Properties

Label 4304.2.a.h.1.3
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 16x^{4} + 49x^{3} - 53x^{2} - 44x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.14366\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.65255 q^{3} +0.725043 q^{5} -1.29978 q^{7} -0.269065 q^{9} +3.71687 q^{11} +2.30856 q^{13} -1.19817 q^{15} +6.32982 q^{17} -0.0212539 q^{19} +2.14795 q^{21} +1.30511 q^{23} -4.47431 q^{25} +5.40231 q^{27} -2.06303 q^{29} +5.82316 q^{31} -6.14233 q^{33} -0.942394 q^{35} -7.25272 q^{37} -3.81503 q^{39} +8.77454 q^{41} -4.52327 q^{43} -0.195084 q^{45} -3.85502 q^{47} -5.31058 q^{49} -10.4604 q^{51} -6.86923 q^{53} +2.69489 q^{55} +0.0351232 q^{57} -7.84518 q^{59} +3.84958 q^{61} +0.349724 q^{63} +1.67381 q^{65} +9.31541 q^{67} -2.15676 q^{69} +0.643097 q^{71} -2.97920 q^{73} +7.39404 q^{75} -4.83110 q^{77} -0.418245 q^{79} -8.12041 q^{81} +15.6322 q^{83} +4.58939 q^{85} +3.40927 q^{87} +10.3879 q^{89} -3.00062 q^{91} -9.62309 q^{93} -0.0154100 q^{95} +5.07659 q^{97} -1.00008 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{3} + 7 q^{5} - 6 q^{7} + 12 q^{9} + 3 q^{11} - 9 q^{13} - 8 q^{15} + 8 q^{17} + 11 q^{19} - 6 q^{21} - 12 q^{23} + 22 q^{25} + 14 q^{27} - 5 q^{29} - 14 q^{31} - 4 q^{33} + 4 q^{35} + 13 q^{37}+ \cdots + 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.65255 −0.954103 −0.477051 0.878875i \(-0.658294\pi\)
−0.477051 + 0.878875i \(0.658294\pi\)
\(4\) 0 0
\(5\) 0.725043 0.324249 0.162125 0.986770i \(-0.448165\pi\)
0.162125 + 0.986770i \(0.448165\pi\)
\(6\) 0 0
\(7\) −1.29978 −0.491269 −0.245635 0.969362i \(-0.578996\pi\)
−0.245635 + 0.969362i \(0.578996\pi\)
\(8\) 0 0
\(9\) −0.269065 −0.0896884
\(10\) 0 0
\(11\) 3.71687 1.12068 0.560340 0.828263i \(-0.310671\pi\)
0.560340 + 0.828263i \(0.310671\pi\)
\(12\) 0 0
\(13\) 2.30856 0.640280 0.320140 0.947370i \(-0.396270\pi\)
0.320140 + 0.947370i \(0.396270\pi\)
\(14\) 0 0
\(15\) −1.19817 −0.309367
\(16\) 0 0
\(17\) 6.32982 1.53521 0.767603 0.640925i \(-0.221449\pi\)
0.767603 + 0.640925i \(0.221449\pi\)
\(18\) 0 0
\(19\) −0.0212539 −0.00487598 −0.00243799 0.999997i \(-0.500776\pi\)
−0.00243799 + 0.999997i \(0.500776\pi\)
\(20\) 0 0
\(21\) 2.14795 0.468721
\(22\) 0 0
\(23\) 1.30511 0.272134 0.136067 0.990700i \(-0.456554\pi\)
0.136067 + 0.990700i \(0.456554\pi\)
\(24\) 0 0
\(25\) −4.47431 −0.894863
\(26\) 0 0
\(27\) 5.40231 1.03967
\(28\) 0 0
\(29\) −2.06303 −0.383095 −0.191548 0.981483i \(-0.561351\pi\)
−0.191548 + 0.981483i \(0.561351\pi\)
\(30\) 0 0
\(31\) 5.82316 1.04587 0.522935 0.852372i \(-0.324837\pi\)
0.522935 + 0.852372i \(0.324837\pi\)
\(32\) 0 0
\(33\) −6.14233 −1.06924
\(34\) 0 0
\(35\) −0.942394 −0.159294
\(36\) 0 0
\(37\) −7.25272 −1.19234 −0.596170 0.802858i \(-0.703312\pi\)
−0.596170 + 0.802858i \(0.703312\pi\)
\(38\) 0 0
\(39\) −3.81503 −0.610893
\(40\) 0 0
\(41\) 8.77454 1.37035 0.685176 0.728377i \(-0.259725\pi\)
0.685176 + 0.728377i \(0.259725\pi\)
\(42\) 0 0
\(43\) −4.52327 −0.689792 −0.344896 0.938641i \(-0.612086\pi\)
−0.344896 + 0.938641i \(0.612086\pi\)
\(44\) 0 0
\(45\) −0.195084 −0.0290814
\(46\) 0 0
\(47\) −3.85502 −0.562313 −0.281156 0.959662i \(-0.590718\pi\)
−0.281156 + 0.959662i \(0.590718\pi\)
\(48\) 0 0
\(49\) −5.31058 −0.758654
\(50\) 0 0
\(51\) −10.4604 −1.46474
\(52\) 0 0
\(53\) −6.86923 −0.943562 −0.471781 0.881716i \(-0.656389\pi\)
−0.471781 + 0.881716i \(0.656389\pi\)
\(54\) 0 0
\(55\) 2.69489 0.363379
\(56\) 0 0
\(57\) 0.0351232 0.00465218
\(58\) 0 0
\(59\) −7.84518 −1.02136 −0.510678 0.859772i \(-0.670605\pi\)
−0.510678 + 0.859772i \(0.670605\pi\)
\(60\) 0 0
\(61\) 3.84958 0.492888 0.246444 0.969157i \(-0.420738\pi\)
0.246444 + 0.969157i \(0.420738\pi\)
\(62\) 0 0
\(63\) 0.349724 0.0440611
\(64\) 0 0
\(65\) 1.67381 0.207610
\(66\) 0 0
\(67\) 9.31541 1.13806 0.569029 0.822317i \(-0.307319\pi\)
0.569029 + 0.822317i \(0.307319\pi\)
\(68\) 0 0
\(69\) −2.15676 −0.259644
\(70\) 0 0
\(71\) 0.643097 0.0763215 0.0381608 0.999272i \(-0.487850\pi\)
0.0381608 + 0.999272i \(0.487850\pi\)
\(72\) 0 0
\(73\) −2.97920 −0.348689 −0.174345 0.984685i \(-0.555781\pi\)
−0.174345 + 0.984685i \(0.555781\pi\)
\(74\) 0 0
