Properties

Label 4304.2.a.h.1.5
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 16x^{4} + 49x^{3} - 53x^{2} - 44x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(3.22542\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.383827 q^{3} +4.15424 q^{5} -4.87818 q^{7} -2.85268 q^{9} +1.62910 q^{11} -2.16682 q^{13} +1.59451 q^{15} -6.78448 q^{17} +8.61766 q^{19} -1.87238 q^{21} -2.76765 q^{23} +12.2577 q^{25} -2.24641 q^{27} +2.10510 q^{29} +3.62414 q^{31} +0.625290 q^{33} -20.2651 q^{35} +1.19760 q^{37} -0.831683 q^{39} +5.43715 q^{41} +9.63402 q^{43} -11.8507 q^{45} +7.07613 q^{47} +16.7967 q^{49} -2.60406 q^{51} -3.03890 q^{53} +6.76765 q^{55} +3.30769 q^{57} -4.21827 q^{59} +8.74744 q^{61} +13.9159 q^{63} -9.00148 q^{65} +1.50761 q^{67} -1.06230 q^{69} -11.0270 q^{71} +1.37039 q^{73} +4.70482 q^{75} -7.94703 q^{77} +14.9749 q^{79} +7.69580 q^{81} +8.08276 q^{83} -28.1843 q^{85} +0.807993 q^{87} +3.31299 q^{89} +10.5701 q^{91} +1.39104 q^{93} +35.7998 q^{95} +16.8474 q^{97} -4.64729 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{3} + 7 q^{5} - 6 q^{7} + 12 q^{9} + 3 q^{11} - 9 q^{13} - 8 q^{15} + 8 q^{17} + 11 q^{19} - 6 q^{21} - 12 q^{23} + 22 q^{25} + 14 q^{27} - 5 q^{29} - 14 q^{31} - 4 q^{33} + 4 q^{35} + 13 q^{37}+ \cdots + 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.383827 0.221602 0.110801 0.993843i \(-0.464658\pi\)
0.110801 + 0.993843i \(0.464658\pi\)
\(4\) 0 0
\(5\) 4.15424 1.85783 0.928916 0.370291i \(-0.120742\pi\)
0.928916 + 0.370291i \(0.120742\pi\)
\(6\) 0 0
\(7\) −4.87818 −1.84378 −0.921890 0.387452i \(-0.873355\pi\)
−0.921890 + 0.387452i \(0.873355\pi\)
\(8\) 0 0
\(9\) −2.85268 −0.950892
\(10\) 0 0
\(11\) 1.62910 0.491191 0.245596 0.969372i \(-0.421016\pi\)
0.245596 + 0.969372i \(0.421016\pi\)
\(12\) 0 0
\(13\) −2.16682 −0.600968 −0.300484 0.953787i \(-0.597148\pi\)
−0.300484 + 0.953787i \(0.597148\pi\)
\(14\) 0 0
\(15\) 1.59451 0.411700
\(16\) 0 0
\(17\) −6.78448 −1.64548 −0.822739 0.568420i \(-0.807555\pi\)
−0.822739 + 0.568420i \(0.807555\pi\)
\(18\) 0 0
\(19\) 8.61766 1.97703 0.988513 0.151136i \(-0.0482931\pi\)
0.988513 + 0.151136i \(0.0482931\pi\)
\(20\) 0 0
\(21\) −1.87238 −0.408586
\(22\) 0 0
\(23\) −2.76765 −0.577096 −0.288548 0.957465i \(-0.593172\pi\)
−0.288548 + 0.957465i \(0.593172\pi\)
\(24\) 0 0
\(25\) 12.2577 2.45154
\(26\) 0 0
\(27\) −2.24641 −0.432322
\(28\) 0 0
\(29\) 2.10510 0.390907 0.195454 0.980713i \(-0.437382\pi\)
0.195454 + 0.980713i \(0.437382\pi\)
\(30\) 0 0
\(31\) 3.62414 0.650914 0.325457 0.945557i \(-0.394482\pi\)
0.325457 + 0.945557i \(0.394482\pi\)
\(32\) 0 0
\(33\) 0.625290 0.108849
\(34\) 0 0
\(35\) −20.2651 −3.42543
\(36\) 0 0
\(37\) 1.19760 0.196885 0.0984424 0.995143i \(-0.468614\pi\)
0.0984424 + 0.995143i \(0.468614\pi\)
\(38\) 0 0
\(39\) −0.831683 −0.133176
\(40\) 0 0
\(41\) 5.43715 0.849140 0.424570 0.905395i \(-0.360425\pi\)
0.424570 + 0.905395i \(0.360425\pi\)
\(42\) 0 0
\(43\) 9.63402 1.46917 0.734587 0.678514i \(-0.237376\pi\)
0.734587 + 0.678514i \(0.237376\pi\)
\(44\) 0 0
\(45\) −11.8507 −1.76660
\(46\) 0 0
\(47\) 7.07613 1.03216 0.516080 0.856541i \(-0.327391\pi\)
0.516080 + 0.856541i \(0.327391\pi\)
\(48\) 0 0
\(49\) 16.7967 2.39952
\(50\) 0 0
\(51\) −2.60406 −0.364642
\(52\) 0 0
\(53\) −3.03890 −0.417425 −0.208712 0.977977i \(-0.566927\pi\)
−0.208712 + 0.977977i \(0.566927\pi\)
\(54\) 0 0
\(55\) 6.76765 0.912550
\(56\) 0 0
\(57\) 3.30769 0.438114
\(58\) 0 0
\(59\) −4.21827 −0.549172 −0.274586 0.961563i \(-0.588541\pi\)
−0.274586 + 0.961563i \(0.588541\pi\)
\(60\) 0 0
\(61\) 8.74744 1.11999 0.559997 0.828494i \(-0.310802\pi\)
0.559997 + 0.828494i \(0.310802\pi\)
\(62\) 0 0
\(63\) 13.9159 1.75324
\(64\) 0 0
\(65\) −9.00148 −1.11650
\(66\) 0 0
\(67\) 1.50761 0.184184 0.0920921 0.995750i \(-0.470645\pi\)
0.0920921 + 0.995750i \(0.470645\pi\)
\(68\) 0 0
\(69\) −1.06230 −0.127886
\(70\) 0 0
\(71\) −11.0270 −1.30866 −0.654331 0.756208i \(-0.727050\pi\)
−0.654331 + 0.756208i \(0.727050\pi\)
\(72\) 0 0
\(73\) 1.37039 0.160391 0.0801957 0.996779i \(-0.474445\pi\)
0.0801957 + 0.996779i \(0.474445\pi\)
\(74\) 0 0
