Properties

Label 4304.2.a.e.1.2
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4913.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.487928\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.34415 q^{3} +3.90570 q^{5} +0.487928 q^{7} -1.19326 q^{9} +O(q^{10})\) \(q-1.34415 q^{3} +3.90570 q^{5} +0.487928 q^{7} -1.19326 q^{9} -4.04948 q^{11} +3.53741 q^{13} -5.24985 q^{15} -6.37296 q^{17} -0.975857 q^{19} -0.655849 q^{21} -0.750146 q^{23} +10.2545 q^{25} +5.63637 q^{27} -4.08193 q^{29} +7.86089 q^{31} +5.44311 q^{33} +1.90570 q^{35} -4.22571 q^{37} -4.75481 q^{39} -2.07362 q^{41} -10.7341 q^{43} -4.66052 q^{45} -9.31636 q^{47} -6.76193 q^{49} +8.56622 q^{51} +11.1231 q^{53} -15.8161 q^{55} +1.31170 q^{57} +2.98052 q^{59} -7.53741 q^{61} -0.582225 q^{63} +13.8161 q^{65} -3.51207 q^{67} +1.00831 q^{69} -14.1349 q^{71} -9.75828 q^{73} -13.7836 q^{75} -1.97586 q^{77} -2.29222 q^{79} -3.99636 q^{81} +17.1324 q^{83} -24.8909 q^{85} +5.48673 q^{87} +1.86978 q^{89} +1.72600 q^{91} -10.5662 q^{93} -3.81141 q^{95} -9.63757 q^{97} +4.83208 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} + 5 q^{5} + q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 3 q^{3} + 5 q^{5} + q^{7} + 3 q^{9} - 7 q^{11} + 4 q^{13} - 8 q^{15} + 4 q^{17} - 2 q^{19} - 5 q^{21} - 16 q^{23} - q^{25} - 6 q^{27} + q^{31} + q^{33} - 3 q^{35} - 2 q^{37} - 3 q^{39} - q^{41} - 9 q^{43} + 8 q^{45} - 13 q^{47} - 15 q^{49} - 3 q^{51} + 28 q^{53} - 13 q^{55} + 10 q^{57} - 19 q^{59} - 20 q^{61} - 12 q^{63} + 5 q^{65} - 15 q^{67} - 5 q^{69} - 15 q^{71} - 7 q^{73} - 12 q^{75} - 6 q^{77} + 17 q^{79} + 4 q^{81} - 6 q^{83} - 29 q^{85} + 34 q^{87} + 20 q^{89} + 18 q^{91} - 5 q^{93} + 6 q^{95} + 3 q^{97} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.34415 −0.776046 −0.388023 0.921650i \(-0.626842\pi\)
−0.388023 + 0.921650i \(0.626842\pi\)
\(4\) 0 0
\(5\) 3.90570 1.74668 0.873342 0.487108i \(-0.161948\pi\)
0.873342 + 0.487108i \(0.161948\pi\)
\(6\) 0 0
\(7\) 0.487928 0.184420 0.0922098 0.995740i \(-0.470607\pi\)
0.0922098 + 0.995740i \(0.470607\pi\)
\(8\) 0 0
\(9\) −1.19326 −0.397753
\(10\) 0 0
\(11\) −4.04948 −1.22096 −0.610482 0.792030i \(-0.709024\pi\)
−0.610482 + 0.792030i \(0.709024\pi\)
\(12\) 0 0
\(13\) 3.53741 0.981101 0.490550 0.871413i \(-0.336796\pi\)
0.490550 + 0.871413i \(0.336796\pi\)
\(14\) 0 0
\(15\) −5.24985 −1.35551
\(16\) 0 0
\(17\) −6.37296 −1.54567 −0.772835 0.634607i \(-0.781162\pi\)
−0.772835 + 0.634607i \(0.781162\pi\)
\(18\) 0 0
\(19\) −0.975857 −0.223877 −0.111938 0.993715i \(-0.535706\pi\)
−0.111938 + 0.993715i \(0.535706\pi\)
\(20\) 0 0