\(75\) 7.39404 0.853791
\(76\) 0 0
\(77\) −4.83110 −0.550555
\(78\) 0 0
\(79\) −0.418245 −0.0470563 −0.0235281 0.999723i \(-0.507490\pi\)
−0.0235281 + 0.999723i \(0.507490\pi\)
\(80\) 0 0
\(81\) −8.12041 −0.902268
\(82\) 0 0
\(83\) 15.6322 1.71585 0.857927 0.513771i \(-0.171752\pi\)
0.857927 + 0.513771i \(0.171752\pi\)
\(84\) 0 0
\(85\) 4.58939 0.497789
\(86\) 0 0
\(87\) 3.40927 0.365512
\(88\) 0 0
\(89\) 10.3879 1.10111 0.550556 0.834798i \(-0.314416\pi\)
0.550556 + 0.834798i \(0.314416\pi\)
\(90\) 0 0
\(91\) −3.00062 −0.314550
\(92\) 0 0
\(93\) −9.62309 −0.997868
\(94\) 0 0
\(95\) −0.0154100 −0.00158103
\(96\) 0 0
\(97\) 5.07659 0.515450 0.257725 0.966218i \(-0.417027\pi\)
0.257725 + 0.966218i \(0.417027\pi\)
\(98\) 0 0
\(99\) −1.00008 −0.100512
\(100\) 0 0
\(101\) 12.5321 1.24699 0.623495 0.781827i \(-0.285712\pi\)
0.623495 + 0.781827i \(0.285712\pi\)
\(102\) 0 0
\(103\) −5.43374 −0.535403 −0.267701 0.963502i \(-0.586264\pi\)
−0.267701 + 0.963502i \(0.586264\pi\)
\(104\) 0 0
\(105\) 1.55736 0.151982
\(106\) 0 0
\(107\) 3.45500 0.334007 0.167004 0.985956i \(-0.446591\pi\)
0.167004 + 0.985956i \(0.446591\pi\)
\(108\) 0 0
\(109\) −6.80801 −0.652089 −0.326044 0.945354i \(-0.605716\pi\)
−0.326044 + 0.945354i \(0.605716\pi\)
\(110\) 0 0
\(111\) 11.9855 1.13762
\(112\) 0 0
\(113\) 0.407582 0.0383421 0.0191710 0.999816i \(-0.493897\pi\)
0.0191710 + 0.999816i \(0.493897\pi\)
\(114\) 0 0
\(115\) 0.946259 0.0882391
\(116\) 0 0
\(117\) −0.621154 −0.0574257
\(118\) 0 0
\(119\) −8.22735 −0.754200
\(120\) 0 0
\(121\) 2.81514 0.255922
\(122\) 0 0
\(123\) −14.5004 −1.30746
\(124\) 0 0
\(125\) −6.86928 −0.614407
\(126\) 0 0
\(127\) 9.52589 0.845286 0.422643 0.906296i \(-0.361102\pi\)
0.422643 + 0.906296i \(0.361102\pi\)
\(128\) 0 0
\(129\) 7.47495 0.658132
\(130\) 0 0
\(131\) 21.9325 1.91625 0.958127 0.286342i \(-0.0924394\pi\)
0.958127 + 0.286342i \(0.0924394\pi\)
\(132\) 0 0
\(133\) 0.0276253 0.00239542
\(134\) 0 0
\(135\) 3.91690 0.337113
\(136\) 0 0
\(137\) −2.48849 −0.212606 −0.106303 0.994334i \(-0.533901\pi\)
−0.106303 + 0.994334i \(0.533901\pi\)
\(138\) 0 0
\(139\) −21.6244 −1.83416 −0.917078 0.398708i \(-0.869459\pi\)
−0.917078 + 0.398708i \(0.869459\pi\)
\(140\) 0 0
\(141\) 6.37063 0.536504
\(142\) 0 0
\(143\) 8.58064 0.717549
\(144\) 0 0
\(145\) −1.49579 −0.124218
\(146\) 0 0
\(147\) 8.77602 0.723834
\(148\) 0 0
\(149\) 20.9106 1.71306 0.856532 0.516093i \(-0.172614\pi\)
0.856532 + 0.516093i \(0.172614\pi\)
\(150\) 0 0
\(151\) 2.07209 0.168624 0.0843120 0.996439i \(-0.473131\pi\)
0.0843120 + 0.996439i \(0.473131\pi\)
\(152\) 0 0
\(153\) −1.70313 −0.137690
\(154\) 0 0
\(155\) 4.22204 0.339123
\(156\) 0 0
\(157\) −2.60975 −0.208281 −0.104140 0.994563i \(-0.533209\pi\)
−0.104140 + 0.994563i \(0.533209\pi\)
\(158\) 0 0
\(159\) 11.3518 0.900255
\(160\) 0 0
\(161\) −1.69635 −0.133691
\(162\) 0 0
\(163\) 6.63147 0.519417 0.259708 0.965687i \(-0.416374\pi\)
0.259708 + 0.965687i \(0.416374\pi\)
\(164\) 0 0
\(165\) −4.45345 −0.346701
\(166\) 0 0
\(167\) −22.6369 −1.75170 −0.875850 0.482584i \(-0.839698\pi\)
−0.875850 + 0.482584i \(0.839698\pi\)
\(168\) 0 0
\(169\) −7.67053 −0.590041
\(170\) 0 0
\(171\) 0.00571868 0.000437318 0
\(172\) 0 0
\(173\) 12.2456 0.931018 0.465509 0.885043i \(-0.345871\pi\)
0.465509 + 0.885043i \(0.345871\pi\)
\(174\) 0 0
\(175\) 5.81561 0.439619
\(176\) 0 0
\(177\) 12.9646 0.974478
\(178\) 0 0
\(179\) 18.0181 1.34673 0.673367 0.739308i \(-0.264847\pi\)
0.673367 + 0.739308i \(0.264847\pi\)
\(180\) 0 0
\(181\) 7.77690 0.578052 0.289026 0.957321i \(-0.406669\pi\)
0.289026 + 0.957321i \(0.406669\pi\)
\(182\) 0 0
\(183\) −6.36163 −0.470266
\(184\) 0 0
\(185\) −5.25854 −0.386615
\(186\) 0 0
\(187\) 23.5271 1.72047
\(188\) 0 0
\(189\) −7.02179 −0.510760
\(190\) 0 0
\(191\) −0.312243 −0.0225931 −0.0112965 0.999936i \(-0.503596\pi\)
−0.0112965 + 0.999936i \(0.503596\pi\)
\(192\) 0 0
\(193\) −0.336949 −0.0242541 −0.0121271 0.999926i \(-0.503860\pi\)
−0.0121271 + 0.999926i \(0.503860\pi\)
\(194\) 0 0
\(195\) −2.76606 −0.198082
\(196\) 0 0
\(197\) 26.8275 1.91138 0.955691 0.294370i \(-0.0951099\pi\)
0.955691 + 0.294370i \(0.0951099\pi\)
\(198\) 0 0