\(75\) 4.70482 0.543266
\(76\) 0 0
\(77\) −7.94703 −0.905648
\(78\) 0 0
\(79\) 14.9749 1.68480 0.842401 0.538850i \(-0.181141\pi\)
0.842401 + 0.538850i \(0.181141\pi\)
\(80\) 0 0
\(81\) 7.69580 0.855089
\(82\) 0 0
\(83\) 8.08276 0.887198 0.443599 0.896225i \(-0.353701\pi\)
0.443599 + 0.896225i \(0.353701\pi\)
\(84\) 0 0
\(85\) −28.1843 −3.05702
\(86\) 0 0
\(87\) 0.807993 0.0866259
\(88\) 0 0
\(89\) 3.31299 0.351176 0.175588 0.984464i \(-0.443817\pi\)
0.175588 + 0.984464i \(0.443817\pi\)
\(90\) 0 0
\(91\) 10.5701 1.10805
\(92\) 0 0
\(93\) 1.39104 0.144244
\(94\) 0 0
\(95\) 35.7998 3.67298
\(96\) 0 0
\(97\) 16.8474 1.71059 0.855296 0.518139i \(-0.173375\pi\)
0.855296 + 0.518139i \(0.173375\pi\)
\(98\) 0 0
\(99\) −4.64729 −0.467070
\(100\) 0 0
\(101\) 2.93034 0.291580 0.145790 0.989316i \(-0.453428\pi\)
0.145790 + 0.989316i \(0.453428\pi\)
\(102\) 0 0
\(103\) −1.25819 −0.123973 −0.0619867 0.998077i \(-0.519744\pi\)
−0.0619867 + 0.998077i \(0.519744\pi\)
\(104\) 0 0
\(105\) −7.77829 −0.759084
\(106\) 0 0
\(107\) −9.35946 −0.904813 −0.452407 0.891812i \(-0.649434\pi\)
−0.452407 + 0.891812i \(0.649434\pi\)
\(108\) 0 0
\(109\) 11.4192 1.09376 0.546882 0.837210i \(-0.315815\pi\)
0.546882 + 0.837210i \(0.315815\pi\)
\(110\) 0 0
\(111\) 0.459672 0.0436301
\(112\) 0 0
\(113\) 0.316816 0.0298036 0.0149018 0.999889i \(-0.495256\pi\)
0.0149018 + 0.999889i \(0.495256\pi\)
\(114\) 0 0
\(115\) −11.4975 −1.07215
\(116\) 0 0
\(117\) 6.18124 0.571456
\(118\) 0 0
\(119\) 33.0959 3.03390
\(120\) 0 0
\(121\) −8.34604 −0.758731
\(122\) 0 0
\(123\) 2.08692 0.188171
\(124\) 0 0
\(125\) 30.1501 2.69671
\(126\) 0 0
\(127\) 2.08772 0.185255 0.0926276 0.995701i \(-0.470473\pi\)
0.0926276 + 0.995701i \(0.470473\pi\)
\(128\) 0 0
\(129\) 3.69779 0.325572
\(130\) 0 0
\(131\) 5.17397 0.452052 0.226026 0.974121i \(-0.427427\pi\)
0.226026 + 0.974121i \(0.427427\pi\)
\(132\) 0 0
\(133\) −42.0385 −3.64520
\(134\) 0 0
\(135\) −9.33213 −0.803182
\(136\) 0 0
\(137\) 6.35949 0.543328 0.271664 0.962392i \(-0.412426\pi\)
0.271664 + 0.962392i \(0.412426\pi\)
\(138\) 0 0
\(139\) 10.6786 0.905746 0.452873 0.891575i \(-0.350399\pi\)
0.452873 + 0.891575i \(0.350399\pi\)
\(140\) 0 0
\(141\) 2.71601 0.228729
\(142\) 0 0
\(143\) −3.52996 −0.295190
\(144\) 0 0
\(145\) 8.74508 0.726239
\(146\) 0 0
\(147\) 6.44701 0.531740
\(148\) 0 0
\(149\) −3.47426 −0.284622 −0.142311 0.989822i \(-0.545453\pi\)
−0.142311 + 0.989822i \(0.545453\pi\)
\(150\) 0 0
\(151\) −11.2407 −0.914752 −0.457376 0.889273i \(-0.651211\pi\)
−0.457376 + 0.889273i \(0.651211\pi\)
\(152\) 0 0
\(153\) 19.3539 1.56467
\(154\) 0 0
\(155\) 15.0555 1.20929
\(156\) 0 0
\(157\) 8.59533 0.685982 0.342991 0.939339i \(-0.388560\pi\)
0.342991 + 0.939339i \(0.388560\pi\)
\(158\) 0 0
\(159\) −1.16641 −0.0925024
\(160\) 0 0
\(161\) 13.5011 1.06404
\(162\) 0 0
\(163\) −10.1530 −0.795241 −0.397621 0.917550i \(-0.630164\pi\)
−0.397621 + 0.917550i \(0.630164\pi\)
\(164\) 0 0
\(165\) 2.59760 0.202223
\(166\) 0 0
\(167\) −4.37572 −0.338604 −0.169302 0.985564i \(-0.554151\pi\)
−0.169302 + 0.985564i \(0.554151\pi\)
\(168\) 0 0
\(169\) −8.30489 −0.638838
\(170\) 0 0
\(171\) −24.5834 −1.87994
\(172\) 0 0
\(173\) −22.7651 −1.73080 −0.865398 0.501085i \(-0.832934\pi\)
−0.865398 + 0.501085i \(0.832934\pi\)
\(174\) 0 0
\(175\) −59.7952 −4.52009
\(176\) 0 0
\(177\) −1.61908 −0.121698
\(178\) 0 0
\(179\) −12.1634 −0.909139 −0.454569 0.890711i \(-0.650207\pi\)
−0.454569 + 0.890711i \(0.650207\pi\)
\(180\) 0 0
\(181\) −4.61048 −0.342694 −0.171347 0.985211i \(-0.554812\pi\)
−0.171347 + 0.985211i \(0.554812\pi\)
\(182\) 0 0
\(183\) 3.35750 0.248193
\(184\) 0 0
\(185\) 4.97513 0.365779
\(186\) 0 0
\(187\) −11.0526 −0.808244
\(188\) 0 0
\(189\) 10.9584 0.797107
\(190\) 0 0
\(191\) −3.30553 −0.239180 −0.119590 0.992823i \(-0.538158\pi\)
−0.119590 + 0.992823i \(0.538158\pi\)
\(192\) 0 0
\(193\) −18.5157 −1.33279 −0.666394 0.745600i \(-0.732163\pi\)
−0.666394 + 0.745600i \(0.732163\pi\)
\(194\) 0 0
\(195\) −3.45501 −0.247418
\(196\) 0 0
\(197\) 8.78109 0.625627 0.312814 0.949815i \(-0.398729\pi\)
0.312814 + 0.949815i \(0.398729\pi\)
