Properties

Label 4304.2.a.h.1.2
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 16x^{4} + 49x^{3} - 53x^{2} - 44x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.19866\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.12827 q^{3} +3.84433 q^{5} +4.95403 q^{7} +1.52953 q^{9} +0.453515 q^{11} -0.0945931 q^{13} -8.18177 q^{15} +1.41349 q^{17} +2.49192 q^{19} -10.5435 q^{21} +2.25654 q^{23} +9.77888 q^{25} +3.12955 q^{27} -6.64864 q^{29} -5.36736 q^{31} -0.965201 q^{33} +19.0449 q^{35} +7.31117 q^{37} +0.201320 q^{39} -10.6653 q^{41} +12.2765 q^{43} +5.88003 q^{45} +1.43212 q^{47} +17.5424 q^{49} -3.00829 q^{51} +9.96897 q^{53} +1.74346 q^{55} -5.30347 q^{57} -7.89955 q^{59} +0.950317 q^{61} +7.57735 q^{63} -0.363647 q^{65} +8.06276 q^{67} -4.80253 q^{69} +3.06085 q^{71} +12.8264 q^{73} -20.8121 q^{75} +2.24672 q^{77} -13.7673 q^{79} -11.2491 q^{81} -10.1171 q^{83} +5.43392 q^{85} +14.1501 q^{87} -1.77803 q^{89} -0.468616 q^{91} +11.4232 q^{93} +9.57975 q^{95} -12.9137 q^{97} +0.693665 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{3} + 7 q^{5} - 6 q^{7} + 12 q^{9} + 3 q^{11} - 9 q^{13} - 8 q^{15} + 8 q^{17} + 11 q^{19} - 6 q^{21} - 12 q^{23} + 22 q^{25} + 14 q^{27} - 5 q^{29} - 14 q^{31} - 4 q^{33} + 4 q^{35} + 13 q^{37}+ \cdots + 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.12827 −1.22876 −0.614379 0.789011i \(-0.710593\pi\)
−0.614379 + 0.789011i \(0.710593\pi\)
\(4\) 0 0
\(5\) 3.84433 1.71924 0.859619 0.510936i \(-0.170701\pi\)
0.859619 + 0.510936i \(0.170701\pi\)
\(6\) 0 0
\(7\) 4.95403 1.87245 0.936223 0.351407i \(-0.114297\pi\)
0.936223 + 0.351407i \(0.114297\pi\)
\(8\) 0 0
\(9\) 1.52953 0.509844
\(10\) 0 0
\(11\) 0.453515 0.136740 0.0683699 0.997660i \(-0.478220\pi\)
0.0683699 + 0.997660i \(0.478220\pi\)
\(12\) 0 0
\(13\) −0.0945931 −0.0262354 −0.0131177 0.999914i \(-0.504176\pi\)
−0.0131177 + 0.999914i \(0.504176\pi\)
\(14\) 0 0
\(15\) −8.18177 −2.11253
\(16\) 0 0
\(17\) 1.41349 0.342822 0.171411 0.985200i \(-0.445167\pi\)
0.171411 + 0.985200i \(0.445167\pi\)
\(18\) 0 0
\(19\) 2.49192 0.571685 0.285842 0.958277i \(-0.407727\pi\)
0.285842 + 0.958277i \(0.407727\pi\)
\(20\) 0 0
\(21\) −10.5435 −2.30078
\(22\) 0 0
\(23\) 2.25654 0.470521 0.235261 0.971932i \(-0.424406\pi\)
0.235261 + 0.971932i \(0.424406\pi\)
\(24\) 0 0
\(25\) 9.77888 1.95578
\(26\) 0 0
\(27\) 3.12955 0.602282
\(28\) 0 0
\(29\) −6.64864 −1.23462 −0.617311 0.786720i \(-0.711778\pi\)
−0.617311 + 0.786720i \(0.711778\pi\)
\(30\) 0 0
\(31\) −5.36736 −0.964006 −0.482003 0.876170i \(-0.660091\pi\)
−0.482003 + 0.876170i \(0.660091\pi\)
\(32\) 0 0
\(33\) −0.965201 −0.168020
\(34\) 0 0
\(35\) 19.0449 3.21918
\(36\) 0 0
\(37\) 7.31117 1.20195 0.600974 0.799268i \(-0.294779\pi\)
0.600974 + 0.799268i \(0.294779\pi\)
\(38\) 0 0
\(39\) 0.201320 0.0322369
\(40\) 0 0
\(41\) −10.6653 −1.66563 −0.832817 0.553548i \(-0.813274\pi\)
−0.832817 + 0.553548i \(0.813274\pi\)
\(42\) 0 0
\(43\) 12.2765 1.87215 0.936076 0.351798i \(-0.114430\pi\)
0.936076 + 0.351798i \(0.114430\pi\)
\(44\) 0 0
\(45\) 5.88003 0.876543
\(46\) 0 0
\(47\) 1.43212 0.208897 0.104448 0.994530i \(-0.466692\pi\)
0.104448 + 0.994530i \(0.466692\pi\)
\(48\) 0 0
\(49\) 17.5424 2.50605
\(50\) 0 0
\(51\) −3.00829 −0.421245
\(52\) 0 0
\(53\) 9.96897 1.36934 0.684672 0.728852i \(-0.259946\pi\)
0.684672 + 0.728852i \(0.259946\pi\)
\(54\) 0 0
\(55\) 1.74346 0.235088
\(56\) 0 0
\(57\) −5.30347 −0.702462
\(58\) 0 0
\(59\) −7.89955 −1.02843 −0.514217 0.857660i \(-0.671917\pi\)
−0.514217 + 0.857660i \(0.671917\pi\)
\(60\) 0 0
\(61\) 0.950317 0.121676 0.0608378 0.998148i \(-0.480623\pi\)
0.0608378 + 0.998148i \(0.480623\pi\)
\(62\) 0 0
\(63\) 7.57735 0.954656
\(64\) 0 0
\(65\) −0.363647 −0.0451049
\(66\) 0 0
\(67\) 8.06276 0.985023 0.492512 0.870306i \(-0.336079\pi\)
0.492512 + 0.870306i \(0.336079\pi\)
\(68\) 0 0
\(69\) −4.80253 −0.578156
\(70\) 0 0
\(71\) 3.06085 0.363256 0.181628 0.983367i \(-0.441863\pi\)
0.181628 + 0.983367i \(0.441863\pi\)
\(72\) 0 0
\(73\) 12.8264 1.50121 0.750607 0.660749i \(-0.229761\pi\)
0.750607 + 0.660749i \(0.229761\pi\)
\(74\) 0 0
\(75\) −20.8121 −2.40317