\(199\) −4.03560 −0.286076 −0.143038 0.989717i \(-0.545687\pi\)
−0.143038 + 0.989717i \(0.545687\pi\)
\(200\) 0 0
\(201\) −15.3942 −1.08582
\(202\) 0 0
\(203\) 2.68148 0.188203
\(204\) 0 0
\(205\) 6.36192 0.444335
\(206\) 0 0
\(207\) −0.351159 −0.0244072
\(208\) 0 0
\(209\) −0.0789980 −0.00546440
\(210\) 0 0
\(211\) −9.22688 −0.635205 −0.317602 0.948224i \(-0.602878\pi\)
−0.317602 + 0.948224i \(0.602878\pi\)
\(212\) 0 0
\(213\) −1.06275 −0.0728186
\(214\) 0 0
\(215\) −3.27956 −0.223664
\(216\) 0 0
\(217\) −7.56881 −0.513804
\(218\) 0 0
\(219\) 4.92329 0.332685
\(220\) 0 0
\(221\) 14.6128 0.982963
\(222\) 0 0
\(223\) 9.44842 0.632713 0.316357 0.948640i \(-0.397540\pi\)
0.316357 + 0.948640i \(0.397540\pi\)
\(224\) 0 0
\(225\) 1.20388 0.0802588
\(226\) 0 0
\(227\) −15.2061 −1.00926 −0.504632 0.863335i \(-0.668372\pi\)
−0.504632 + 0.863335i \(0.668372\pi\)
\(228\) 0 0
\(229\) 28.6411 1.89266 0.946329 0.323205i \(-0.104760\pi\)
0.946329 + 0.323205i \(0.104760\pi\)
\(230\) 0 0
\(231\) 7.98366 0.525286
\(232\) 0 0
\(233\) 3.14875 0.206281 0.103141 0.994667i \(-0.467111\pi\)
0.103141 + 0.994667i \(0.467111\pi\)
\(234\) 0 0
\(235\) −2.79506 −0.182329
\(236\) 0 0
\(237\) 0.691173 0.0448965
\(238\) 0 0
\(239\) −12.5059 −0.808940 −0.404470 0.914551i \(-0.632544\pi\)
−0.404470 + 0.914551i \(0.632544\pi\)
\(240\) 0 0
\(241\) 3.73027 0.240287 0.120144 0.992757i \(-0.461664\pi\)
0.120144 + 0.992757i \(0.461664\pi\)
\(242\) 0 0
\(243\) −2.78751 −0.178819
\(244\) 0 0
\(245\) −3.85040 −0.245993
\(246\) 0 0
\(247\) −0.0490660 −0.00312199
\(248\) 0 0
\(249\) −25.8330 −1.63710
\(250\) 0 0
\(251\) 26.2795 1.65875 0.829374 0.558694i \(-0.188697\pi\)
0.829374 + 0.558694i \(0.188697\pi\)
\(252\) 0 0
\(253\) 4.85092 0.304975
\(254\) 0 0
\(255\) −7.58421 −0.474942
\(256\) 0 0
\(257\) 28.2237 1.76055 0.880273 0.474468i \(-0.157359\pi\)
0.880273 + 0.474468i \(0.157359\pi\)
\(258\) 0 0
\(259\) 9.42692 0.585760
\(260\) 0 0
\(261\) 0.555090 0.0343592
\(262\) 0 0
\(263\) −25.3865 −1.56540 −0.782701 0.622398i \(-0.786158\pi\)
−0.782701 + 0.622398i \(0.786158\pi\)
\(264\) 0 0
\(265\) −4.98049 −0.305949
\(266\) 0 0
\(267\) −17.1665 −1.05057
\(268\) 0 0
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) 17.9078 1.08782 0.543911 0.839143i \(-0.316943\pi\)
0.543911 + 0.839143i \(0.316943\pi\)
\(272\) 0 0
\(273\) 4.95868 0.300113
\(274\) 0 0
\(275\) −16.6304 −1.00285
\(276\) 0 0
\(277\) −6.51988 −0.391741 −0.195871 0.980630i \(-0.562753\pi\)
−0.195871 + 0.980630i \(0.562753\pi\)
\(278\) 0 0
\(279\) −1.56681 −0.0938024
\(280\) 0 0
\(281\) −2.61394 −0.155934 −0.0779672 0.996956i \(-0.524843\pi\)
−0.0779672 + 0.996956i \(0.524843\pi\)
\(282\) 0 0
\(283\) 9.65338 0.573834 0.286917 0.957955i \(-0.407370\pi\)
0.286917 + 0.957955i \(0.407370\pi\)
\(284\) 0 0
\(285\) 0.0254658 0.00150847
\(286\) 0 0
\(287\) −11.4049 −0.673212
\(288\) 0 0
\(289\) 23.0666 1.35686
\(290\) 0 0
\(291\) −8.38934 −0.491792
\(292\) 0 0
\(293\) 2.04724 0.119601 0.0598005 0.998210i \(-0.480954\pi\)
0.0598005 + 0.998210i \(0.480954\pi\)
\(294\) 0 0
\(295\) −5.68809 −0.331173
\(296\) 0 0
\(297\) 20.0797 1.16514
\(298\) 0 0
\(299\) 3.01293 0.174242
\(300\) 0 0
\(301\) 5.87924 0.338874
\(302\) 0 0
\(303\) −20.7100 −1.18976
\(304\) 0 0
\(305\) 2.79111 0.159818
\(306\) 0 0
\(307\) 18.6159 1.06246 0.531231 0.847227i \(-0.321729\pi\)
0.531231 + 0.847227i \(0.321729\pi\)
\(308\) 0 0
\(309\) 8.97956 0.510829
\(310\) 0 0
\(311\) 9.88503 0.560529 0.280264 0.959923i \(-0.409578\pi\)
0.280264 + 0.959923i \(0.409578\pi\)
\(312\) 0 0
\(313\) 17.4438 0.985983 0.492991 0.870034i \(-0.335903\pi\)
0.492991 + 0.870034i \(0.335903\pi\)
\(314\) 0 0
\(315\) 0.253565 0.0142868
\(316\) 0 0
\(317\) 2.92828 0.164468 0.0822342 0.996613i \(-0.473794\pi\)
0.0822342 + 0.996613i \(0.473794\pi\)
\(318\) 0 0
\(319\) −7.66802 −0.429327
\(320\) 0 0
\(321\) −5.70957 −0.318677
\(322\) 0 0
\(323\) −0.134533 −0.00748563
\(324\) 0 0
\(325\) −10.3292 −0.572963
\(326\) 0 0
\(327\) 11.2506 0.622159
\(328\) 0 0
\(329\) 5.01067 0.276247
\(330\) 0 0
\(331\) −5.44140 −0.299087 −0.149543 0.988755i \(-0.547780\pi\)
−0.149543 + 0.988755i \(0.547780\pi\)