\(198\) 0 0
\(199\) 12.4370 0.881634 0.440817 0.897597i \(-0.354689\pi\)
0.440817 + 0.897597i \(0.354689\pi\)
\(200\) 0 0
\(201\) 0.578661 0.0408156
\(202\) 0 0
\(203\) −10.2691 −0.720746
\(204\) 0 0
\(205\) 22.5872 1.57756
\(206\) 0 0
\(207\) 7.89522 0.548756
\(208\) 0 0
\(209\) 14.0390 0.971098
\(210\) 0 0
\(211\) 10.9290 0.752381 0.376191 0.926542i \(-0.377234\pi\)
0.376191 + 0.926542i \(0.377234\pi\)
\(212\) 0 0
\(213\) −4.23245 −0.290003
\(214\) 0 0
\(215\) 40.0220 2.72948
\(216\) 0 0
\(217\) −17.6792 −1.20014
\(218\) 0 0
\(219\) 0.525990 0.0355431
\(220\) 0 0
\(221\) 14.7007 0.988879
\(222\) 0 0
\(223\) −8.79372 −0.588871 −0.294436 0.955671i \(-0.595132\pi\)
−0.294436 + 0.955671i \(0.595132\pi\)
\(224\) 0 0
\(225\) −34.9672 −2.33115
\(226\) 0 0
\(227\) −6.74871 −0.447928 −0.223964 0.974597i \(-0.571900\pi\)
−0.223964 + 0.974597i \(0.571900\pi\)
\(228\) 0 0
\(229\) −23.2606 −1.53711 −0.768553 0.639787i \(-0.779023\pi\)
−0.768553 + 0.639787i \(0.779023\pi\)
\(230\) 0 0
\(231\) −3.05028 −0.200694
\(232\) 0 0
\(233\) 11.0721 0.725357 0.362679 0.931914i \(-0.381862\pi\)
0.362679 + 0.931914i \(0.381862\pi\)
\(234\) 0 0
\(235\) 29.3959 1.91758
\(236\) 0 0
\(237\) 5.74775 0.373356
\(238\) 0 0
\(239\) 3.99072 0.258138 0.129069 0.991636i \(-0.458801\pi\)
0.129069 + 0.991636i \(0.458801\pi\)
\(240\) 0 0
\(241\) −16.5408 −1.06549 −0.532745 0.846276i \(-0.678839\pi\)
−0.532745 + 0.846276i \(0.678839\pi\)
\(242\) 0 0
\(243\) 9.69309 0.621812
\(244\) 0 0
\(245\) 69.7773 4.45791
\(246\) 0 0
\(247\) −18.6729 −1.18813
\(248\) 0 0
\(249\) 3.10238 0.196605
\(250\) 0 0
\(251\) −24.0533 −1.51823 −0.759117 0.650955i \(-0.774369\pi\)
−0.759117 + 0.650955i \(0.774369\pi\)
\(252\) 0 0
\(253\) −4.50877 −0.283464
\(254\) 0 0
\(255\) −10.8179 −0.677443
\(256\) 0 0
\(257\) −13.6822 −0.853470 −0.426735 0.904377i \(-0.640336\pi\)
−0.426735 + 0.904377i \(0.640336\pi\)
\(258\) 0 0
\(259\) −5.84213 −0.363012
\(260\) 0 0
\(261\) −6.00517 −0.371711
\(262\) 0 0
\(263\) −11.3942 −0.702596 −0.351298 0.936264i \(-0.614260\pi\)
−0.351298 + 0.936264i \(0.614260\pi\)
\(264\) 0 0
\(265\) −12.6243 −0.775505
\(266\) 0 0
\(267\) 1.27161 0.0778214
\(268\) 0 0
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) 24.6167 1.49536 0.747679 0.664061i \(-0.231168\pi\)
0.747679 + 0.664061i \(0.231168\pi\)
\(272\) 0 0
\(273\) 4.05710 0.245547
\(274\) 0 0
\(275\) 19.9690 1.20417
\(276\) 0 0
\(277\) 4.70762 0.282853 0.141427 0.989949i \(-0.454831\pi\)
0.141427 + 0.989949i \(0.454831\pi\)
\(278\) 0 0
\(279\) −10.3385 −0.618949
\(280\) 0 0
\(281\) 6.51540 0.388676 0.194338 0.980935i \(-0.437744\pi\)
0.194338 + 0.980935i \(0.437744\pi\)
\(282\) 0 0
\(283\) 8.67417 0.515626 0.257813 0.966195i \(-0.416998\pi\)
0.257813 + 0.966195i \(0.416998\pi\)
\(284\) 0 0
\(285\) 13.7409 0.813941
\(286\) 0 0
\(287\) −26.5234 −1.56563
\(288\) 0 0
\(289\) 29.0291 1.70760
\(290\) 0 0
\(291\) 6.46647 0.379071
\(292\) 0 0
\(293\) 20.3798 1.19060 0.595300 0.803504i \(-0.297033\pi\)
0.595300 + 0.803504i \(0.297033\pi\)
\(294\) 0 0
\(295\) −17.5237 −1.02027
\(296\) 0 0
\(297\) −3.65962 −0.212353
\(298\) 0 0
\(299\) 5.99701 0.346816
\(300\) 0 0
\(301\) −46.9965 −2.70883
\(302\) 0 0
\(303\) 1.12474 0.0646147
\(304\) 0 0
\(305\) 36.3389 2.08076
\(306\) 0 0
\(307\) 17.5028 0.998939 0.499470 0.866331i \(-0.333528\pi\)
0.499470 + 0.866331i \(0.333528\pi\)
\(308\) 0 0
\(309\) −0.482928 −0.0274728
\(310\) 0 0
\(311\) −22.4715 −1.27424 −0.637120 0.770764i \(-0.719875\pi\)
−0.637120 + 0.770764i \(0.719875\pi\)
\(312\) 0 0
\(313\) −32.6321 −1.84447 −0.922236 0.386626i \(-0.873640\pi\)
−0.922236 + 0.386626i \(0.873640\pi\)
\(314\) 0 0
\(315\) 57.8099 3.25722
\(316\) 0 0
\(317\) −19.5532 −1.09822 −0.549110 0.835750i \(-0.685033\pi\)
−0.549110 + 0.835750i \(0.685033\pi\)
\(318\) 0 0
\(319\) 3.42941 0.192010
\(320\) 0 0
\(321\) −3.59241 −0.200509
\(322\) 0 0
\(323\) −58.4663 −3.25315
\(324\) 0 0
\(325\) −26.5602 −1.47329
\(326\) 0 0
\(327\) 4.38300 0.242381
\(328\) 0 0
\(329\) −34.5186 −1.90307
\(330\) 0 0
\(331\) 20.1680 1.10853 0.554266 0.832340i \(-0.312999\pi\)
0.554266 + 0.832340i \(0.312999\pi\)