\(76\) 0 0
\(77\) 2.24672 0.256038
\(78\) 0 0
\(79\) −13.7673 −1.54894 −0.774469 0.632611i \(-0.781983\pi\)
−0.774469 + 0.632611i \(0.781983\pi\)
\(80\) 0 0
\(81\) −11.2491 −1.24990
\(82\) 0 0
\(83\) −10.1171 −1.11049 −0.555246 0.831686i \(-0.687376\pi\)
−0.555246 + 0.831686i \(0.687376\pi\)
\(84\) 0 0
\(85\) 5.43392 0.589392
\(86\) 0 0
\(87\) 14.1501 1.51705
\(88\) 0 0
\(89\) −1.77803 −0.188471 −0.0942354 0.995550i \(-0.530041\pi\)
−0.0942354 + 0.995550i \(0.530041\pi\)
\(90\) 0 0
\(91\) −0.468616 −0.0491244
\(92\) 0 0
\(93\) 11.4232 1.18453
\(94\) 0 0
\(95\) 9.57975 0.982862
\(96\) 0 0
\(97\) −12.9137 −1.31119 −0.655593 0.755115i \(-0.727581\pi\)
−0.655593 + 0.755115i \(0.727581\pi\)
\(98\) 0 0
\(99\) 0.693665 0.0697160
\(100\) 0 0
\(101\) −6.03448 −0.600453 −0.300226 0.953868i \(-0.597062\pi\)
−0.300226 + 0.953868i \(0.597062\pi\)
\(102\) 0 0
\(103\) 1.09297 0.107694 0.0538468 0.998549i \(-0.482852\pi\)
0.0538468 + 0.998549i \(0.482852\pi\)
\(104\) 0 0
\(105\) −40.5327 −3.95559
\(106\) 0 0
\(107\) −5.58489 −0.539911 −0.269956 0.962873i \(-0.587009\pi\)
−0.269956 + 0.962873i \(0.587009\pi\)
\(108\) 0 0
\(109\) −6.76759 −0.648218 −0.324109 0.946020i \(-0.605064\pi\)
−0.324109 + 0.946020i \(0.605064\pi\)
\(110\) 0 0
\(111\) −15.5601 −1.47690
\(112\) 0 0
\(113\) −0.653864 −0.0615103 −0.0307552 0.999527i \(-0.509791\pi\)
−0.0307552 + 0.999527i \(0.509791\pi\)
\(114\) 0 0
\(115\) 8.67489 0.808937
\(116\) 0 0
\(117\) −0.144683 −0.0133760
\(118\) 0 0
\(119\) 7.00247 0.641915
\(120\) 0 0
\(121\) −10.7943 −0.981302
\(122\) 0 0
\(123\) 22.6986 2.04666
\(124\) 0 0
\(125\) 18.3716 1.64321
\(126\) 0 0
\(127\) −8.29619 −0.736168 −0.368084 0.929792i \(-0.619986\pi\)
−0.368084 + 0.929792i \(0.619986\pi\)
\(128\) 0 0
\(129\) −26.1277 −2.30042
\(130\) 0 0
\(131\) 15.8736 1.38688 0.693440 0.720514i \(-0.256094\pi\)
0.693440 + 0.720514i \(0.256094\pi\)
\(132\) 0 0
\(133\) 12.3450 1.07045
\(134\) 0 0
\(135\) 12.0310 1.03547
\(136\) 0 0
\(137\) −5.16032 −0.440876 −0.220438 0.975401i \(-0.570749\pi\)
−0.220438 + 0.975401i \(0.570749\pi\)
\(138\) 0 0
\(139\) −15.2369 −1.29237 −0.646187 0.763179i \(-0.723637\pi\)
−0.646187 + 0.763179i \(0.723637\pi\)
\(140\) 0 0
\(141\) −3.04794 −0.256683
\(142\) 0 0
\(143\) −0.0428993 −0.00358742
\(144\) 0 0
\(145\) −25.5596 −2.12261
\(146\) 0 0
\(147\) −37.3349 −3.07933
\(148\) 0 0
\(149\) 16.0979 1.31879 0.659397 0.751795i \(-0.270812\pi\)
0.659397 + 0.751795i \(0.270812\pi\)
\(150\) 0 0
\(151\) 7.57215 0.616212 0.308106 0.951352i \(-0.400305\pi\)
0.308106 + 0.951352i \(0.400305\pi\)
\(152\) 0 0
\(153\) 2.16198 0.174786
\(154\) 0 0
\(155\) −20.6339 −1.65735
\(156\) 0 0
\(157\) 21.8948 1.74739 0.873696 0.486472i \(-0.161717\pi\)
0.873696 + 0.486472i \(0.161717\pi\)
\(158\) 0 0
\(159\) −21.2167 −1.68259
\(160\) 0 0
\(161\) 11.1790 0.881025
\(162\) 0 0
\(163\) 6.02116 0.471614 0.235807 0.971800i \(-0.424227\pi\)
0.235807 + 0.971800i \(0.424227\pi\)
\(164\) 0 0
\(165\) −3.71055 −0.288866
\(166\) 0 0
\(167\) −19.6784 −1.52276 −0.761382 0.648304i \(-0.775479\pi\)
−0.761382 + 0.648304i \(0.775479\pi\)
\(168\) 0 0
\(169\) −12.9911 −0.999312
\(170\) 0 0
\(171\) 3.81147 0.291470
\(172\) 0 0
\(173\) 12.4812 0.948931 0.474466 0.880274i \(-0.342641\pi\)
0.474466 + 0.880274i \(0.342641\pi\)
\(174\) 0 0
\(175\) 48.4448 3.66209
\(176\) 0 0
\(177\) 16.8124 1.26370
\(178\) 0 0
\(179\) −7.84995 −0.586733 −0.293366 0.956000i \(-0.594776\pi\)
−0.293366 + 0.956000i \(0.594776\pi\)
\(180\) 0 0
\(181\) −17.9797 −1.33642 −0.668209 0.743973i \(-0.732939\pi\)
−0.668209 + 0.743973i \(0.732939\pi\)
\(182\) 0 0
\(183\) −2.02253 −0.149510
\(184\) 0 0
\(185\) 28.1065 2.06643
\(186\) 0 0
\(187\) 0.641038 0.0468774
\(188\) 0 0
\(189\) 15.5039 1.12774
\(190\) 0 0
\(191\) 12.3054 0.890386 0.445193 0.895435i \(-0.353135\pi\)
0.445193 + 0.895435i \(0.353135\pi\)
\(192\) 0 0
\(193\) 5.82207 0.419081 0.209541 0.977800i \(-0.432803\pi\)
0.209541 + 0.977800i \(0.432803\pi\)
\(194\) 0 0
\(195\) 0.773939 0.0554229
\(196\) 0 0
\(197\) −21.6619 −1.54334 −0.771671 0.636021i \(-0.780579\pi\)
−0.771671 + 0.636021i \(0.780579\pi\)