\(332\) 0 0
\(333\) 1.95145 0.106939
\(334\) 0 0
\(335\) 6.75407 0.369014
\(336\) 0 0
\(337\) −3.73840 −0.203644 −0.101822 0.994803i \(-0.532467\pi\)
−0.101822 + 0.994803i \(0.532467\pi\)
\(338\) 0 0
\(339\) −0.673551 −0.0365823
\(340\) 0 0
\(341\) 21.6439 1.17209
\(342\) 0 0
\(343\) 16.0010 0.863973
\(344\) 0 0
\(345\) −1.56374 −0.0841892
\(346\) 0 0
\(347\) −10.8089 −0.580252 −0.290126 0.956988i \(-0.593697\pi\)
−0.290126 + 0.956988i \(0.593697\pi\)
\(348\) 0 0
\(349\) 19.8978 1.06510 0.532552 0.846397i \(-0.321233\pi\)
0.532552 + 0.846397i \(0.321233\pi\)
\(350\) 0 0
\(351\) 12.4716 0.665683
\(352\) 0 0
\(353\) −11.8505 −0.630736 −0.315368 0.948969i \(-0.602128\pi\)
−0.315368 + 0.948969i \(0.602128\pi\)
\(354\) 0 0
\(355\) 0.466273 0.0247472
\(356\) 0 0
\(357\) 13.5961 0.719584
\(358\) 0 0
\(359\) −28.6632 −1.51279 −0.756393 0.654118i \(-0.773040\pi\)
−0.756393 + 0.654118i \(0.773040\pi\)
\(360\) 0 0
\(361\) −18.9995 −0.999976
\(362\) 0 0
\(363\) −4.65217 −0.244176
\(364\) 0 0
\(365\) −2.16005 −0.113062
\(366\) 0 0
\(367\) −13.1083 −0.684246 −0.342123 0.939655i \(-0.611146\pi\)
−0.342123 + 0.939655i \(0.611146\pi\)
\(368\) 0 0
\(369\) −2.36092 −0.122905
\(370\) 0 0
\(371\) 8.92847 0.463543
\(372\) 0 0
\(373\) −17.2738 −0.894406 −0.447203 0.894432i \(-0.647580\pi\)
−0.447203 + 0.894432i \(0.647580\pi\)
\(374\) 0 0
\(375\) 11.3519 0.586208
\(376\) 0 0
\(377\) −4.76264 −0.245288
\(378\) 0 0
\(379\) −6.30803 −0.324022 −0.162011 0.986789i \(-0.551798\pi\)
−0.162011 + 0.986789i \(0.551798\pi\)
\(380\) 0 0
\(381\) −15.7421 −0.806490
\(382\) 0 0
\(383\) 28.2196 1.44196 0.720978 0.692958i \(-0.243693\pi\)
0.720978 + 0.692958i \(0.243693\pi\)
\(384\) 0 0
\(385\) −3.50276 −0.178517
\(386\) 0 0
\(387\) 1.21705 0.0618663
\(388\) 0 0
\(389\) −3.15029 −0.159726 −0.0798629 0.996806i \(-0.525448\pi\)
−0.0798629 + 0.996806i \(0.525448\pi\)
\(390\) 0 0
\(391\) 8.26110 0.417782
\(392\) 0 0
\(393\) −36.2447 −1.82830
\(394\) 0 0
\(395\) −0.303246 −0.0152579
\(396\) 0 0
\(397\) 31.2926 1.57053 0.785265 0.619159i \(-0.212527\pi\)
0.785265 + 0.619159i \(0.212527\pi\)
\(398\) 0 0
\(399\) −0.0456523 −0.00228547
\(400\) 0 0
\(401\) 0.744072 0.0371572 0.0185786 0.999827i \(-0.494086\pi\)
0.0185786 + 0.999827i \(0.494086\pi\)
\(402\) 0 0
\(403\) 13.4431 0.669651
\(404\) 0 0
\(405\) −5.88764 −0.292559
\(406\) 0 0
\(407\) −26.9574 −1.33623
\(408\) 0 0
\(409\) 3.60242 0.178128 0.0890641 0.996026i \(-0.471612\pi\)
0.0890641 + 0.996026i \(0.471612\pi\)
\(410\) 0 0
\(411\) 4.11237 0.202848
\(412\) 0 0
\(413\) 10.1970 0.501760
\(414\) 0 0
\(415\) 11.3340 0.556364
\(416\) 0 0
\(417\) 35.7355 1.74997
\(418\) 0 0
\(419\) 17.1323 0.836966 0.418483 0.908225i \(-0.362562\pi\)
0.418483 + 0.908225i \(0.362562\pi\)
\(420\) 0 0
\(421\) 24.1651 1.17773 0.588866 0.808230i \(-0.299574\pi\)
0.588866 + 0.808230i \(0.299574\pi\)
\(422\) 0 0
\(423\) 1.03725 0.0504329
\(424\) 0 0
\(425\) −28.3216 −1.37380
\(426\) 0 0
\(427\) −5.00359 −0.242141
\(428\) 0 0
\(429\) −14.1800 −0.684615
\(430\) 0 0
\(431\) −16.8823 −0.813193 −0.406596 0.913608i \(-0.633284\pi\)
−0.406596 + 0.913608i \(0.633284\pi\)
\(432\) 0 0
\(433\) −13.0644 −0.627834 −0.313917 0.949450i \(-0.601641\pi\)
−0.313917 + 0.949450i \(0.601641\pi\)
\(434\) 0 0
\(435\) 2.47187 0.118517
\(436\) 0 0
\(437\) −0.0277386 −0.00132692
\(438\) 0 0
\(439\) −3.91599 −0.186900 −0.0934499 0.995624i \(-0.529789\pi\)
−0.0934499 + 0.995624i \(0.529789\pi\)
\(440\) 0 0
\(441\) 1.42889 0.0680425
\(442\) 0 0
\(443\) −25.2673 −1.20049 −0.600243 0.799818i \(-0.704929\pi\)
−0.600243 + 0.799818i \(0.704929\pi\)
\(444\) 0 0
\(445\) 7.53165 0.357034
\(446\) 0 0
\(447\) −34.5559 −1.63444
\(448\) 0 0
\(449\) 27.4706 1.29642 0.648210 0.761462i \(-0.275518\pi\)
0.648210 + 0.761462i \(0.275518\pi\)
\(450\) 0 0
\(451\) 32.6138 1.53573
\(452\) 0 0
\(453\) −3.42423 −0.160885
\(454\) 0 0
\(455\) −2.17558 −0.101993
\(456\) 0 0
\(457\) −14.5345 −0.679896 −0.339948 0.940444i \(-0.610409\pi\)
−0.339948 + 0.940444i \(0.610409\pi\)
\(458\) 0 0
\(459\) 34.1956 1.59611
\(460\) 0 0
\(461\) −10.4630 −0.487312 −0.243656 0.969862i \(-0.578347\pi\)
−0.243656 + 0.969862i \(0.578347\pi\)