\(332\) 0 0
\(333\) −3.41638 −0.187216
\(334\) 0 0
\(335\) 6.26298 0.342183
\(336\) 0 0
\(337\) 29.1409 1.58741 0.793704 0.608305i \(-0.208150\pi\)
0.793704 + 0.608305i \(0.208150\pi\)
\(338\) 0 0
\(339\) 0.121603 0.00660454
\(340\) 0 0
\(341\) 5.90407 0.319723
\(342\) 0 0
\(343\) −47.7899 −2.58041
\(344\) 0 0
\(345\) −4.41304 −0.237590
\(346\) 0 0
\(347\) −12.2141 −0.655686 −0.327843 0.944732i \(-0.606322\pi\)
−0.327843 + 0.944732i \(0.606322\pi\)
\(348\) 0 0
\(349\) 15.3346 0.820843 0.410421 0.911896i \(-0.365382\pi\)
0.410421 + 0.911896i \(0.365382\pi\)
\(350\) 0 0
\(351\) 4.86757 0.259812
\(352\) 0 0
\(353\) 30.6859 1.63324 0.816622 0.577173i \(-0.195844\pi\)
0.816622 + 0.577173i \(0.195844\pi\)
\(354\) 0 0
\(355\) −45.8087 −2.43127
\(356\) 0 0
\(357\) 12.7031 0.672319
\(358\) 0 0
\(359\) −0.344824 −0.0181991 −0.00909956 0.999959i \(-0.502897\pi\)
−0.00909956 + 0.999959i \(0.502897\pi\)
\(360\) 0 0
\(361\) 55.2640 2.90863
\(362\) 0 0
\(363\) −3.20343 −0.168137
\(364\) 0 0
\(365\) 5.69291 0.297980
\(366\) 0 0
\(367\) −22.3072 −1.16443 −0.582214 0.813035i \(-0.697814\pi\)
−0.582214 + 0.813035i \(0.697814\pi\)
\(368\) 0 0
\(369\) −15.5104 −0.807440
\(370\) 0 0
\(371\) 14.8243 0.769640
\(372\) 0 0
\(373\) −5.92843 −0.306962 −0.153481 0.988152i \(-0.549048\pi\)
−0.153481 + 0.988152i \(0.549048\pi\)
\(374\) 0 0
\(375\) 11.5724 0.597597
\(376\) 0 0
\(377\) −4.56137 −0.234922
\(378\) 0 0
\(379\) 2.01119 0.103308 0.0516540 0.998665i \(-0.483551\pi\)
0.0516540 + 0.998665i \(0.483551\pi\)
\(380\) 0 0
\(381\) 0.801322 0.0410530
\(382\) 0 0
\(383\) −4.21696 −0.215477 −0.107738 0.994179i \(-0.534361\pi\)
−0.107738 + 0.994179i \(0.534361\pi\)
\(384\) 0 0
\(385\) −33.0138 −1.68254
\(386\) 0 0
\(387\) −27.4827 −1.39703
\(388\) 0 0
\(389\) 4.54939 0.230663 0.115332 0.993327i \(-0.463207\pi\)
0.115332 + 0.993327i \(0.463207\pi\)
\(390\) 0 0
\(391\) 18.7771 0.949598
\(392\) 0 0
\(393\) 1.98591 0.100176
\(394\) 0 0
\(395\) 62.2091 3.13008
\(396\) 0 0
\(397\) −15.2162 −0.763677 −0.381839 0.924229i \(-0.624709\pi\)
−0.381839 + 0.924229i \(0.624709\pi\)
\(398\) 0 0
\(399\) −16.1355 −0.807785
\(400\) 0 0
\(401\) 18.4280 0.920250 0.460125 0.887854i \(-0.347805\pi\)
0.460125 + 0.887854i \(0.347805\pi\)
\(402\) 0 0
\(403\) −7.85285 −0.391178
\(404\) 0 0
\(405\) 31.9702 1.58861
\(406\) 0 0
\(407\) 1.95101 0.0967081
\(408\) 0 0
\(409\) 36.3293 1.79637 0.898184 0.439619i \(-0.144887\pi\)
0.898184 + 0.439619i \(0.144887\pi\)
\(410\) 0 0
\(411\) 2.44094 0.120403
\(412\) 0 0
\(413\) 20.5775 1.01255
\(414\) 0 0
\(415\) 33.5777 1.64826
\(416\) 0 0
\(417\) 4.09872 0.200715
\(418\) 0 0
\(419\) 6.63242 0.324015 0.162007 0.986790i \(-0.448203\pi\)
0.162007 + 0.986790i \(0.448203\pi\)
\(420\) 0 0
\(421\) −33.1090 −1.61363 −0.806817 0.590801i \(-0.798812\pi\)
−0.806817 + 0.590801i \(0.798812\pi\)
\(422\) 0 0
\(423\) −20.1859 −0.981472
\(424\) 0 0
\(425\) −83.1620 −4.03395
\(426\) 0 0
\(427\) −42.6716 −2.06502
\(428\) 0 0
\(429\) −1.35489 −0.0654148
\(430\) 0 0
\(431\) 16.6498 0.801995 0.400997 0.916079i \(-0.368664\pi\)
0.400997 + 0.916079i \(0.368664\pi\)
\(432\) 0 0
\(433\) 5.36131 0.257648 0.128824 0.991667i \(-0.458880\pi\)
0.128824 + 0.991667i \(0.458880\pi\)
\(434\) 0 0
\(435\) 3.35659 0.160936
\(436\) 0 0
\(437\) −23.8507 −1.14093
\(438\) 0 0
\(439\) 5.42961 0.259141 0.129571 0.991570i \(-0.458640\pi\)
0.129571 + 0.991570i \(0.458640\pi\)
\(440\) 0 0
\(441\) −47.9155 −2.28169
\(442\) 0 0
\(443\) −3.66946 −0.174341 −0.0871706 0.996193i \(-0.527783\pi\)
−0.0871706 + 0.996193i \(0.527783\pi\)
\(444\) 0 0
\(445\) 13.7629 0.652426
\(446\) 0 0
\(447\) −1.33351 −0.0630729
\(448\) 0 0
\(449\) 6.43513 0.303693 0.151846 0.988404i \(-0.451478\pi\)
0.151846 + 0.988404i \(0.451478\pi\)
\(450\) 0 0
\(451\) 8.85764 0.417090
\(452\) 0 0
\(453\) −4.31446 −0.202711
\(454\) 0 0
\(455\) 43.9109 2.05857
\(456\) 0 0
\(457\) 2.97606 0.139214 0.0696071 0.997574i \(-0.477825\pi\)
0.0696071 + 0.997574i \(0.477825\pi\)
\(458\) 0 0
\(459\) 15.2407 0.711377
\(460\) 0 0
\(461\) 9.73958 0.453617 0.226809 0.973939i \(-0.427171\pi\)
0.226809 + 0.973939i \(0.427171\pi\)