\(21\) −0.655849 −0.143118
\(22\) 0 0
\(23\) −0.750146 −0.156416 −0.0782081 0.996937i \(-0.524920\pi\)
−0.0782081 + 0.996937i \(0.524920\pi\)
\(24\) 0 0
\(25\) 10.2545 2.05090
\(26\) 0 0
\(27\) 5.63637 1.08472
\(28\) 0 0
\(29\) −4.08193 −0.757996 −0.378998 0.925397i \(-0.623731\pi\)
−0.378998 + 0.925397i \(0.623731\pi\)
\(30\) 0 0
\(31\) 7.86089 1.41186 0.705929 0.708283i \(-0.250530\pi\)
0.705929 + 0.708283i \(0.250530\pi\)
\(32\) 0 0
\(33\) 5.44311 0.947524
\(34\) 0 0
\(35\) 1.90570 0.322123
\(36\) 0 0
\(37\) −4.22571 −0.694703 −0.347351 0.937735i \(-0.612919\pi\)
−0.347351 + 0.937735i \(0.612919\pi\)
\(38\) 0 0
\(39\) −4.75481 −0.761379
\(40\) 0 0
\(41\) −2.07362 −0.323846 −0.161923 0.986803i \(-0.551770\pi\)
−0.161923 + 0.986803i \(0.551770\pi\)
\(42\) 0 0
\(43\) −10.7341 −1.63694 −0.818470 0.574549i \(-0.805178\pi\)
−0.818470 + 0.574549i \(0.805178\pi\)
\(44\) 0 0
\(45\) −4.66052 −0.694749
\(46\) 0 0
\(47\) −9.31636 −1.35893 −0.679466 0.733707i \(-0.737788\pi\)
−0.679466 + 0.733707i \(0.737788\pi\)
\(48\) 0 0
\(49\) −6.76193 −0.965989
\(50\) 0 0
\(51\) 8.56622 1.19951
\(52\) 0 0
\(53\) 11.1231 1.52788 0.763938 0.645290i \(-0.223263\pi\)
0.763938 + 0.645290i \(0.223263\pi\)
\(54\) 0 0
\(55\) −15.8161 −2.13264
\(56\) 0 0
\(57\) 1.31170 0.173739
\(58\) 0 0
\(59\) 2.98052 0.388031 0.194015 0.980998i \(-0.437849\pi\)
0.194015 + 0.980998i \(0.437849\pi\)
\(60\) 0 0
\(61\) −7.53741 −0.965066 −0.482533 0.875878i \(-0.660283\pi\)
−0.482533 + 0.875878i \(0.660283\pi\)
\(62\) 0 0
\(63\) −0.582225 −0.0733534
\(64\) 0 0
\(65\) 13.8161 1.71367
\(66\) 0 0
\(67\) −3.51207 −0.429068 −0.214534 0.976717i \(-0.568823\pi\)
−0.214534 + 0.976717i \(0.568823\pi\)
\(68\) 0 0
\(69\) 1.00831 0.121386
\(70\) 0 0
\(71\) −14.1349 −1.67750 −0.838751 0.544515i \(-0.816714\pi\)
−0.838751 + 0.544515i \(0.816714\pi\)
\(72\) 0 0
\(73\) −9.75828 −1.14212 −0.571060 0.820908i \(-0.693468\pi\)
−0.571060 + 0.820908i \(0.693468\pi\)
\(74\) 0 0
\(75\) −13.7836 −1.59160
\(76\) 0 0
\(77\) −1.97586 −0.225170
\(78\) 0 0
\(79\) −2.29222 −0.257895 −0.128948 0.991651i \(-0.541160\pi\)
−0.128948 + 0.991651i \(0.541160\pi\)
\(80\) 0 0
\(81\) −3.99636 −0.444040
\(82\) 0 0
\(83\) 17.1324 1.88053 0.940265 0.340444i \(-0.110578\pi\)
0.940265 + 0.340444i \(0.110578\pi\)
\(84\) 0 0
\(85\) −24.8909 −2.69980
\(86\) 0 0
\(87\) 5.48673 0.588240
\(88\) 0 0
\(89\) 1.86978 0.198196 0.0990981 0.995078i \(-0.468404\pi\)
0.0990981 + 0.995078i \(0.468404\pi\)
\(90\) 0 0
\(91\) 1.72600 0.180934
\(92\) 0 0
\(93\) −10.5662 −1.09567
\(94\) 0 0
\(95\) −3.81141 −0.391042
\(96\) 0 0
\(97\) −9.63757 −0.978547 −0.489273 0.872131i \(-0.662738\pi\)