\(462\) 0 0
\(463\) 27.7519 1.28974 0.644871 0.764292i \(-0.276911\pi\)
0.644871 + 0.764292i \(0.276911\pi\)
\(464\) 0 0
\(465\) −6.97715 −0.323558
\(466\) 0 0
\(467\) 12.3322 0.570665 0.285333 0.958429i \(-0.407896\pi\)
0.285333 + 0.958429i \(0.407896\pi\)
\(468\) 0 0
\(469\) −12.1080 −0.559093
\(470\) 0 0
\(471\) 4.31276 0.198721
\(472\) 0 0
\(473\) −16.8124 −0.773036
\(474\) 0 0
\(475\) 0.0950965 0.00436333
\(476\) 0 0
\(477\) 1.84827 0.0846265
\(478\) 0 0
\(479\) 2.92366 0.133586 0.0667928 0.997767i \(-0.478723\pi\)
0.0667928 + 0.997767i \(0.478723\pi\)
\(480\) 0 0
\(481\) −16.7434 −0.763432
\(482\) 0 0
\(483\) 2.80331 0.127555
\(484\) 0 0
\(485\) 3.68075 0.167134
\(486\) 0 0
\(487\) −10.1739 −0.461025 −0.230513 0.973069i \(-0.574040\pi\)
−0.230513 + 0.973069i \(0.574040\pi\)
\(488\) 0 0
\(489\) −10.9589 −0.495577
\(490\) 0 0
\(491\) 16.8181 0.758989 0.379494 0.925194i \(-0.376098\pi\)
0.379494 + 0.925194i \(0.376098\pi\)
\(492\) 0 0
\(493\) −13.0586 −0.588130
\(494\) 0 0
\(495\) −0.725101 −0.0325909
\(496\) 0 0
\(497\) −0.835882 −0.0374944
\(498\) 0 0
\(499\) 30.0514 1.34529 0.672643 0.739967i \(-0.265159\pi\)
0.672643 + 0.739967i \(0.265159\pi\)
\(500\) 0 0
\(501\) 37.4088 1.67130
\(502\) 0 0
\(503\) 6.83648 0.304823 0.152412 0.988317i \(-0.451296\pi\)
0.152412 + 0.988317i \(0.451296\pi\)
\(504\) 0 0
\(505\) 9.08630 0.404335
\(506\) 0 0
\(507\) 12.6760 0.562960
\(508\) 0 0
\(509\) −16.9547 −0.751502 −0.375751 0.926721i \(-0.622615\pi\)
−0.375751 + 0.926721i \(0.622615\pi\)
\(510\) 0 0
\(511\) 3.87230 0.171300
\(512\) 0 0
\(513\) −0.114820 −0.00506943
\(514\) 0 0
\(515\) −3.93970 −0.173604
\(516\) 0 0
\(517\) −14.3286 −0.630172
\(518\) 0 0
\(519\) −20.2366 −0.888287
\(520\) 0 0
\(521\) 37.1136 1.62597 0.812987 0.582282i \(-0.197840\pi\)
0.812987 + 0.582282i \(0.197840\pi\)
\(522\) 0 0
\(523\) 9.80481 0.428734 0.214367 0.976753i \(-0.431231\pi\)
0.214367 + 0.976753i \(0.431231\pi\)
\(524\) 0 0
\(525\) −9.61060 −0.419441
\(526\) 0 0
\(527\) 36.8596 1.60563
\(528\) 0 0
\(529\) −21.2967 −0.925943
\(530\) 0 0
\(531\) 2.11086 0.0916037
\(532\) 0 0
\(533\) 20.2566 0.877410
\(534\) 0 0
\(535\) 2.50502 0.108302
\(536\) 0 0
\(537\) −29.7758 −1.28492
\(538\) 0 0
\(539\) −19.7388 −0.850208
\(540\) 0 0
\(541\) −15.4647 −0.664878 −0.332439 0.943125i \(-0.607871\pi\)
−0.332439 + 0.943125i \(0.607871\pi\)
\(542\) 0 0
\(543\) −12.8517 −0.551521
\(544\) 0 0
\(545\) −4.93610 −0.211439
\(546\) 0 0
\(547\) 31.5080 1.34719 0.673593 0.739103i \(-0.264750\pi\)
0.673593 + 0.739103i \(0.264750\pi\)
\(548\) 0 0
\(549\) −1.03579 −0.0442063
\(550\) 0 0
\(551\) 0.0438474 0.00186796
\(552\) 0 0
\(553\) 0.543625 0.0231173
\(554\) 0 0
\(555\) 8.69001 0.368871
\(556\) 0 0
\(557\) −5.45649 −0.231199 −0.115599 0.993296i \(-0.536879\pi\)
−0.115599 + 0.993296i \(0.536879\pi\)
\(558\) 0 0
\(559\) −10.4423 −0.441660
\(560\) 0 0
\(561\) −38.8798 −1.64151
\(562\) 0 0
\(563\) 5.91106 0.249121 0.124561 0.992212i \(-0.460248\pi\)
0.124561 + 0.992212i \(0.460248\pi\)
\(564\) 0 0
\(565\) 0.295514 0.0124324
\(566\) 0 0
\(567\) 10.5547 0.443256
\(568\) 0 0
\(569\) 31.9474 1.33930 0.669652 0.742675i \(-0.266443\pi\)
0.669652 + 0.742675i \(0.266443\pi\)
\(570\) 0 0
\(571\) 13.7554 0.575647 0.287824 0.957683i \(-0.407068\pi\)
0.287824 + 0.957683i \(0.407068\pi\)
\(572\) 0 0
\(573\) 0.515998 0.0215561
\(574\) 0 0
\(575\) −5.83946 −0.243522
\(576\) 0 0
\(577\) −2.93964 −0.122379 −0.0611893 0.998126i \(-0.519489\pi\)
−0.0611893 + 0.998126i \(0.519489\pi\)
\(578\) 0 0
\(579\) 0.556826 0.0231409
\(580\) 0 0
\(581\) −20.3183 −0.842947
\(582\) 0 0
\(583\) −25.5321 −1.05743
\(584\) 0 0
\(585\) −0.450363 −0.0186202
\(586\) 0 0
\(587\) −15.2876 −0.630989 −0.315494 0.948927i \(-0.602170\pi\)
−0.315494 + 0.948927i \(0.602170\pi\)
\(588\) 0 0
\(589\) −0.123765 −0.00509964
\(590\) 0 0
\(591\) −44.3340 −1.82366
\(592\) 0 0
\(593\) −33.5005 −1.37570 −0.687850 0.725853i \(-0.741445\pi\)
−0.687850 + 0.725853i \(0.741445\pi\)
\(594\) 0 0
\(595\) −5.96518 −0.244549
\(596\) 0 0
\(597\) 6.66904 0.272946
\(598\) 0 0
\(599\) −0.150988 −0.00616920 −0.00308460 0.999995i \(-0.500982\pi\)