\(462\) 0 0
\(463\) 19.9810 0.928598 0.464299 0.885679i \(-0.346306\pi\)
0.464299 + 0.885679i \(0.346306\pi\)
\(464\) 0 0
\(465\) 5.77871 0.267981
\(466\) 0 0
\(467\) 14.3949 0.666115 0.333057 0.942907i \(-0.391920\pi\)
0.333057 + 0.942907i \(0.391920\pi\)
\(468\) 0 0
\(469\) −7.35441 −0.339595
\(470\) 0 0
\(471\) 3.29912 0.152015
\(472\) 0 0
\(473\) 15.6947 0.721645
\(474\) 0 0
\(475\) 105.633 4.84675
\(476\) 0 0
\(477\) 8.66900 0.396926
\(478\) 0 0
\(479\) 22.4679 1.02659 0.513293 0.858213i \(-0.328425\pi\)
0.513293 + 0.858213i \(0.328425\pi\)
\(480\) 0 0
\(481\) −2.59499 −0.118321
\(482\) 0 0
\(483\) 5.18209 0.235793
\(484\) 0 0
\(485\) 69.9880 3.17799
\(486\) 0 0
\(487\) 15.3289 0.694618 0.347309 0.937751i \(-0.387096\pi\)
0.347309 + 0.937751i \(0.387096\pi\)
\(488\) 0 0
\(489\) −3.89698 −0.176227
\(490\) 0 0
\(491\) 23.8945 1.07834 0.539172 0.842196i \(-0.318737\pi\)
0.539172 + 0.842196i \(0.318737\pi\)
\(492\) 0 0
\(493\) −14.2820 −0.643229
\(494\) 0 0
\(495\) −19.3059 −0.867737
\(496\) 0 0
\(497\) 53.7917 2.41289
\(498\) 0 0
\(499\) 15.7627 0.705635 0.352818 0.935692i \(-0.385224\pi\)
0.352818 + 0.935692i \(0.385224\pi\)
\(500\) 0 0
\(501\) −1.67952 −0.0750353
\(502\) 0 0
\(503\) −0.635388 −0.0283305 −0.0141653 0.999900i \(-0.504509\pi\)
−0.0141653 + 0.999900i \(0.504509\pi\)
\(504\) 0 0
\(505\) 12.1733 0.541706
\(506\) 0 0
\(507\) −3.18764 −0.141568
\(508\) 0 0
\(509\) 1.74035 0.0771399 0.0385699 0.999256i \(-0.487720\pi\)
0.0385699 + 0.999256i \(0.487720\pi\)
\(510\) 0 0
\(511\) −6.68499 −0.295727
\(512\) 0 0
\(513\) −19.3588 −0.854712
\(514\) 0 0
\(515\) −5.22683 −0.230322
\(516\) 0 0
\(517\) 11.5277 0.506987
\(518\) 0 0
\(519\) −8.73784 −0.383548
\(520\) 0 0
\(521\) 10.5683 0.463004 0.231502 0.972834i \(-0.425636\pi\)
0.231502 + 0.972834i \(0.425636\pi\)
\(522\) 0 0
\(523\) −10.5329 −0.460572 −0.230286 0.973123i \(-0.573966\pi\)
−0.230286 + 0.973123i \(0.573966\pi\)
\(524\) 0 0
\(525\) −22.9510 −1.00166
\(526\) 0 0
\(527\) −24.5879 −1.07106
\(528\) 0 0
\(529\) −15.3401 −0.666961
\(530\) 0 0
\(531\) 12.0334 0.522203
\(532\) 0 0
\(533\) −11.7813 −0.510305
\(534\) 0 0
\(535\) −38.8814 −1.68099
\(536\) 0 0
\(537\) −4.66865 −0.201467
\(538\) 0 0
\(539\) 27.3634 1.17862
\(540\) 0 0
\(541\) −0.0839881 −0.00361093 −0.00180546 0.999998i \(-0.500575\pi\)
−0.00180546 + 0.999998i \(0.500575\pi\)
\(542\) 0 0
\(543\) −1.76963 −0.0759419
\(544\) 0 0
\(545\) 47.4382 2.03203
\(546\) 0 0
\(547\) −1.38614 −0.0592669 −0.0296334 0.999561i \(-0.509434\pi\)
−0.0296334 + 0.999561i \(0.509434\pi\)
\(548\) 0 0
\(549\) −24.9536 −1.06499
\(550\) 0 0
\(551\) 18.1410 0.772833
\(552\) 0 0
\(553\) −73.0501 −3.10641
\(554\) 0 0
\(555\) 1.90959 0.0810575
\(556\) 0 0
\(557\) 17.1840 0.728111 0.364056 0.931377i \(-0.381392\pi\)
0.364056 + 0.931377i \(0.381392\pi\)
\(558\) 0 0
\(559\) −20.8752 −0.882926
\(560\) 0 0
\(561\) −4.24227 −0.179109
\(562\) 0 0
\(563\) 12.1968 0.514033 0.257017 0.966407i \(-0.417260\pi\)
0.257017 + 0.966407i \(0.417260\pi\)
\(564\) 0 0
\(565\) 1.31613 0.0553700
\(566\) 0 0
\(567\) −37.5415 −1.57660
\(568\) 0 0
\(569\) 23.4816 0.984401 0.492201 0.870482i \(-0.336193\pi\)
0.492201 + 0.870482i \(0.336193\pi\)
\(570\) 0 0
\(571\) 2.61940 0.109619 0.0548093 0.998497i \(-0.482545\pi\)
0.0548093 + 0.998497i \(0.482545\pi\)
\(572\) 0 0
\(573\) −1.26875 −0.0530028
\(574\) 0 0
\(575\) −33.9250 −1.41477
\(576\) 0 0
\(577\) 12.1035 0.503874 0.251937 0.967744i \(-0.418932\pi\)
0.251937 + 0.967744i \(0.418932\pi\)
\(578\) 0 0
\(579\) −7.10681 −0.295349
\(580\) 0 0
\(581\) −39.4292 −1.63580
\(582\) 0 0
\(583\) −4.95066 −0.205035
\(584\) 0 0
\(585\) 25.6783 1.06167
\(586\) 0 0
\(587\) 3.09578 0.127776 0.0638882 0.997957i \(-0.479650\pi\)
0.0638882 + 0.997957i \(0.479650\pi\)
\(588\) 0 0
\(589\) 31.2316 1.28687
\(590\) 0 0
\(591\) 3.37042 0.138640
\(592\) 0 0
\(593\) −24.1730 −0.992666 −0.496333 0.868132i \(-0.665321\pi\)
−0.496333 + 0.868132i \(0.665321\pi\)
\(594\) 0 0
\(595\) 137.488 5.63647
\(596\) 0 0
\(597\) 4.77364 0.195372
\(598\) 0 0
\(599\) −39.0984 −1.59752 −0.798759 0.601651i \(-0.794510\pi\)