\(198\) 0 0
\(199\) −5.71843 −0.405369 −0.202684 0.979244i \(-0.564967\pi\)
−0.202684 + 0.979244i \(0.564967\pi\)
\(200\) 0 0
\(201\) −17.1597 −1.21035
\(202\) 0 0
\(203\) −32.9375 −2.31176
\(204\) 0 0
\(205\) −41.0008 −2.86362
\(206\) 0 0
\(207\) 3.45145 0.239892
\(208\) 0 0
\(209\) 1.13012 0.0781721
\(210\) 0 0
\(211\) 20.0839 1.38264 0.691318 0.722551i \(-0.257030\pi\)
0.691318 + 0.722551i \(0.257030\pi\)
\(212\) 0 0
\(213\) −6.51431 −0.446353
\(214\) 0 0
\(215\) 47.1950 3.21867
\(216\) 0 0
\(217\) −26.5900 −1.80505
\(218\) 0 0
\(219\) −27.2980 −1.84463
\(220\) 0 0
\(221\) −0.133706 −0.00899406
\(222\) 0 0
\(223\) 5.45166 0.365070 0.182535 0.983199i \(-0.441570\pi\)
0.182535 + 0.983199i \(0.441570\pi\)
\(224\) 0 0
\(225\) 14.9571 0.997141
\(226\) 0 0
\(227\) −14.8158 −0.983360 −0.491680 0.870776i \(-0.663617\pi\)
−0.491680 + 0.870776i \(0.663617\pi\)
\(228\) 0 0
\(229\) 21.9863 1.45289 0.726447 0.687223i \(-0.241170\pi\)
0.726447 + 0.687223i \(0.241170\pi\)
\(230\) 0 0
\(231\) −4.78163 −0.314608
\(232\) 0 0
\(233\) 17.7722 1.16429 0.582147 0.813084i \(-0.302213\pi\)
0.582147 + 0.813084i \(0.302213\pi\)
\(234\) 0 0
\(235\) 5.50555 0.359143
\(236\) 0 0
\(237\) 29.3005 1.90327
\(238\) 0 0
\(239\) 12.0820 0.781517 0.390759 0.920493i \(-0.372213\pi\)
0.390759 + 0.920493i \(0.372213\pi\)
\(240\) 0 0
\(241\) 11.3215 0.729285 0.364642 0.931148i \(-0.381191\pi\)
0.364642 + 0.931148i \(0.381191\pi\)
\(242\) 0 0
\(243\) 14.5525 0.933545
\(244\) 0 0
\(245\) 67.4387 4.30850
\(246\) 0 0
\(247\) −0.235718 −0.0149984
\(248\) 0 0
\(249\) 21.5318 1.36453
\(250\) 0 0
\(251\) −8.60802 −0.543333 −0.271667 0.962391i \(-0.587575\pi\)
−0.271667 + 0.962391i \(0.587575\pi\)
\(252\) 0 0
\(253\) 1.02337 0.0643390
\(254\) 0 0
\(255\) −11.5649 −0.724219
\(256\) 0 0
\(257\) −14.3976 −0.898096 −0.449048 0.893508i \(-0.648237\pi\)
−0.449048 + 0.893508i \(0.648237\pi\)
\(258\) 0 0
\(259\) 36.2197 2.25058
\(260\) 0 0
\(261\) −10.1693 −0.629464
\(262\) 0 0
\(263\) 22.3410 1.37761 0.688803 0.724949i \(-0.258137\pi\)
0.688803 + 0.724949i \(0.258137\pi\)
\(264\) 0 0
\(265\) 38.3240 2.35423
\(266\) 0 0
\(267\) 3.78413 0.231585
\(268\) 0 0
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) −16.7534 −1.01770 −0.508848 0.860856i \(-0.669929\pi\)
−0.508848 + 0.860856i \(0.669929\pi\)
\(272\) 0 0
\(273\) 0.997342 0.0603619
\(274\) 0 0
\(275\) 4.43487 0.267432
\(276\) 0 0
\(277\) 14.7850 0.888345 0.444172 0.895941i \(-0.353498\pi\)
0.444172 + 0.895941i \(0.353498\pi\)
\(278\) 0 0
\(279\) −8.20955 −0.491493
\(280\) 0 0
\(281\) 25.0439 1.49400 0.746998 0.664827i \(-0.231495\pi\)
0.746998 + 0.664827i \(0.231495\pi\)
\(282\) 0 0
\(283\) −24.6030 −1.46249 −0.731247 0.682113i \(-0.761061\pi\)
−0.731247 + 0.682113i \(0.761061\pi\)
\(284\) 0 0
\(285\) −20.3883 −1.20770
\(286\) 0 0
\(287\) −52.8360 −3.11881
\(288\) 0 0
\(289\) −15.0020 −0.882473
\(290\) 0 0
\(291\) 27.4838 1.61113
\(292\) 0 0
\(293\) −11.4618 −0.669607 −0.334804 0.942288i \(-0.608670\pi\)
−0.334804 + 0.942288i \(0.608670\pi\)
\(294\) 0 0
\(295\) −30.3685 −1.76812
\(296\) 0 0
\(297\) 1.41930 0.0823560
\(298\) 0 0
\(299\) −0.213453 −0.0123443
\(300\) 0 0
\(301\) 60.8182 3.50550
\(302\) 0 0
\(303\) 12.8430 0.737811
\(304\) 0 0
\(305\) 3.65333 0.209189
\(306\) 0 0
\(307\) 17.7679 1.01407 0.507033 0.861927i \(-0.330742\pi\)
0.507033 + 0.861927i \(0.330742\pi\)
\(308\) 0 0
\(309\) −2.32614 −0.132329
\(310\) 0 0
\(311\) −7.62146 −0.432173 −0.216087 0.976374i \(-0.569329\pi\)
−0.216087 + 0.976374i \(0.569329\pi\)
\(312\) 0 0
\(313\) 7.97031 0.450509 0.225254 0.974300i \(-0.427679\pi\)
0.225254 + 0.974300i \(0.427679\pi\)
\(314\) 0 0
\(315\) 29.1298 1.64128
\(316\) 0 0
\(317\) 1.71640 0.0964028 0.0482014 0.998838i \(-0.484651\pi\)
0.0482014 + 0.998838i \(0.484651\pi\)
\(318\) 0 0
\(319\) −3.01525 −0.168822
\(320\) 0 0
\(321\) 11.8861 0.663420
\(322\) 0 0
\(323\) 3.52230 0.195986
\(324\) 0 0
\(325\) −0.925014 −0.0513106
\(326\) 0 0
\(327\) 14.4033 0.796502
\(328\) 0 0
\(329\) 7.09477 0.391147
\(330\) 0 0
\(331\) 13.7537 0.755970 0.377985 0.925812i \(-0.376617\pi\)
0.377985 + 0.925812i \(0.376617\pi\)
