872\) 0 0
\(873\) −2.73749 −0.0926501
\(874\) 0 0
\(875\) −8.54273 −0.288797
\(876\) 0 0
\(877\) 40.4307 1.36525 0.682625 0.730769i \(-0.260838\pi\)
0.682625 + 0.730769i \(0.260838\pi\)
\(878\) 0 0
\(879\) −9.63733 −0.325059
\(880\) 0 0
\(881\) 14.9852 0.504866 0.252433 0.967614i \(-0.418769\pi\)
0.252433 + 0.967614i \(0.418769\pi\)
\(882\) 0 0
\(883\) −45.8998 −1.54465 −0.772325 0.635227i \(-0.780906\pi\)
−0.772325 + 0.635227i \(0.780906\pi\)
\(884\) 0 0
\(885\) 1.12056 0.0376671
\(886\) 0 0
\(887\) −38.4897 −1.29236 −0.646179 0.763186i \(-0.723634\pi\)
−0.646179 + 0.763186i \(0.723634\pi\)
\(888\) 0 0
\(889\) −6.03959 −0.202561
\(890\) 0 0
\(891\) 44.9557 1.50607
\(892\) 0 0
\(893\) 68.4623 2.29100
\(894\) 0 0
\(895\) 26.6129 0.889570
\(896\) 0 0
\(897\) −1.82816 −0.0610404
\(898\) 0 0
\(899\) −37.8427 −1.26213
\(900\) 0 0
\(901\) −18.9060 −0.629849
\(902\) 0 0
\(903\) −5.57393 −0.185489
\(904\) 0 0
\(905\) 26.7121 0.887940
\(906\) 0 0
\(907\) 3.30242 0.109655 0.0548275 0.998496i \(-0.482539\pi\)
0.0548275 + 0.998496i \(0.482539\pi\)
\(908\) 0 0
\(909\) −16.9632 −0.562633
\(910\) 0 0
\(911\) −0.593599 −0.0196668 −0.00983341 0.999952i \(-0.503130\pi\)
−0.00983341 + 0.999952i \(0.503130\pi\)
\(912\) 0 0
\(913\) 47.7752 1.58113
\(914\) 0 0
\(915\) −6.47828 −0.214165
\(916\) 0 0
\(917\) −20.8879 −0.689779
\(918\) 0 0
\(919\) −7.37035 −0.243125 −0.121563 0.992584i \(-0.538791\pi\)
−0.121563 + 0.992584i \(0.538791\pi\)
\(920\) 0 0
\(921\) 6.44604 0.212404
\(922\) 0 0
\(923\) −11.7821 −0.387813
\(924\) 0 0
\(925\) −36.6435 −1.20483
\(926\) 0 0
\(927\) −21.6714 −0.711783
\(928\) 0 0
\(929\) 0.386422 0.0126781 0.00633905 0.999980i \(-0.497982\pi\)
0.00633905 + 0.999980i \(0.497982\pi\)
\(930\) 0 0
\(931\) −3.01866 −0.0989327
\(932\) 0 0
\(933\) 4.99179 0.163424
\(934\) 0 0
\(935\) 43.3218 1.41678
\(936\) 0 0
\(937\) −29.0617 −0.949405 −0.474702 0.880146i \(-0.657444\pi\)
−0.474702 + 0.880146i \(0.657444\pi\)
\(938\) 0 0
\(939\) −3.66474 −0.119594
\(940\) 0 0
\(941\) −22.0276 −0.718081 −0.359040 0.933322i \(-0.616896\pi\)
−0.359040 + 0.933322i \(0.616896\pi\)
\(942\) 0 0
\(943\) 12.7699 0.415847
\(944\) 0 0
\(945\) −16.6062 −0.540199
\(946\) 0 0
\(947\) 6.64851 0.216047 0.108024 0.994148i \(-0.465548\pi\)
0.108024 + 0.994148i \(0.465548\pi\)
\(948\) 0 0
\(949\) −0.620763 −0.0201508
\(950\) 0 0
\(951\) 7.12056 0.230900
\(952\) 0 0
\(953\) −57.4933 −1.86239 −0.931195 0.364521i \(-0.881233\pi\)
−0.931195 + 0.364521i \(0.881233\pi\)
\(954\) 0 0
\(955\) 8.08216 0.261532
\(956\) 0 0
\(957\) 9.91221 0.320416
\(958\) 0 0
\(959\) −34.7929 −1.12352
\(960\) 0 0
\(961\) 35.7360 1.15277
\(962\) 0 0
\(963\) 45.9342 1.48021
\(964\) 0 0
\(965\) −31.1795 −1.00370
\(966\) 0 0
\(967\) −44.0592 −1.41685 −0.708424 0.705788i \(-0.750593\pi\)
−0.708424 + 0.705788i \(0.750593\pi\)
\(968\) 0 0
\(969\) 6.71236 0.215632
\(970\) 0 0
\(971\) −25.8900 −0.830850 −0.415425 0.909627i \(-0.636367\pi\)
−0.415425 + 0.909627i \(0.636367\pi\)
\(972\) 0 0
\(973\) 45.1864 1.44861
\(974\) 0 0
\(975\) −1.37188 −0.0439353
\(976\) 0 0
\(977\) 16.1799 0.517642 0.258821 0.965925i \(-0.416666\pi\)
0.258821 + 0.965925i \(0.416666\pi\)
\(978\) 0 0
\(979\) 16.7410 0.535046
\(980\) 0 0
\(981\) −7.18383 −0.229362
\(982\) 0 0
\(983\) 27.7004 0.883504 0.441752 0.897137i \(-0.354357\pi\)
0.441752 + 0.897137i \(0.354357\pi\)
\(984\) 0 0
\(985\) −24.3577 −0.776101
\(986\) 0 0
\(987\) 9.03781 0.287677
\(988\) 0 0
\(989\) −30.3453 −0.964923
\(990\) 0 0
\(991\) 15.6306 0.496523 0.248262 0.968693i \(-0.420141\pi\)
0.248262 + 0.968693i \(0.420141\pi\)
\(992\) 0 0
\(993\) 3.93326 0.124818
\(994\) 0 0
\(995\) −69.9126 −2.21638
\(996\) 0 0
\(997\) 59.0197 1.86917 0.934586 0.355737i \(-0.115770\pi\)
0.934586 + 0.355737i \(0.115770\pi\)
\(998\) 0 0
\(999\) 20.4989 0.648557
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.i.1.4 7
4.3 odd 2 538.2.a.d.1.4 7
12.11 even 2 4842.2.a.o.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.d.1.4 7 4.3 odd 2
4304.2.a.i.1.4 7 1.1 even 1 trivial
4842.2.a.o.1.1 7 12.11 even 2