−0.798759 + 0.601651i \(0.794510\pi\)
\(600\) 0 0
\(601\) −29.5069 −1.20361 −0.601807 0.798642i \(-0.705552\pi\)
−0.601807 + 0.798642i \(0.705552\pi\)
\(602\) 0 0
\(603\) −4.30073 −0.175139
\(604\) 0 0
\(605\) −34.6714 −1.40959
\(606\) 0 0
\(607\) −17.2674 −0.700861 −0.350431 0.936589i \(-0.613965\pi\)
−0.350431 + 0.936589i \(0.613965\pi\)
\(608\) 0 0
\(609\) −3.94154 −0.159719
\(610\) 0 0
\(611\) −15.3327 −0.620294
\(612\) 0 0
\(613\) −7.94254 −0.320796 −0.160398 0.987052i \(-0.551278\pi\)
−0.160398 + 0.987052i \(0.551278\pi\)
\(614\) 0 0
\(615\) 8.66956 0.349591
\(616\) 0 0
\(617\) 18.0886 0.728218 0.364109 0.931356i \(-0.381374\pi\)
0.364109 + 0.931356i \(0.381374\pi\)
\(618\) 0 0
\(619\) 33.4949 1.34627 0.673136 0.739518i \(-0.264947\pi\)
0.673136 + 0.739518i \(0.264947\pi\)
\(620\) 0 0
\(621\) 6.21729 0.249491
\(622\) 0 0
\(623\) −16.1614 −0.647491
\(624\) 0 0
\(625\) 63.9624 2.55850
\(626\) 0 0
\(627\) 5.38854 0.215197
\(628\) 0 0
\(629\) −8.12512 −0.323970
\(630\) 0 0
\(631\) −37.3162 −1.48554 −0.742768 0.669549i \(-0.766488\pi\)
−0.742768 + 0.669549i \(0.766488\pi\)
\(632\) 0 0
\(633\) 4.19483 0.166729
\(634\) 0 0
\(635\) 8.67288 0.344173
\(636\) 0 0
\(637\) −36.3954 −1.44204
\(638\) 0 0
\(639\) 31.4564 1.24440
\(640\) 0 0
\(641\) −18.0393 −0.712509 −0.356254 0.934389i \(-0.615946\pi\)
−0.356254 + 0.934389i \(0.615946\pi\)
\(642\) 0 0
\(643\) 33.0496 1.30335 0.651675 0.758498i \(-0.274067\pi\)
0.651675 + 0.758498i \(0.274067\pi\)
\(644\) 0 0
\(645\) 15.3615 0.604859
\(646\) 0 0
\(647\) 40.3067 1.58462 0.792310 0.610118i \(-0.208878\pi\)
0.792310 + 0.610118i \(0.208878\pi\)
\(648\) 0 0
\(649\) −6.87196 −0.269748
\(650\) 0 0
\(651\) −6.78575 −0.265954
\(652\) 0 0
\(653\) −21.3784 −0.836601 −0.418300 0.908309i \(-0.637374\pi\)
−0.418300 + 0.908309i \(0.637374\pi\)
\(654\) 0 0
\(655\) 21.4939 0.839836
\(656\) 0 0
\(657\) −3.90927 −0.152515
\(658\) 0 0
\(659\) −23.1777 −0.902875 −0.451438 0.892303i \(-0.649089\pi\)
−0.451438 + 0.892303i \(0.649089\pi\)
\(660\) 0 0
\(661\) −3.96791 −0.154334 −0.0771669 0.997018i \(-0.524587\pi\)
−0.0771669 + 0.997018i \(0.524587\pi\)
\(662\) 0 0
\(663\) 5.64253 0.219138
\(664\) 0 0
\(665\) −174.638 −6.77217
\(666\) 0 0
\(667\) −5.82618 −0.225591
\(668\) 0 0
\(669\) −3.37526 −0.130495
\(670\) 0 0
\(671\) 14.2504 0.550131
\(672\) 0 0
\(673\) 32.9589 1.27047 0.635235 0.772319i \(-0.280903\pi\)
0.635235 + 0.772319i \(0.280903\pi\)
\(674\) 0 0
\(675\) −27.5358 −1.05985
\(676\) 0 0
\(677\) 17.1159 0.657816 0.328908 0.944362i \(-0.393319\pi\)
0.328908 + 0.944362i \(0.393319\pi\)
\(678\) 0 0
\(679\) −82.1846 −3.15396
\(680\) 0 0
\(681\) −2.59033 −0.0992618
\(682\) 0 0
\(683\) −33.2813 −1.27347 −0.636736 0.771082i \(-0.719716\pi\)
−0.636736 + 0.771082i \(0.719716\pi\)
\(684\) 0 0
\(685\) 26.4188 1.00941
\(686\) 0 0
\(687\) −8.92804 −0.340626
\(688\) 0 0
\(689\) 6.58475 0.250859
\(690\) 0 0
\(691\) 21.3236 0.811189 0.405594 0.914053i \(-0.367065\pi\)
0.405594 + 0.914053i \(0.367065\pi\)
\(692\) 0 0
\(693\) 22.6703 0.861174
\(694\) 0 0
\(695\) 44.3614 1.68272
\(696\) 0 0
\(697\) −36.8882 −1.39724
\(698\) 0 0
\(699\) 4.24976 0.160741
\(700\) 0 0
\(701\) −28.5333 −1.07769 −0.538844 0.842406i \(-0.681139\pi\)
−0.538844 + 0.842406i \(0.681139\pi\)
\(702\) 0 0
\(703\) 10.3205 0.389246
\(704\) 0 0
\(705\) 11.2829 0.424940
\(706\) 0 0
\(707\) −14.2947 −0.537609
\(708\) 0 0
\(709\) 4.38294 0.164605 0.0823024 0.996607i \(-0.473773\pi\)
0.0823024 + 0.996607i \(0.473773\pi\)
\(710\) 0 0
\(711\) −42.7184 −1.60207
\(712\) 0 0
\(713\) −10.0304 −0.375640
\(714\) 0 0
\(715\) −14.6643 −0.548413
\(716\) 0 0
\(717\) 1.53174 0.0572040
\(718\) 0 0
\(719\) 36.1805 1.34930 0.674652 0.738136i \(-0.264294\pi\)
0.674652 + 0.738136i \(0.264294\pi\)
\(720\) 0 0
\(721\) 6.13770 0.228580
\(722\) 0 0
\(723\) −6.34881 −0.236115
\(724\) 0 0
\(725\) 25.8036 0.958323
\(726\) 0 0
\(727\) 23.0348 0.854312 0.427156 0.904178i \(-0.359515\pi\)
0.427156 + 0.904178i \(0.359515\pi\)
\(728\) 0 0
\(729\) −19.3669 −0.717294
\(730\) 0 0
\(731\) −65.3618 −2.41749
\(732\) 0 0
\(733\) −41.3032 −1.52557 −0.762785 0.646652i \(-0.776169\pi\)