\(332\) 0 0
\(333\) 11.1827 0.612806
\(334\) 0 0
\(335\) 30.9959 1.69349
\(336\) 0 0
\(337\) 18.7032 1.01883 0.509413 0.860522i \(-0.329863\pi\)
0.509413 + 0.860522i \(0.329863\pi\)
\(338\) 0 0
\(339\) 1.39160 0.0755812
\(340\) 0 0
\(341\) −2.43417 −0.131818
\(342\) 0 0
\(343\) 52.2272 2.82000
\(344\) 0 0
\(345\) −18.4625 −0.993988
\(346\) 0 0
\(347\) −12.9029 −0.692662 −0.346331 0.938112i \(-0.612573\pi\)
−0.346331 + 0.938112i \(0.612573\pi\)
\(348\) 0 0
\(349\) −4.29547 −0.229931 −0.114966 0.993369i \(-0.536676\pi\)
−0.114966 + 0.993369i \(0.536676\pi\)
\(350\) 0 0
\(351\) −0.296034 −0.0158011
\(352\) 0 0
\(353\) −22.3707 −1.19067 −0.595337 0.803476i \(-0.702982\pi\)
−0.595337 + 0.803476i \(0.702982\pi\)
\(354\) 0 0
\(355\) 11.7669 0.624523
\(356\) 0 0
\(357\) −14.9031 −0.788758
\(358\) 0 0
\(359\) −32.0628 −1.69221 −0.846105 0.533016i \(-0.821058\pi\)
−0.846105 + 0.533016i \(0.821058\pi\)
\(360\) 0 0
\(361\) −12.7903 −0.673176
\(362\) 0 0
\(363\) 22.9732 1.20578
\(364\) 0 0
\(365\) 49.3088 2.58094
\(366\) 0 0
\(367\) 4.79576 0.250337 0.125168 0.992136i \(-0.460053\pi\)
0.125168 + 0.992136i \(0.460053\pi\)
\(368\) 0 0
\(369\) −16.3129 −0.849214
\(370\) 0 0
\(371\) 49.3865 2.56402
\(372\) 0 0
\(373\) 32.9108 1.70406 0.852028 0.523497i \(-0.175373\pi\)
0.852028 + 0.523497i \(0.175373\pi\)
\(374\) 0 0
\(375\) −39.0997 −2.01910
\(376\) 0 0
\(377\) 0.628915 0.0323908
\(378\) 0 0
\(379\) 8.98570 0.461565 0.230782 0.973005i \(-0.425871\pi\)
0.230782 + 0.973005i \(0.425871\pi\)
\(380\) 0 0
\(381\) 17.6565 0.904572
\(382\) 0 0
\(383\) −0.787688 −0.0402490 −0.0201245 0.999797i \(-0.506406\pi\)
−0.0201245 + 0.999797i \(0.506406\pi\)
\(384\) 0 0
\(385\) 8.63715 0.440190
\(386\) 0 0
\(387\) 18.7773 0.954506
\(388\) 0 0
\(389\) −4.15609 −0.210722 −0.105361 0.994434i \(-0.533600\pi\)
−0.105361 + 0.994434i \(0.533600\pi\)
\(390\) 0 0
\(391\) 3.18960 0.161305
\(392\) 0 0
\(393\) −33.7833 −1.70414
\(394\) 0 0
\(395\) −52.9259 −2.66299
\(396\) 0 0
\(397\) 1.90587 0.0956527 0.0478263 0.998856i \(-0.484771\pi\)
0.0478263 + 0.998856i \(0.484771\pi\)
\(398\) 0 0
\(399\) −26.2735 −1.31532
\(400\) 0 0
\(401\) −11.0163 −0.550128 −0.275064 0.961426i \(-0.588699\pi\)
−0.275064 + 0.961426i \(0.588699\pi\)
\(402\) 0 0
\(403\) 0.507715 0.0252911
\(404\) 0 0
\(405\) −43.2454 −2.14888
\(406\) 0 0
\(407\) 3.31572 0.164354
\(408\) 0 0
\(409\) −5.30078 −0.262107 −0.131053 0.991375i \(-0.541836\pi\)
−0.131053 + 0.991375i \(0.541836\pi\)
\(410\) 0 0
\(411\) 10.9826 0.541730
\(412\) 0 0
\(413\) −39.1346 −1.92569
\(414\) 0 0
\(415\) −38.8934 −1.90920
\(416\) 0 0
\(417\) 32.4281 1.58801
\(418\) 0 0
\(419\) 25.5590 1.24864 0.624319 0.781169i \(-0.285376\pi\)
0.624319 + 0.781169i \(0.285376\pi\)
\(420\) 0 0
\(421\) −24.8795 −1.21255 −0.606276 0.795254i \(-0.707337\pi\)
−0.606276 + 0.795254i \(0.707337\pi\)
\(422\) 0 0
\(423\) 2.19048 0.106505
\(424\) 0 0
\(425\) 13.8224 0.670483
\(426\) 0 0
\(427\) 4.70789 0.227831
\(428\) 0 0
\(429\) 0.0913014 0.00440807
\(430\) 0 0
\(431\) −19.4524 −0.936988 −0.468494 0.883467i \(-0.655203\pi\)
−0.468494 + 0.883467i \(0.655203\pi\)
\(432\) 0 0
\(433\) −16.7217 −0.803593 −0.401797 0.915729i \(-0.631614\pi\)
−0.401797 + 0.915729i \(0.631614\pi\)
\(434\) 0 0
\(435\) 54.3977 2.60817
\(436\) 0 0
\(437\) 5.62311 0.268990
\(438\) 0 0
\(439\) 14.8215 0.707390 0.353695 0.935361i \(-0.384925\pi\)
0.353695 + 0.935361i \(0.384925\pi\)
\(440\) 0 0
\(441\) 26.8316 1.27770
\(442\) 0 0
\(443\) 24.8635 1.18130 0.590651 0.806927i \(-0.298871\pi\)
0.590651 + 0.806927i \(0.298871\pi\)
\(444\) 0 0
\(445\) −6.83533 −0.324026
\(446\) 0 0
\(447\) −34.2607 −1.62048
\(448\) 0 0
\(449\) 22.0294 1.03963 0.519817 0.854278i \(-0.326000\pi\)
0.519817 + 0.854278i \(0.326000\pi\)
\(450\) 0 0
\(451\) −4.83685 −0.227759
\(452\) 0 0
\(453\) −16.1156 −0.757175
\(454\) 0 0
\(455\) −1.80152 −0.0844564
\(456\) 0 0
\(457\) −27.1457 −1.26982 −0.634911 0.772585i \(-0.718963\pi\)
−0.634911 + 0.772585i \(0.718963\pi\)
\(458\) 0 0
\(459\) 4.42359 0.206475
\(460\) 0 0
\(461\) 27.6585 1.28819 0.644093 0.764947i \(-0.277235\pi\)
0.644093 + 0.764947i \(0.277235\pi\)