−0.489273 + 0.872131i \(0.662738\pi\)
\(98\) 0 0
\(99\) 4.83208 0.485642
\(100\) 0 0
\(101\) 5.91748 0.588812 0.294406 0.955680i \(-0.404878\pi\)
0.294406 + 0.955680i \(0.404878\pi\)
\(102\) 0 0
\(103\) −0.480814 −0.0473760 −0.0236880 0.999719i \(-0.507541\pi\)
−0.0236880 + 0.999719i \(0.507541\pi\)
\(104\) 0 0
\(105\) −2.56155 −0.249982
\(106\) 0 0
\(107\) −3.82496 −0.369773 −0.184887 0.982760i \(-0.559192\pi\)
−0.184887 + 0.982760i \(0.559192\pi\)
\(108\) 0 0
\(109\) −17.0866 −1.63660 −0.818300 0.574792i \(-0.805083\pi\)
−0.818300 + 0.574792i \(0.805083\pi\)
\(110\) 0 0
\(111\) 5.67999 0.539121
\(112\) 0 0
\(113\) 13.3194 1.25299 0.626493 0.779427i \(-0.284490\pi\)
0.626493 + 0.779427i \(0.284490\pi\)
\(114\) 0 0
\(115\) −2.92985 −0.273210
\(116\) 0 0
\(117\) −4.22105 −0.390236
\(118\) 0 0
\(119\) −3.10955 −0.285052
\(120\) 0 0
\(121\) 5.39830 0.490754
\(122\) 0 0
\(123\) 2.78726 0.251319
\(124\) 0 0
\(125\) 20.5226 1.83560
\(126\) 0 0
\(127\) −3.18962 −0.283033 −0.141516 0.989936i \(-0.545198\pi\)
−0.141516 + 0.989936i \(0.545198\pi\)
\(128\) 0 0
\(129\) 14.4283 1.27034
\(130\) 0 0
\(131\) 11.5975 1.01328 0.506638 0.862159i \(-0.330888\pi\)
0.506638 + 0.862159i \(0.330888\pi\)
\(132\) 0 0
\(133\) −0.476148 −0.0412873
\(134\) 0 0
\(135\) 22.0140 1.89466
\(136\) 0 0
\(137\) −7.33059 −0.626295 −0.313147 0.949705i \(-0.601383\pi\)
−0.313147 + 0.949705i \(0.601383\pi\)
\(138\) 0 0
\(139\) 13.1927 1.11899 0.559494 0.828834i \(-0.310995\pi\)
0.559494 + 0.828834i \(0.310995\pi\)
\(140\) 0 0
\(141\) 12.5226 1.05459
\(142\) 0 0
\(143\) −14.3247 −1.19789
\(144\) 0 0
\(145\) −15.9428 −1.32398
\(146\) 0 0
\(147\) 9.08905 0.749652
\(148\) 0 0
\(149\) 19.2132 1.57400 0.787002 0.616950i \(-0.211632\pi\)
0.787002 + 0.616950i \(0.211632\pi\)
\(150\) 0 0
\(151\) 3.63637 0.295924 0.147962 0.988993i \(-0.452729\pi\)
0.147962 + 0.988993i \(0.452729\pi\)
\(152\) 0 0
\(153\) 7.60459 0.614795
\(154\) 0 0
\(155\) 30.7023 2.46607
\(156\) 0 0
\(157\) −15.0118 −1.19807 −0.599035 0.800723i \(-0.704449\pi\)
−0.599035 + 0.800723i \(0.704449\pi\)
\(158\) 0 0
\(159\) −14.9511 −1.18570
\(160\) 0 0
\(161\) −0.366017 −0.0288462
\(162\) 0 0
\(163\) 4.77531 0.374031 0.187016 0.982357i \(-0.440118\pi\)
0.187016 + 0.982357i \(0.440118\pi\)
\(164\) 0 0
\(165\) 21.2592 1.65503
\(166\) 0 0
\(167\) 3.94163 0.305012 0.152506 0.988303i \(-0.451266\pi\)
0.152506 + 0.988303i \(0.451266\pi\)
\(168\) 0 0
\(169\) −0.486734 −0.0374411
\(170\) 0 0
\(171\) 1.16445 0.0890477
\(172\) 0 0
\(173\) −24.0607 −1.82930 −0.914650 0.404247i \(-0.867534\pi\)
−0.914650 + 0.404247i \(0.867534\pi\)