−0.00308460 + 0.999995i \(0.500982\pi\)
\(600\) 0 0
\(601\) −34.9546 −1.42583 −0.712915 0.701251i \(-0.752625\pi\)
−0.712915 + 0.701251i \(0.752625\pi\)
\(602\) 0 0
\(603\) −2.50645 −0.102071
\(604\) 0 0
\(605\) 2.04110 0.0829824
\(606\) 0 0
\(607\) −10.5301 −0.427404 −0.213702 0.976899i \(-0.568552\pi\)
−0.213702 + 0.976899i \(0.568552\pi\)
\(608\) 0 0
\(609\) −4.43129 −0.179565
\(610\) 0 0
\(611\) −8.89957 −0.360038
\(612\) 0 0
\(613\) −20.2271 −0.816965 −0.408483 0.912766i \(-0.633942\pi\)
−0.408483 + 0.912766i \(0.633942\pi\)
\(614\) 0 0
\(615\) −10.5134 −0.423942
\(616\) 0 0
\(617\) 7.82969 0.315211 0.157606 0.987502i \(-0.449622\pi\)
0.157606 + 0.987502i \(0.449622\pi\)
\(618\) 0 0
\(619\) 23.6992 0.952549 0.476275 0.879297i \(-0.341987\pi\)
0.476275 + 0.879297i \(0.341987\pi\)
\(620\) 0 0
\(621\) 7.05059 0.282931
\(622\) 0 0
\(623\) −13.5019 −0.540942
\(624\) 0 0
\(625\) 17.3910 0.695642
\(626\) 0 0
\(627\) 0.130548 0.00521360
\(628\) 0 0
\(629\) −45.9084 −1.83049
\(630\) 0 0
\(631\) 31.8687 1.26867 0.634336 0.773058i \(-0.281274\pi\)
0.634336 + 0.773058i \(0.281274\pi\)
\(632\) 0 0
\(633\) 15.2479 0.606050
\(634\) 0 0
\(635\) 6.90668 0.274083
\(636\) 0 0
\(637\) −12.2598 −0.485752
\(638\) 0 0
\(639\) −0.173035 −0.00684515
\(640\) 0 0
\(641\) 10.3578 0.409108 0.204554 0.978855i \(-0.434426\pi\)
0.204554 + 0.978855i \(0.434426\pi\)
\(642\) 0 0
\(643\) 21.9761 0.866653 0.433326 0.901237i \(-0.357340\pi\)
0.433326 + 0.901237i \(0.357340\pi\)
\(644\) 0 0
\(645\) 5.41966 0.213399
\(646\) 0 0
\(647\) −9.10376 −0.357906 −0.178953 0.983858i \(-0.557271\pi\)
−0.178953 + 0.983858i \(0.557271\pi\)
\(648\) 0 0
\(649\) −29.1595 −1.14461
\(650\) 0 0
\(651\) 12.5079 0.490222
\(652\) 0 0
\(653\) 6.84892 0.268019 0.134010 0.990980i \(-0.457215\pi\)
0.134010 + 0.990980i \(0.457215\pi\)
\(654\) 0 0
\(655\) 15.9020 0.621344
\(656\) 0 0
\(657\) 0.801599 0.0312734
\(658\) 0 0
\(659\) 10.9102 0.424999 0.212500 0.977161i \(-0.431840\pi\)
0.212500 + 0.977161i \(0.431840\pi\)
\(660\) 0 0
\(661\) −9.26687 −0.360439 −0.180220 0.983626i \(-0.557681\pi\)
−0.180220 + 0.983626i \(0.557681\pi\)
\(662\) 0 0
\(663\) −24.1484 −0.937847
\(664\) 0 0
\(665\) 0.0200295 0.000776712 0
\(666\) 0 0
\(667\) −2.69248 −0.104253
\(668\) 0 0
\(669\) −15.6140 −0.603673
\(670\) 0 0
\(671\) 14.3084 0.552369
\(672\) 0 0
\(673\) −15.0272 −0.579255 −0.289627 0.957139i \(-0.593531\pi\)
−0.289627 + 0.957139i \(0.593531\pi\)
\(674\) 0 0
\(675\) −24.1716 −0.930366
\(676\) 0 0
\(677\) −46.3947 −1.78309 −0.891547 0.452929i \(-0.850379\pi\)
−0.891547 + 0.452929i \(0.850379\pi\)
\(678\) 0 0
\(679\) −6.59843 −0.253225
\(680\) 0 0
\(681\) 25.1289 0.962941
\(682\) 0 0
\(683\) 34.2506 1.31056 0.655281 0.755385i \(-0.272550\pi\)
0.655281 + 0.755385i \(0.272550\pi\)
\(684\) 0 0
\(685\) −1.80426 −0.0689373
\(686\) 0 0
\(687\) −47.3310 −1.80579
\(688\) 0 0
\(689\) −15.8581 −0.604144
\(690\) 0 0
\(691\) 1.19208 0.0453489 0.0226744 0.999743i \(-0.492782\pi\)
0.0226744 + 0.999743i \(0.492782\pi\)
\(692\) 0 0
\(693\) 1.29988 0.0493784
\(694\) 0 0
\(695\) −15.6786 −0.594723
\(696\) 0 0
\(697\) 55.5412 2.10377
\(698\) 0 0
\(699\) −5.20348 −0.196814
\(700\) 0 0
\(701\) −24.6698 −0.931767 −0.465883 0.884846i \(-0.654263\pi\)
−0.465883 + 0.884846i \(0.654263\pi\)
\(702\) 0 0
\(703\) 0.154149 0.00581382
\(704\) 0 0
\(705\) 4.61898 0.173961
\(706\) 0 0
\(707\) −16.2889 −0.612608
\(708\) 0 0
\(709\) 23.3891 0.878398 0.439199 0.898390i \(-0.355262\pi\)
0.439199 + 0.898390i \(0.355262\pi\)
\(710\) 0 0
\(711\) 0.112535 0.00422040
\(712\) 0 0
\(713\) 7.59986 0.284617
\(714\) 0 0
\(715\) 6.22133 0.232665
\(716\) 0 0
\(717\) 20.6667 0.771812
\(718\) 0 0
\(719\) 1.52136 0.0567371 0.0283686 0.999598i \(-0.490969\pi\)
0.0283686 + 0.999598i \(0.490969\pi\)
\(720\) 0 0
\(721\) 7.06265 0.263027
\(722\) 0 0
\(723\) −6.16446 −0.229259
\(724\) 0 0
\(725\) 9.23065 0.342818
\(726\) 0 0
\(727\) −36.3855 −1.34946 −0.674732 0.738063i \(-0.735741\pi\)
−0.674732 + 0.738063i \(0.735741\pi\)
\(728\) 0 0
\(729\) 28.9677 1.07288
\(730\) 0 0
\(731\) −28.6315 −1.05897
\(732\) 0 0
\(733\) −18.7869 −0.693908 −0.346954 0.937882i \(-0.612784\pi\)