\(462\) 0 0
\(463\) −31.2336 −1.45155 −0.725774 0.687933i \(-0.758518\pi\)
−0.725774 + 0.687933i \(0.758518\pi\)
\(464\) 0 0
\(465\) 43.9145 2.03649
\(466\) 0 0
\(467\) 13.4254 0.621255 0.310628 0.950532i \(-0.399461\pi\)
0.310628 + 0.950532i \(0.399461\pi\)
\(468\) 0 0
\(469\) 39.9431 1.84440
\(470\) 0 0
\(471\) −46.5980 −2.14712
\(472\) 0 0
\(473\) 5.56758 0.255998
\(474\) 0 0
\(475\) 24.3682 1.11809
\(476\) 0 0
\(477\) 15.2479 0.698152
\(478\) 0 0
\(479\) −2.09566 −0.0957533 −0.0478767 0.998853i \(-0.515245\pi\)
−0.0478767 + 0.998853i \(0.515245\pi\)
\(480\) 0 0
\(481\) −0.691586 −0.0315336
\(482\) 0 0
\(483\) −23.7918 −1.08257
\(484\) 0 0
\(485\) −49.6445 −2.25424
\(486\) 0 0
\(487\) 38.1661 1.72947 0.864736 0.502226i \(-0.167485\pi\)
0.864736 + 0.502226i \(0.167485\pi\)
\(488\) 0 0
\(489\) −12.8147 −0.579499
\(490\) 0 0
\(491\) −6.36732 −0.287353 −0.143676 0.989625i \(-0.545892\pi\)
−0.143676 + 0.989625i \(0.545892\pi\)
\(492\) 0 0
\(493\) −9.39778 −0.423255
\(494\) 0 0
\(495\) 2.66668 0.119858
\(496\) 0 0
\(497\) 15.1635 0.680176
\(498\) 0 0
\(499\) −33.6939 −1.50835 −0.754173 0.656676i \(-0.771962\pi\)
−0.754173 + 0.656676i \(0.771962\pi\)
\(500\) 0 0
\(501\) 41.8810 1.87111
\(502\) 0 0
\(503\) 29.6505 1.32205 0.661026 0.750363i \(-0.270121\pi\)
0.661026 + 0.750363i \(0.270121\pi\)
\(504\) 0 0
\(505\) −23.1985 −1.03232
\(506\) 0 0
\(507\) 27.6485 1.22791
\(508\) 0 0
\(509\) −3.41765 −0.151485 −0.0757423 0.997127i \(-0.524133\pi\)
−0.0757423 + 0.997127i \(0.524133\pi\)
\(510\) 0 0
\(511\) 63.5422 2.81094
\(512\) 0 0
\(513\) 7.79858 0.344316
\(514\) 0 0
\(515\) 4.20174 0.185151
\(516\) 0 0
\(517\) 0.649488 0.0285645
\(518\) 0 0
\(519\) −26.5635 −1.16601
\(520\) 0 0
\(521\) 28.2730 1.23866 0.619330 0.785130i \(-0.287404\pi\)
0.619330 + 0.785130i \(0.287404\pi\)
\(522\) 0 0
\(523\) 17.2424 0.753956 0.376978 0.926222i \(-0.376963\pi\)
0.376978 + 0.926222i \(0.376963\pi\)
\(524\) 0 0
\(525\) −103.104 −4.49981
\(526\) 0 0
\(527\) −7.58670 −0.330482
\(528\) 0 0
\(529\) −17.9080 −0.778610
\(530\) 0 0
\(531\) −12.0826 −0.524341
\(532\) 0 0
\(533\) 1.00886 0.0436986
\(534\) 0 0
\(535\) −21.4702 −0.928236
\(536\) 0 0
\(537\) 16.7068 0.720952
\(538\) 0 0
\(539\) 7.95572 0.342677
\(540\) 0 0
\(541\) −2.32570 −0.0999896 −0.0499948 0.998749i \(-0.515920\pi\)
−0.0499948 + 0.998749i \(0.515920\pi\)
\(542\) 0 0
\(543\) 38.2656 1.64213
\(544\) 0 0
\(545\) −26.0169 −1.11444
\(546\) 0 0
\(547\) −26.5955 −1.13714 −0.568570 0.822635i \(-0.692503\pi\)
−0.568570 + 0.822635i \(0.692503\pi\)
\(548\) 0 0
\(549\) 1.45354 0.0620356
\(550\) 0 0
\(551\) −16.5679 −0.705814
\(552\) 0 0
\(553\) −68.2034 −2.90030
\(554\) 0 0
\(555\) −59.8183 −2.53915
\(556\) 0 0
\(557\) 19.7222 0.835658 0.417829 0.908526i \(-0.362791\pi\)
0.417829 + 0.908526i \(0.362791\pi\)
\(558\) 0 0
\(559\) −1.16127 −0.0491166
\(560\) 0 0
\(561\) −1.36430 −0.0576009
\(562\) 0 0
\(563\) 25.9388 1.09319 0.546595 0.837397i \(-0.315924\pi\)
0.546595 + 0.837397i \(0.315924\pi\)
\(564\) 0 0
\(565\) −2.51367 −0.105751
\(566\) 0 0
\(567\) −55.7285 −2.34038
\(568\) 0 0
\(569\) −44.9748 −1.88544 −0.942720 0.333584i \(-0.891742\pi\)
−0.942720 + 0.333584i \(0.891742\pi\)
\(570\) 0 0
\(571\) 44.4599 1.86059 0.930294 0.366814i \(-0.119552\pi\)
0.930294 + 0.366814i \(0.119552\pi\)
\(572\) 0 0
\(573\) −26.1892 −1.09407
\(574\) 0 0
\(575\) 22.0664 0.920234
\(576\) 0 0
\(577\) −36.6191 −1.52447 −0.762236 0.647299i \(-0.775898\pi\)
−0.762236 + 0.647299i \(0.775898\pi\)
\(578\) 0 0
\(579\) −12.3909 −0.514949
\(580\) 0 0
\(581\) −50.1202 −2.07934
\(582\) 0 0
\(583\) 4.52107 0.187244
\(584\) 0 0
\(585\) −0.556210 −0.0229965
\(586\) 0 0
\(587\) −20.5256 −0.847184 −0.423592 0.905853i \(-0.639231\pi\)
−0.423592 + 0.905853i \(0.639231\pi\)
\(588\) 0 0
\(589\) −13.3750 −0.551108
\(590\) 0 0
\(591\) 46.1023 1.89639
\(592\) 0 0
\(593\) −1.99866 −0.0820753 −0.0410377 0.999158i \(-0.513066\pi\)
−0.0410377 + 0.999158i \(0.513066\pi\)
\(594\) 0 0
\(595\) 26.9198 1.10360
\(596\) 0 0
\(597\) 12.1704 0.498100
\(598\) 0 0
\(599\) −21.2473 −0.868141 −0.434070 0.900879i \(-0.642923\pi\)