−0.762785 + 0.646652i \(0.776169\pi\)
\(734\) 0 0
\(735\) 26.7824 0.987884
\(736\) 0 0
\(737\) 2.45605 0.0904696
\(738\) 0 0
\(739\) 15.2014 0.559191 0.279596 0.960118i \(-0.409800\pi\)
0.279596 + 0.960118i \(0.409800\pi\)
\(740\) 0 0
\(741\) −7.16716 −0.263292
\(742\) 0 0
\(743\) −51.4130 −1.88616 −0.943079 0.332568i \(-0.892085\pi\)
−0.943079 + 0.332568i \(0.892085\pi\)
\(744\) 0 0
\(745\) −14.4329 −0.528780
\(746\) 0 0
\(747\) −23.0575 −0.843630
\(748\) 0 0
\(749\) 45.6572 1.66828
\(750\) 0 0
\(751\) −37.2197 −1.35816 −0.679082 0.734062i \(-0.737622\pi\)
−0.679082 + 0.734062i \(0.737622\pi\)
\(752\) 0 0
\(753\) −9.23231 −0.336444
\(754\) 0 0
\(755\) −46.6964 −1.69945
\(756\) 0 0
\(757\) 51.7191 1.87976 0.939882 0.341499i \(-0.110935\pi\)
0.939882 + 0.341499i \(0.110935\pi\)
\(758\) 0 0
\(759\) −1.73059 −0.0628163
\(760\) 0 0
\(761\) 16.8448 0.610623 0.305312 0.952253i \(-0.401239\pi\)
0.305312 + 0.952253i \(0.401239\pi\)
\(762\) 0 0
\(763\) −55.7051 −2.01666
\(764\) 0 0
\(765\) 80.4008 2.90690
\(766\) 0 0
\(767\) 9.14022 0.330034
\(768\) 0 0
\(769\) 10.2220 0.368614 0.184307 0.982869i \(-0.440996\pi\)
0.184307 + 0.982869i \(0.440996\pi\)
\(770\) 0 0
\(771\) −5.25158 −0.189131
\(772\) 0 0
\(773\) −31.6879 −1.13973 −0.569867 0.821737i \(-0.693005\pi\)
−0.569867 + 0.821737i \(0.693005\pi\)
\(774\) 0 0
\(775\) 44.4235 1.59574
\(776\) 0 0
\(777\) −2.24236 −0.0804444
\(778\) 0 0
\(779\) 46.8555 1.67877
\(780\) 0 0
\(781\) −17.9640 −0.642803
\(782\) 0 0
\(783\) −4.72892 −0.168998
\(784\) 0 0
\(785\) 35.7070 1.27444
\(786\) 0 0
\(787\) −21.1252 −0.753033 −0.376516 0.926410i \(-0.622878\pi\)
−0.376516 + 0.926410i \(0.622878\pi\)
\(788\) 0 0
\(789\) −4.37339 −0.155697
\(790\) 0 0
\(791\) −1.54549 −0.0549512
\(792\) 0 0
\(793\) −18.9541 −0.673080
\(794\) 0 0
\(795\) −4.84554 −0.171854
\(796\) 0 0
\(797\) −4.27630 −0.151474 −0.0757371 0.997128i \(-0.524131\pi\)
−0.0757371 + 0.997128i \(0.524131\pi\)
\(798\) 0 0
\(799\) −48.0078 −1.69839
\(800\) 0 0
\(801\) −9.45089 −0.333931
\(802\) 0 0
\(803\) 2.23249 0.0787829
\(804\) 0 0
\(805\) 56.0868 1.97680
\(806\) 0 0
\(807\) −0.383827 −0.0135113
\(808\) 0 0
\(809\) 4.78386 0.168192 0.0840958 0.996458i \(-0.473200\pi\)
0.0840958 + 0.996458i \(0.473200\pi\)
\(810\) 0 0
\(811\) 34.4127 1.20839 0.604197 0.796835i \(-0.293494\pi\)
0.604197 + 0.796835i \(0.293494\pi\)
\(812\) 0 0
\(813\) 9.44854 0.331375
\(814\) 0 0
\(815\) −42.1778 −1.47742
\(816\) 0 0
\(817\) 83.0227 2.90460
\(818\) 0 0
\(819\) −30.1532 −1.05364
\(820\) 0 0
\(821\) −38.7973 −1.35404 −0.677018 0.735967i \(-0.736728\pi\)
−0.677018 + 0.735967i \(0.736728\pi\)
\(822\) 0 0
\(823\) 8.52567 0.297186 0.148593 0.988898i \(-0.452526\pi\)
0.148593 + 0.988898i \(0.452526\pi\)
\(824\) 0 0
\(825\) 7.66461 0.266848
\(826\) 0 0
\(827\) −3.84932 −0.133854 −0.0669271 0.997758i \(-0.521319\pi\)
−0.0669271 + 0.997758i \(0.521319\pi\)
\(828\) 0 0
\(829\) 1.76719 0.0613771 0.0306886 0.999529i \(-0.490230\pi\)
0.0306886 + 0.999529i \(0.490230\pi\)
\(830\) 0 0
\(831\) 1.80691 0.0626810
\(832\) 0 0
\(833\) −113.957 −3.94836
\(834\) 0 0
\(835\) −18.1778 −0.629068
\(836\) 0 0
\(837\) −8.14131 −0.281405
\(838\) 0 0
\(839\) −48.4527 −1.67277 −0.836386 0.548141i \(-0.815336\pi\)
−0.836386 + 0.548141i \(0.815336\pi\)
\(840\) 0 0
\(841\) −24.5686 −0.847192
\(842\) 0 0
\(843\) 2.50078 0.0861315
\(844\) 0 0
\(845\) −34.5005 −1.18685
\(846\) 0 0
\(847\) 40.7135 1.39893
\(848\) 0 0
\(849\) 3.32938 0.114264
\(850\) 0 0
\(851\) −3.31455 −0.113621
\(852\) 0 0
\(853\) 35.2024 1.20531 0.602654 0.798002i \(-0.294110\pi\)
0.602654 + 0.798002i \(0.294110\pi\)
\(854\) 0 0
\(855\) −102.125 −3.49261
\(856\) 0 0
\(857\) 8.30685 0.283757 0.141878 0.989884i \(-0.454686\pi\)
0.141878 + 0.989884i \(0.454686\pi\)
\(858\) 0 0
\(859\) −48.5886 −1.65782 −0.828911 0.559381i \(-0.811039\pi\)
−0.828911 + 0.559381i \(0.811039\pi\)
\(860\) 0 0
\(861\) −10.1804 −0.346947
\(862\) 0 0
\(863\) −50.0516 −1.70378 −0.851888 0.523723i \(-0.824543\pi\)
−0.851888 + 0.523723i \(0.824543\pi\)
\(864\) 0 0
\(865\) −94.5715 −3.21553
\(866\) 0 0
\(867\) 11.1421 0.378407