−0.346954 + 0.937882i \(0.612784\pi\)
\(734\) 0 0
\(735\) 6.36299 0.234703
\(736\) 0 0
\(737\) 34.6242 1.27540
\(738\) 0 0
\(739\) 38.7776 1.42646 0.713228 0.700932i \(-0.247233\pi\)
0.713228 + 0.700932i \(0.247233\pi\)
\(740\) 0 0
\(741\) 0.0810841 0.00297870
\(742\) 0 0
\(743\) 6.80190 0.249537 0.124769 0.992186i \(-0.460181\pi\)
0.124769 + 0.992186i \(0.460181\pi\)
\(744\) 0 0
\(745\) 15.1611 0.555460
\(746\) 0 0
\(747\) −4.20607 −0.153892
\(748\) 0 0
\(749\) −4.49073 −0.164088
\(750\) 0 0
\(751\) −10.5672 −0.385601 −0.192801 0.981238i \(-0.561757\pi\)
−0.192801 + 0.981238i \(0.561757\pi\)
\(752\) 0 0
\(753\) −43.4283 −1.58262
\(754\) 0 0
\(755\) 1.50235 0.0546762
\(756\) 0 0
\(757\) −22.6389 −0.822825 −0.411412 0.911449i \(-0.634964\pi\)
−0.411412 + 0.911449i \(0.634964\pi\)
\(758\) 0 0
\(759\) −8.01641 −0.290977
\(760\) 0 0
\(761\) 1.83584 0.0665490 0.0332745 0.999446i \(-0.489406\pi\)
0.0332745 + 0.999446i \(0.489406\pi\)
\(762\) 0 0
\(763\) 8.84889 0.320351
\(764\) 0 0
\(765\) −1.23484 −0.0446459
\(766\) 0 0
\(767\) −18.1111 −0.653954
\(768\) 0 0
\(769\) 50.0137 1.80354 0.901770 0.432215i \(-0.142268\pi\)
0.901770 + 0.432215i \(0.142268\pi\)
\(770\) 0 0
\(771\) −46.6412 −1.67974
\(772\) 0 0
\(773\) 40.2988 1.44945 0.724724 0.689039i \(-0.241967\pi\)
0.724724 + 0.689039i \(0.241967\pi\)
\(774\) 0 0
\(775\) −26.0546 −0.935911
\(776\) 0 0
\(777\) −15.5785 −0.558875
\(778\) 0 0
\(779\) −0.186493 −0.00668180
\(780\) 0 0
\(781\) 2.39031 0.0855319
\(782\) 0 0
\(783\) −11.1451 −0.398294
\(784\) 0 0
\(785\) −1.89218 −0.0675349
\(786\) 0 0
\(787\) −38.2500 −1.36347 −0.681733 0.731601i \(-0.738773\pi\)
−0.681733 + 0.731601i \(0.738773\pi\)
\(788\) 0 0
\(789\) 41.9526 1.49355
\(790\) 0 0
\(791\) −0.529765 −0.0188363
\(792\) 0 0
\(793\) 8.88700 0.315586
\(794\) 0 0
\(795\) 8.23053 0.291907
\(796\) 0 0
\(797\) −33.4247 −1.18397 −0.591983 0.805951i \(-0.701655\pi\)
−0.591983 + 0.805951i \(0.701655\pi\)
\(798\) 0 0
\(799\) −24.4016 −0.863266
\(800\) 0 0
\(801\) −2.79501 −0.0987569
\(802\) 0 0
\(803\) −11.0733 −0.390769
\(804\) 0 0
\(805\) −1.22993 −0.0433492
\(806\) 0 0
\(807\) 1.65255 0.0581727
\(808\) 0 0
\(809\) −39.8841 −1.40225 −0.701125 0.713038i \(-0.747319\pi\)
−0.701125 + 0.713038i \(0.747319\pi\)
\(810\) 0 0
\(811\) −34.7237 −1.21931 −0.609657 0.792665i \(-0.708693\pi\)
−0.609657 + 0.792665i \(0.708693\pi\)
\(812\) 0 0
\(813\) −29.5936 −1.03789
\(814\) 0 0
\(815\) 4.80810 0.168420
\(816\) 0 0
\(817\) 0.0961370 0.00336341
\(818\) 0 0
\(819\) 0.807361 0.0282115
\(820\) 0 0
\(821\) −48.5169 −1.69325 −0.846626 0.532189i \(-0.821370\pi\)
−0.846626 + 0.532189i \(0.821370\pi\)
\(822\) 0 0
\(823\) −19.5287 −0.680728 −0.340364 0.940294i \(-0.610550\pi\)
−0.340364 + 0.940294i \(0.610550\pi\)
\(824\) 0 0
\(825\) 27.4827 0.956825
\(826\) 0 0
\(827\) −18.5400 −0.644698 −0.322349 0.946621i \(-0.604472\pi\)
−0.322349 + 0.946621i \(0.604472\pi\)
\(828\) 0 0
\(829\) −20.2344 −0.702769 −0.351385 0.936231i \(-0.614289\pi\)
−0.351385 + 0.936231i \(0.614289\pi\)
\(830\) 0 0
\(831\) 10.7744 0.373762
\(832\) 0 0
\(833\) −33.6150 −1.16469
\(834\) 0 0
\(835\) −16.4128 −0.567987
\(836\) 0 0
\(837\) 31.4585 1.08737
\(838\) 0 0
\(839\) −46.3931 −1.60167 −0.800833 0.598887i \(-0.795610\pi\)
−0.800833 + 0.598887i \(0.795610\pi\)
\(840\) 0 0
\(841\) −24.7439 −0.853238
\(842\) 0 0
\(843\) 4.31967 0.148777
\(844\) 0 0
\(845\) −5.56146 −0.191320
\(846\) 0 0
\(847\) −3.65905 −0.125727
\(848\) 0 0
\(849\) −15.9527 −0.547496
\(850\) 0 0
\(851\) −9.46559 −0.324476
\(852\) 0 0
\(853\) −0.133230 −0.00456172 −0.00228086 0.999997i \(-0.500726\pi\)
−0.00228086 + 0.999997i \(0.500726\pi\)
\(854\) 0 0
\(855\) 0.00414629 0.000141800 0
\(856\) 0 0
\(857\) −10.2942 −0.351642 −0.175821 0.984422i \(-0.556258\pi\)
−0.175821 + 0.984422i \(0.556258\pi\)
\(858\) 0 0
\(859\) −35.5814 −1.21402 −0.607011 0.794694i \(-0.707632\pi\)
−0.607011 + 0.794694i \(0.707632\pi\)
\(860\) 0 0
\(861\) 18.8473 0.642313
\(862\) 0 0
\(863\) −17.9896 −0.612372 −0.306186 0.951972i \(-0.599053\pi\)
−0.306186 + 0.951972i \(0.599053\pi\)
\(864\) 0 0
\(865\) 8.87861 0.301882
\(866\) 0 0
\(867\) −38.1188 −1.29458
\(868\) 0 0