−0.434070 + 0.900879i \(0.642923\pi\)
\(600\) 0 0
\(601\) −22.2574 −0.907899 −0.453949 0.891028i \(-0.649985\pi\)
−0.453949 + 0.891028i \(0.649985\pi\)
\(602\) 0 0
\(603\) 12.3323 0.502208
\(604\) 0 0
\(605\) −41.4970 −1.68709
\(606\) 0 0
\(607\) −7.20720 −0.292531 −0.146266 0.989245i \(-0.546725\pi\)
−0.146266 + 0.989245i \(0.546725\pi\)
\(608\) 0 0
\(609\) 70.0999 2.84059
\(610\) 0 0
\(611\) −0.135469 −0.00548048
\(612\) 0 0
\(613\) 15.9436 0.643956 0.321978 0.946747i \(-0.395652\pi\)
0.321978 + 0.946747i \(0.395652\pi\)
\(614\) 0 0
\(615\) 87.2608 3.51870
\(616\) 0 0
\(617\) 18.0019 0.724729 0.362364 0.932037i \(-0.381970\pi\)
0.362364 + 0.932037i \(0.381970\pi\)
\(618\) 0 0
\(619\) 17.9006 0.719487 0.359744 0.933051i \(-0.382864\pi\)
0.359744 + 0.933051i \(0.382864\pi\)
\(620\) 0 0
\(621\) 7.06196 0.283387
\(622\) 0 0
\(623\) −8.80840 −0.352901
\(624\) 0 0
\(625\) 21.7321 0.869285
\(626\) 0 0
\(627\) −2.40520 −0.0960545
\(628\) 0 0
\(629\) 10.3343 0.412054
\(630\) 0 0
\(631\) −25.6888 −1.02265 −0.511327 0.859386i \(-0.670846\pi\)
−0.511327 + 0.859386i \(0.670846\pi\)
\(632\) 0 0
\(633\) −42.7441 −1.69892
\(634\) 0 0
\(635\) −31.8933 −1.26565
\(636\) 0 0
\(637\) −1.65939 −0.0657473
\(638\) 0 0
\(639\) 4.68166 0.185204
\(640\) 0 0
\(641\) 25.4553 1.00542 0.502712 0.864454i \(-0.332336\pi\)
0.502712 + 0.864454i \(0.332336\pi\)
\(642\) 0 0
\(643\) −22.7411 −0.896823 −0.448411 0.893827i \(-0.648010\pi\)
−0.448411 + 0.893827i \(0.648010\pi\)
\(644\) 0 0
\(645\) −100.444 −3.95497
\(646\) 0 0
\(647\) −28.5975 −1.12428 −0.562142 0.827041i \(-0.690023\pi\)
−0.562142 + 0.827041i \(0.690023\pi\)
\(648\) 0 0
\(649\) −3.58256 −0.140628
\(650\) 0 0
\(651\) 56.5907 2.21797
\(652\) 0 0
\(653\) −5.54791 −0.217107 −0.108553 0.994091i \(-0.534622\pi\)
−0.108553 + 0.994091i \(0.534622\pi\)
\(654\) 0 0
\(655\) 61.0233 2.38438
\(656\) 0 0
\(657\) 19.6184 0.765385
\(658\) 0 0
\(659\) 27.7914 1.08260 0.541299 0.840830i \(-0.317933\pi\)
0.541299 + 0.840830i \(0.317933\pi\)
\(660\) 0 0
\(661\) 1.92881 0.0750221 0.0375111 0.999296i \(-0.488057\pi\)
0.0375111 + 0.999296i \(0.488057\pi\)
\(662\) 0 0
\(663\) 0.284563 0.0110515
\(664\) 0 0
\(665\) 47.4584 1.84036
\(666\) 0 0
\(667\) −15.0029 −0.580915
\(668\) 0 0
\(669\) −11.6026 −0.448583
\(670\) 0 0
\(671\) 0.430982 0.0166379
\(672\) 0 0
\(673\) 19.2283 0.741195 0.370597 0.928794i \(-0.379153\pi\)
0.370597 + 0.928794i \(0.379153\pi\)
\(674\) 0 0
\(675\) 30.6035 1.17793
\(676\) 0 0
\(677\) 3.56493 0.137011 0.0685057 0.997651i \(-0.478177\pi\)
0.0685057 + 0.997651i \(0.478177\pi\)
\(678\) 0 0
\(679\) −63.9747 −2.45512
\(680\) 0 0
\(681\) 31.5320 1.20831
\(682\) 0 0
\(683\) −36.0055 −1.37771 −0.688856 0.724899i \(-0.741887\pi\)
−0.688856 + 0.724899i \(0.741887\pi\)
\(684\) 0 0
\(685\) −19.8380 −0.757971
\(686\) 0 0
\(687\) −46.7927 −1.78525
\(688\) 0 0
\(689\) −0.942995 −0.0359253
\(690\) 0 0
\(691\) −6.11836 −0.232754 −0.116377 0.993205i \(-0.537128\pi\)
−0.116377 + 0.993205i \(0.537128\pi\)
\(692\) 0 0
\(693\) 3.43644 0.130539
\(694\) 0 0
\(695\) −58.5755 −2.22190
\(696\) 0 0
\(697\) −15.0752 −0.571016
\(698\) 0 0
\(699\) −37.8240 −1.43063
\(700\) 0 0
\(701\) −27.4930 −1.03840 −0.519198 0.854654i \(-0.673769\pi\)
−0.519198 + 0.854654i \(0.673769\pi\)
\(702\) 0 0
\(703\) 18.2188 0.687136
\(704\) 0 0
\(705\) −11.7173 −0.441299
\(706\) 0 0
\(707\) −29.8949 −1.12432
\(708\) 0 0
\(709\) −41.8276 −1.57087 −0.785433 0.618946i \(-0.787560\pi\)
−0.785433 + 0.618946i \(0.787560\pi\)
\(710\) 0 0
\(711\) −21.0575 −0.789717
\(712\) 0 0
\(713\) −12.1117 −0.453585
\(714\) 0 0
\(715\) −0.164919 −0.00616763
\(716\) 0 0
\(717\) −25.7137 −0.960295
\(718\) 0 0
\(719\) 36.4204 1.35825 0.679126 0.734022i \(-0.262359\pi\)
0.679126 + 0.734022i \(0.262359\pi\)
\(720\) 0 0
\(721\) 5.41461 0.201650
\(722\) 0 0
\(723\) −24.0953 −0.896114
\(724\) 0 0
\(725\) −65.0162 −2.41464
\(726\) 0 0
\(727\) −1.23081 −0.0456481 −0.0228241 0.999739i \(-0.507266\pi\)
−0.0228241 + 0.999739i \(0.507266\pi\)
\(728\) 0 0
\(729\) 2.77568 0.102803
\(730\) 0 0
\(731\) 17.3527 0.641814
\(732\) 0 0
\(733\) 27.5812 1.01873 0.509367 0.860550i \(-0.329880\pi\)