\(868\) 0 0
\(869\) 24.3955 0.827560
\(870\) 0 0
\(871\) −3.26672 −0.110689
\(872\) 0 0
\(873\) −48.0601 −1.62659
\(874\) 0 0
\(875\) −147.078 −4.97214
\(876\) 0 0
\(877\) −35.1921 −1.18835 −0.594177 0.804334i \(-0.702522\pi\)
−0.594177 + 0.804334i \(0.702522\pi\)
\(878\) 0 0
\(879\) 7.82230 0.263840
\(880\) 0 0
\(881\) −29.4895 −0.993527 −0.496764 0.867886i \(-0.665478\pi\)
−0.496764 + 0.867886i \(0.665478\pi\)
\(882\) 0 0
\(883\) 28.1353 0.946829 0.473415 0.880840i \(-0.343021\pi\)
0.473415 + 0.880840i \(0.343021\pi\)
\(884\) 0 0
\(885\) −6.72605 −0.226094
\(886\) 0 0
\(887\) 12.3917 0.416072 0.208036 0.978121i \(-0.433293\pi\)
0.208036 + 0.978121i \(0.433293\pi\)
\(888\) 0 0
\(889\) −10.1843 −0.341570
\(890\) 0 0
\(891\) 12.5372 0.420012
\(892\) 0 0
\(893\) 60.9796 2.04061
\(894\) 0 0
\(895\) −50.5298 −1.68903
\(896\) 0 0
\(897\) 2.30181 0.0768552
\(898\) 0 0
\(899\) 7.62916 0.254447
\(900\) 0 0
\(901\) 20.6173 0.686863
\(902\) 0 0
\(903\) −18.0385 −0.600284
\(904\) 0 0
\(905\) −19.1530 −0.636669
\(906\) 0 0
\(907\) 14.9432 0.496181 0.248090 0.968737i \(-0.420197\pi\)
0.248090 + 0.968737i \(0.420197\pi\)
\(908\) 0 0
\(909\) −8.35931 −0.277261
\(910\) 0 0
\(911\) −29.3458 −0.972269 −0.486134 0.873884i \(-0.661593\pi\)
−0.486134 + 0.873884i \(0.661593\pi\)
\(912\) 0 0
\(913\) 13.1676 0.435784
\(914\) 0 0
\(915\) 13.9478 0.461101
\(916\) 0 0
\(917\) −25.2396 −0.833485
\(918\) 0 0
\(919\) −24.7551 −0.816595 −0.408297 0.912849i \(-0.633877\pi\)
−0.408297 + 0.912849i \(0.633877\pi\)
\(920\) 0 0
\(921\) 6.71805 0.221367
\(922\) 0 0
\(923\) 23.8935 0.786464
\(924\) 0 0
\(925\) 14.6799 0.482671
\(926\) 0 0
\(927\) 3.58922 0.117885
\(928\) 0 0
\(929\) −27.1303 −0.890117 −0.445059 0.895501i \(-0.646817\pi\)
−0.445059 + 0.895501i \(0.646817\pi\)
\(930\) 0 0
\(931\) 144.748 4.74392
\(932\) 0 0
\(933\) −8.62515 −0.282375
\(934\) 0 0
\(935\) −45.9150 −1.50158
\(936\) 0 0
\(937\) 44.2931 1.44699 0.723496 0.690328i \(-0.242534\pi\)
0.723496 + 0.690328i \(0.242534\pi\)
\(938\) 0 0
\(939\) −12.5250 −0.408740
\(940\) 0 0
\(941\) −27.0894 −0.883090 −0.441545 0.897239i \(-0.645569\pi\)
−0.441545 + 0.897239i \(0.645569\pi\)
\(942\) 0 0
\(943\) −15.0481 −0.490035
\(944\) 0 0
\(945\) 45.5238 1.48089
\(946\) 0 0
\(947\) −44.9196 −1.45969 −0.729845 0.683613i \(-0.760408\pi\)
−0.729845 + 0.683613i \(0.760408\pi\)
\(948\) 0 0
\(949\) −2.96938 −0.0963901
\(950\) 0 0
\(951\) −7.50505 −0.243368
\(952\) 0 0
\(953\) −21.0858 −0.683036 −0.341518 0.939875i \(-0.610941\pi\)
−0.341518 + 0.939875i \(0.610941\pi\)
\(954\) 0 0
\(955\) −13.7320 −0.444356
\(956\) 0 0
\(957\) 1.31630 0.0425499
\(958\) 0 0
\(959\) −31.0227 −1.00178
\(960\) 0 0
\(961\) −17.8656 −0.576311
\(962\) 0 0
\(963\) 26.6995 0.860380
\(964\) 0 0
\(965\) −76.9185 −2.47609
\(966\) 0 0
\(967\) −25.2415 −0.811711 −0.405855 0.913937i \(-0.633026\pi\)
−0.405855 + 0.913937i \(0.633026\pi\)
\(968\) 0 0
\(969\) −22.4409 −0.720906
\(970\) 0 0
\(971\) 34.5382 1.10838 0.554192 0.832389i \(-0.313027\pi\)
0.554192 + 0.832389i \(0.313027\pi\)
\(972\) 0 0
\(973\) −52.0921 −1.67000
\(974\) 0 0
\(975\) −10.1945 −0.326486
\(976\) 0 0
\(977\) 61.0213 1.95224 0.976122 0.217225i \(-0.0697004\pi\)
0.976122 + 0.217225i \(0.0697004\pi\)
\(978\) 0 0
\(979\) 5.39718 0.172495
\(980\) 0 0
\(981\) −32.5754 −1.04005
\(982\) 0 0
\(983\) 47.5260 1.51585 0.757923 0.652345i \(-0.226214\pi\)
0.757923 + 0.652345i \(0.226214\pi\)
\(984\) 0 0
\(985\) 36.4787 1.16231
\(986\) 0 0
\(987\) −13.2492 −0.421726
\(988\) 0 0
\(989\) −26.6636 −0.847854
\(990\) 0 0
\(991\) 35.6855 1.13359 0.566794 0.823860i \(-0.308184\pi\)
0.566794 + 0.823860i \(0.308184\pi\)
\(992\) 0 0
\(993\) 7.74100 0.245653
\(994\) 0 0
\(995\) 51.6662 1.63793
\(996\) 0 0
\(997\) 12.2019 0.386438 0.193219 0.981156i \(-0.438107\pi\)
0.193219 + 0.981156i \(0.438107\pi\)
\(998\) 0 0
\(999\) −2.69031 −0.0851177
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.h.1.5 7
4.3 odd 2 538.2.a.e.1.3 7
12.11 even 2 4842.2.a.n.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.e.1.3 7 4.3 odd 2
4304.2.a.h.1.5 7 1.1 even 1 trivial
4842.2.a.n.1.1 7 12.11 even 2