\(869\) −1.55456 −0.0527350
\(870\) 0 0
\(871\) 21.5052 0.728677
\(872\) 0 0
\(873\) −1.36593 −0.0462298
\(874\) 0 0
\(875\) 8.92853 0.301839
\(876\) 0 0
\(877\) 47.6131 1.60778 0.803890 0.594778i \(-0.202760\pi\)
0.803890 + 0.594778i \(0.202760\pi\)
\(878\) 0 0
\(879\) −3.38318 −0.114112
\(880\) 0 0
\(881\) −15.7287 −0.529914 −0.264957 0.964260i \(-0.585358\pi\)
−0.264957 + 0.964260i \(0.585358\pi\)
\(882\) 0 0
\(883\) 20.9111 0.703713 0.351856 0.936054i \(-0.385551\pi\)
0.351856 + 0.936054i \(0.385551\pi\)
\(884\) 0 0
\(885\) 9.39988 0.315973
\(886\) 0 0
\(887\) −3.47543 −0.116694 −0.0583468 0.998296i \(-0.518583\pi\)
−0.0583468 + 0.998296i \(0.518583\pi\)
\(888\) 0 0
\(889\) −12.3815 −0.415263
\(890\) 0 0
\(891\) −30.1825 −1.01115
\(892\) 0 0
\(893\) 0.0819342 0.00274182
\(894\) 0 0
\(895\) 13.0639 0.436677
\(896\) 0 0
\(897\) −4.97902 −0.166245
\(898\) 0 0
\(899\) −12.0134 −0.400668
\(900\) 0 0
\(901\) −43.4810 −1.44856
\(902\) 0 0
\(903\) −9.71576 −0.323320
\(904\) 0 0
\(905\) 5.63859 0.187433
\(906\) 0 0
\(907\) −5.99370 −0.199018 −0.0995088 0.995037i \(-0.531727\pi\)
−0.0995088 + 0.995037i \(0.531727\pi\)
\(908\) 0 0
\(909\) −3.37195 −0.111840
\(910\) 0 0
\(911\) −3.66404 −0.121395 −0.0606976 0.998156i \(-0.519333\pi\)
−0.0606976 + 0.998156i \(0.519333\pi\)
\(912\) 0 0
\(913\) 58.1028 1.92292
\(914\) 0 0
\(915\) −4.61246 −0.152483
\(916\) 0 0
\(917\) −28.5074 −0.941397
\(918\) 0 0
\(919\) −44.8323 −1.47888 −0.739441 0.673222i \(-0.764910\pi\)
−0.739441 + 0.673222i \(0.764910\pi\)
\(920\) 0 0
\(921\) −30.7637 −1.01370
\(922\) 0 0
\(923\) 1.48463 0.0488672
\(924\) 0 0
\(925\) 32.4510 1.06698
\(926\) 0 0
\(927\) 1.46203 0.0480194
\(928\) 0 0
\(929\) −35.1823 −1.15429 −0.577146 0.816641i \(-0.695834\pi\)
−0.577146 + 0.816641i \(0.695834\pi\)
\(930\) 0 0
\(931\) 0.112870 0.00369918
\(932\) 0 0
\(933\) −16.3355 −0.534802
\(934\) 0 0
\(935\) 17.0582 0.557862
\(936\) 0 0
\(937\) 37.7329 1.23268 0.616339 0.787481i \(-0.288615\pi\)
0.616339 + 0.787481i \(0.288615\pi\)
\(938\) 0 0
\(939\) −28.8268 −0.940729
\(940\) 0 0
\(941\) −31.0321 −1.01162 −0.505809 0.862646i \(-0.668806\pi\)
−0.505809 + 0.862646i \(0.668806\pi\)
\(942\) 0 0
\(943\) 11.4517 0.372919
\(944\) 0 0
\(945\) −5.09110 −0.165613
\(946\) 0 0
\(947\) −19.5388 −0.634924 −0.317462 0.948271i \(-0.602831\pi\)
−0.317462 + 0.948271i \(0.602831\pi\)
\(948\) 0 0
\(949\) −6.87768 −0.223259
\(950\) 0 0
\(951\) −4.83914 −0.156920
\(952\) 0 0
\(953\) 15.9894 0.517948 0.258974 0.965884i \(-0.416616\pi\)
0.258974 + 0.965884i \(0.416616\pi\)
\(954\) 0 0
\(955\) −0.226389 −0.00732579
\(956\) 0 0
\(957\) 12.6718 0.409622
\(958\) 0 0
\(959\) 3.23448 0.104447
\(960\) 0 0
\(961\) 2.90921 0.0938456
\(962\) 0 0
\(963\) −0.929619 −0.0299566
\(964\) 0 0
\(965\) −0.244302 −0.00786437
\(966\) 0 0
\(967\) −38.1787 −1.22774 −0.613872 0.789406i \(-0.710389\pi\)
−0.613872 + 0.789406i \(0.710389\pi\)
\(968\) 0 0
\(969\) 0.222323 0.00714206
\(970\) 0 0
\(971\) −2.16411 −0.0694497 −0.0347248 0.999397i \(-0.511055\pi\)
−0.0347248 + 0.999397i \(0.511055\pi\)
\(972\) 0 0
\(973\) 28.1069 0.901064
\(974\) 0 0
\(975\) 17.0696 0.546665
\(976\) 0 0
\(977\) −14.7297 −0.471243 −0.235622 0.971845i \(-0.575713\pi\)
−0.235622 + 0.971845i \(0.575713\pi\)
\(978\) 0 0
\(979\) 38.6104 1.23399
\(980\) 0 0
\(981\) 1.83180 0.0584848
\(982\) 0 0
\(983\) −36.4217 −1.16167 −0.580836 0.814020i \(-0.697274\pi\)
−0.580836 + 0.814020i \(0.697274\pi\)
\(984\) 0 0
\(985\) 19.4511 0.619764
\(986\) 0 0
\(987\) −8.28040 −0.263568
\(988\) 0 0
\(989\) −5.90336 −0.187716
\(990\) 0 0
\(991\) 24.5429 0.779632 0.389816 0.920893i \(-0.372539\pi\)
0.389816 + 0.920893i \(0.372539\pi\)
\(992\) 0 0
\(993\) 8.99221 0.285359
\(994\) 0 0
\(995\) −2.92598 −0.0927598
\(996\) 0 0
\(997\) −52.7413 −1.67033 −0.835167 0.549996i \(-0.814629\pi\)
−0.835167 + 0.549996i \(0.814629\pi\)
\(998\) 0 0
\(999\) −39.1814 −1.23965
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.h.1.3 7
4.3 odd 2 538.2.a.e.1.5 7
12.11 even 2 4842.2.a.n.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.e.1.5 7 4.3 odd 2
4304.2.a.h.1.3 7 1.1 even 1 trivial
4842.2.a.n.1.4 7 12.11 even 2