0.509367 + 0.860550i \(0.329880\pi\)
\(734\) 0 0
\(735\) −143.528 −5.29410
\(736\) 0 0
\(737\) 3.65658 0.134692
\(738\) 0 0
\(739\) −19.3896 −0.713257 −0.356629 0.934246i \(-0.616074\pi\)
−0.356629 + 0.934246i \(0.616074\pi\)
\(740\) 0 0
\(741\) 0.501672 0.0184294
\(742\) 0 0
\(743\) 3.02696 0.111048 0.0555242 0.998457i \(-0.482317\pi\)
0.0555242 + 0.998457i \(0.482317\pi\)
\(744\) 0 0
\(745\) 61.8858 2.26732
\(746\) 0 0
\(747\) −15.4744 −0.566178
\(748\) 0 0
\(749\) −27.6677 −1.01096
\(750\) 0 0
\(751\) −5.10910 −0.186434 −0.0932168 0.995646i \(-0.529715\pi\)
−0.0932168 + 0.995646i \(0.529715\pi\)
\(752\) 0 0
\(753\) 18.3202 0.667625
\(754\) 0 0
\(755\) 29.1098 1.05942
\(756\) 0 0
\(757\) −27.3805 −0.995161 −0.497580 0.867418i \(-0.665778\pi\)
−0.497580 + 0.867418i \(0.665778\pi\)
\(758\) 0 0
\(759\) −2.17802 −0.0790570
\(760\) 0 0
\(761\) −49.3210 −1.78789 −0.893943 0.448181i \(-0.852072\pi\)
−0.893943 + 0.448181i \(0.852072\pi\)
\(762\) 0 0
\(763\) −33.5268 −1.21375
\(764\) 0 0
\(765\) 8.31136 0.300498
\(766\) 0 0
\(767\) 0.747243 0.0269814
\(768\) 0 0
\(769\) 11.8488 0.427277 0.213639 0.976913i \(-0.431468\pi\)
0.213639 + 0.976913i \(0.431468\pi\)
\(770\) 0 0
\(771\) 30.6419 1.10354
\(772\) 0 0
\(773\) 14.0516 0.505401 0.252700 0.967545i \(-0.418681\pi\)
0.252700 + 0.967545i \(0.418681\pi\)
\(774\) 0 0
\(775\) −52.4867 −1.88538
\(776\) 0 0
\(777\) −77.0853 −2.76542
\(778\) 0 0
\(779\) −26.5770 −0.952218
\(780\) 0 0
\(781\) 1.38814 0.0496715
\(782\) 0 0
\(783\) −20.8073 −0.743591
\(784\) 0 0
\(785\) 84.1707 3.00418
\(786\) 0 0
\(787\) 22.7651 0.811489 0.405744 0.913987i \(-0.367012\pi\)
0.405744 + 0.913987i \(0.367012\pi\)
\(788\) 0 0
\(789\) −47.5477 −1.69274
\(790\) 0 0
\(791\) −3.23926 −0.115175
\(792\) 0 0
\(793\) −0.0898934 −0.00319221
\(794\) 0 0
\(795\) −81.5638 −2.89277
\(796\) 0 0
\(797\) 32.9141 1.16588 0.582938 0.812517i \(-0.301903\pi\)
0.582938 + 0.812517i \(0.301903\pi\)
\(798\) 0 0
\(799\) 2.02429 0.0716143
\(800\) 0 0
\(801\) −2.71955 −0.0960907
\(802\) 0 0
\(803\) 5.81695 0.205276
\(804\) 0 0
\(805\) 42.9756 1.51469
\(806\) 0 0
\(807\) 2.12827 0.0749186
\(808\) 0 0
\(809\) −35.8700 −1.26112 −0.630560 0.776140i \(-0.717175\pi\)
−0.630560 + 0.776140i \(0.717175\pi\)
\(810\) 0 0
\(811\) 16.6343 0.584109 0.292055 0.956402i \(-0.405661\pi\)
0.292055 + 0.956402i \(0.405661\pi\)
\(812\) 0 0
\(813\) 35.6558 1.25050
\(814\) 0 0
\(815\) 23.1473 0.810816
\(816\) 0 0
\(817\) 30.5921 1.07028
\(818\) 0 0
\(819\) −0.716764 −0.0250458
\(820\) 0 0
\(821\) 32.4924 1.13399 0.566997 0.823720i \(-0.308105\pi\)
0.566997 + 0.823720i \(0.308105\pi\)
\(822\) 0 0
\(823\) 29.9885 1.04533 0.522666 0.852537i \(-0.324937\pi\)
0.522666 + 0.852537i \(0.324937\pi\)
\(824\) 0 0
\(825\) −9.43859 −0.328610
\(826\) 0 0
\(827\) −31.1200 −1.08215 −0.541075 0.840975i \(-0.681982\pi\)
−0.541075 + 0.840975i \(0.681982\pi\)
\(828\) 0 0
\(829\) −15.8365 −0.550025 −0.275013 0.961441i \(-0.588682\pi\)
−0.275013 + 0.961441i \(0.588682\pi\)
\(830\) 0 0
\(831\) −31.4665 −1.09156
\(832\) 0 0
\(833\) 24.7960 0.859129
\(834\) 0 0
\(835\) −75.6504 −2.61799
\(836\) 0 0
\(837\) −16.7974 −0.580604
\(838\) 0 0
\(839\) 12.2519 0.422981 0.211491 0.977380i \(-0.432168\pi\)
0.211491 + 0.977380i \(0.432168\pi\)
\(840\) 0 0
\(841\) 15.2044 0.524289
\(842\) 0 0
\(843\) −53.3002 −1.83576
\(844\) 0 0
\(845\) −49.9419 −1.71805
\(846\) 0 0
\(847\) −53.4754 −1.83744
\(848\) 0 0
\(849\) 52.3617 1.79705
\(850\) 0 0
\(851\) 16.4979 0.565542
\(852\) 0 0
\(853\) −9.41699 −0.322431 −0.161216 0.986919i \(-0.551541\pi\)
−0.161216 + 0.986919i \(0.551541\pi\)
\(854\) 0 0
\(855\) 14.6525 0.501107
\(856\) 0 0
\(857\) 19.2781 0.658529 0.329264 0.944238i \(-0.393199\pi\)
0.329264 + 0.944238i \(0.393199\pi\)
\(858\) 0 0
\(859\) 48.7953 1.66487 0.832437 0.554120i \(-0.186945\pi\)
0.832437 + 0.554120i \(0.186945\pi\)
\(860\) 0 0
\(861\) 112.449 3.83226
\(862\) 0 0
\(863\) −27.3052 −0.929481 −0.464741 0.885447i \(-0.653852\pi\)
−0.464741 + 0.885447i \(0.653852\pi\)
\(864\) 0 0
\(865\) 47.9820 1.63144
\(866\) 0 0
\(867\) 31.9284 1.08435
\(868\) 0 0
\(869\) −6.24366 −0.211802
\(870\) 0 0
\(871\) −0.762681 −0.0258425
\(872\) 0 0
\(873\) −19.7519 −0.668500
\(874\) 0 0
\(875\) 91.0134 3.07681
\(876\) 0 0
\(877\) −14.3551 −0.484737 −0.242368 0.970184i \(-0.577924\pi\)
−0.242368 + 0.970184i \(0.577924\pi\)
\(878\) 0 0
\(879\) 24.3939 0.822785
\(880\) 0 0
\(881\) −20.4566 −0.689201 −0.344600 0.938749i \(-0.611986\pi\)
−0.344600 + 0.938749i \(0.611986\pi\)
\(882\) 0 0
\(883\) −13.2088 −0.444510 −0.222255 0.974989i \(-0.571342\pi\)
−0.222255 + 0.974989i \(0.571342\pi\)
\(884\) 0 0
\(885\) 64.6323 2.17259
\(886\) 0 0
\(887\) 21.4469 0.720115 0.360058 0.932930i \(-0.382757\pi\)
0.360058 + 0.932930i \(0.382757\pi\)
\(888\) 0 0
\(889\) −41.0996 −1.37844
\(890\) 0 0
\(891\) −5.10164 −0.170911
\(892\) 0 0
\(893\) 3.56873 0.119423
\(894\) 0 0
\(895\) −30.1778 −1.00873
\(896\) 0 0
\(897\) 0.454286 0.0151682
\(898\) 0 0
\(899\) 35.6856 1.19018
\(900\) 0 0
\(901\) 14.0910 0.469441
\(902\) 0 0
\(903\) −129.438 −4.30741
\(904\) 0 0
\(905\) −69.1198 −2.29762
\(906\) 0 0
\(907\) 53.7295 1.78406 0.892029 0.451977i \(-0.149281\pi\)
0.892029 + 0.451977i \(0.149281\pi\)
\(908\) 0 0
\(909\) −9.22993 −0.306137
\(910\) 0 0
\(911\) 17.7091 0.586728 0.293364 0.956001i \(-0.405225\pi\)
0.293364 + 0.956001i \(0.405225\pi\)
\(912\) 0 0
\(913\) −4.58824 −0.151848
\(914\) 0 0
\(915\) −7.77528 −0.257043
\(916\) 0 0
\(917\) 78.6381 2.59686
\(918\) 0 0
\(919\) −59.7641 −1.97144 −0.985718 0.168406i \(-0.946138\pi\)
−0.985718 + 0.168406i \(0.946138\pi\)
\(920\) 0 0
\(921\) −37.8148 −1.24604
\(922\) 0 0
\(923\) −0.289535 −0.00953015
\(924\) 0 0
\(925\) 71.4950 2.35074
\(926\) 0 0
\(927\) 1.67173 0.0549070
\(928\) 0 0
\(929\) −53.9545 −1.77019 −0.885095 0.465410i \(-0.845907\pi\)
−0.885095 + 0.465410i \(0.845907\pi\)
\(930\) 0 0
\(931\) 43.7141 1.43267
\(932\) 0 0
\(933\) 16.2205 0.531036
\(934\) 0 0
\(935\) 2.46436 0.0805933
\(936\) 0 0
\(937\) −23.7929 −0.777280 −0.388640 0.921390i \(-0.627055\pi\)
−0.388640 + 0.921390i \(0.627055\pi\)
\(938\) 0 0
\(939\) −16.9630 −0.553566
\(940\) 0 0
\(941\) −30.7434 −1.00221 −0.501103 0.865388i \(-0.667072\pi\)
−0.501103 + 0.865388i \(0.667072\pi\)
\(942\) 0 0
\(943\) −24.0666 −0.783716
\(944\) 0 0
\(945\) 59.6020 1.93885
\(946\) 0 0
\(947\) −44.2821 −1.43897 −0.719487 0.694506i \(-0.755623\pi\)
−0.719487 + 0.694506i \(0.755623\pi\)
\(948\) 0 0
\(949\) −1.21329 −0.0393849
\(950\) 0 0
\(951\) −3.65297 −0.118456
\(952\) 0 0
\(953\) −9.40636 −0.304702 −0.152351 0.988326i \(-0.548684\pi\)
−0.152351 + 0.988326i \(0.548684\pi\)
\(954\) 0 0
\(955\) 47.3059 1.53078
\(956\) 0 0
\(957\) 6.41727 0.207441
\(958\) 0 0
\(959\) −25.5644 −0.825517
\(960\) 0 0
\(961\) −2.19148 −0.0706930
\(962\) 0 0
\(963\) −8.54227 −0.275271
\(964\) 0 0
\(965\) 22.3819 0.720500
\(966\) 0 0
\(967\) 56.8679 1.82875 0.914373 0.404872i \(-0.132684\pi\)
0.914373 + 0.404872i \(0.132684\pi\)
\(968\) 0 0
\(969\) −7.49640 −0.240819
\(970\) 0 0
\(971\) 21.1723 0.679452 0.339726 0.940524i \(-0.389666\pi\)
0.339726 + 0.940524i \(0.389666\pi\)
\(972\) 0 0
\(973\) −75.4838 −2.41990
\(974\) 0 0
\(975\) 1.96868 0.0630482
\(976\) 0 0
\(977\) 6.11162 0.195528 0.0977641 0.995210i \(-0.468831\pi\)
0.0977641 + 0.995210i \(0.468831\pi\)
\(978\) 0 0
\(979\) −0.806362 −0.0257714
\(980\) 0 0
\(981\) −10.3513 −0.330490
\(982\) 0 0
\(983\) −42.4508 −1.35397 −0.676985 0.735997i \(-0.736714\pi\)
−0.676985 + 0.735997i \(0.736714\pi\)
\(984\) 0 0
\(985\) −83.2753 −2.65337
\(986\) 0 0
\(987\) −15.0996 −0.480625
\(988\) 0 0
\(989\) 27.7025 0.880887
\(990\) 0 0
\(991\) 52.9269 1.68128 0.840640 0.541594i \(-0.182179\pi\)
0.840640 + 0.541594i \(0.182179\pi\)
\(992\) 0 0
\(993\) −29.2715 −0.928904
\(994\) 0 0
\(995\) −21.9835 −0.696925
\(996\) 0 0
\(997\) −43.4208 −1.37515 −0.687575 0.726113i \(-0.741325\pi\)
−0.687575 + 0.726113i \(0.741325\pi\)
\(998\) 0 0
\(999\) 22.8807 0.723912
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.h.1.2 7
4.3 odd 2 538.2.a.e.1.6 7
12.11 even 2 4842.2.a.n.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.e.1.6 7 4.3 odd 2
4304.2.a.h.1.2 7 1.1 even 1 trivial
4842.2.a.n.1.2 7 12.11 even 2