\(174\) 0 0
\(175\) 5.00347 0.378227
\(176\) 0 0
\(177\) −4.00627 −0.301130
\(178\) 0 0
\(179\) −17.1745 −1.28368 −0.641839 0.766839i \(-0.721828\pi\)
−0.641839 + 0.766839i \(0.721828\pi\)
\(180\) 0 0
\(181\) −7.28875 −0.541769 −0.270884 0.962612i \(-0.587316\pi\)
−0.270884 + 0.962612i \(0.587316\pi\)
\(182\) 0 0
\(183\) 10.1314 0.748936
\(184\) 0 0
\(185\) −16.5044 −1.21343
\(186\) 0 0
\(187\) 25.8072 1.88721
\(188\) 0 0
\(189\) 2.75015 0.200044
\(190\) 0 0
\(191\) 6.55038 0.473969 0.236985 0.971513i \(-0.423841\pi\)
0.236985 + 0.971513i \(0.423841\pi\)
\(192\) 0 0
\(193\) 17.5467 1.26304 0.631521 0.775359i \(-0.282431\pi\)
0.631521 + 0.775359i \(0.282431\pi\)
\(194\) 0 0
\(195\) −18.5709 −1.32989
\(196\) 0 0
\(197\) −14.6051 −1.04057 −0.520286 0.853992i \(-0.674175\pi\)
−0.520286 + 0.853992i \(0.674175\pi\)
\(198\) 0 0
\(199\) 4.64162 0.329036 0.164518 0.986374i \(-0.447393\pi\)
0.164518 + 0.986374i \(0.447393\pi\)
\(200\) 0 0
\(201\) 4.72075 0.332976
\(202\) 0 0
\(203\) −1.99169 −0.139789
\(204\) 0 0
\(205\) −8.09896 −0.565656
\(206\) 0 0
\(207\) 0.895118 0.0622150
\(208\) 0 0
\(209\) 3.95171 0.273346
\(210\) 0 0
\(211\) −15.7554 −1.08465 −0.542324 0.840169i \(-0.682455\pi\)
−0.542324 + 0.840169i \(0.682455\pi\)
\(212\) 0 0
\(213\) 18.9994 1.30182
\(214\) 0 0
\(215\) −41.9244 −2.85922
\(216\) 0 0
\(217\) 3.83555 0.260374
\(218\) 0 0
\(219\) 13.1166 0.886338
\(220\) 0 0
\(221\) −22.5438 −1.51646
\(222\) 0 0
\(223\) −19.8791 −1.33120 −0.665602 0.746307i \(-0.731825\pi\)
−0.665602 + 0.746307i \(0.731825\pi\)
\(224\) 0 0
\(225\) −12.2363 −0.815753
\(226\) 0 0
\(227\) −27.7566 −1.84227 −0.921136 0.389242i \(-0.872737\pi\)
−0.921136 + 0.389242i \(0.872737\pi\)
\(228\) 0 0
\(229\) −17.6723 −1.16782 −0.583909 0.811819i \(-0.698478\pi\)
−0.583909 + 0.811819i \(0.698478\pi\)
\(230\) 0 0
\(231\) 2.65585 0.174742
\(232\) 0 0
\(233\) −1.67230 −0.109556 −0.0547779 0.998499i \(-0.517445\pi\)
−0.0547779 + 0.998499i \(0.517445\pi\)
\(234\) 0 0
\(235\) −36.3870 −2.37362
\(236\) 0 0
\(237\) 3.08109 0.200138
\(238\) 0 0
\(239\) 24.0925 1.55841 0.779206 0.626768i \(-0.215623\pi\)
0.779206 + 0.626768i \(0.215623\pi\)
\(240\) 0 0
\(241\) −18.2257 −1.17402 −0.587011 0.809579i \(-0.699695\pi\)
−0.587011 + 0.809579i \(0.699695\pi\)
\(242\) 0 0
\(243\) −11.5374 −0.740125
\(244\) 0 0
\(245\) −26.4101 −1.68728
\(246\) 0 0
\(247\) −3.45200 −0.219646
\(248\) 0 0
\(249\) −23.0286 −1.45938
\(250\) 0 0
\(251\) 1.21740 0.0768417 0.0384209 0.999262i \(-0.487767\pi\)
0.0384209 + 0.999262i \(0.487767\pi\)
\(252\) 0 0
\(253\) 3.03770 0.190979
\(254\) 0 0
\(255\) 33.4571 2.09517
\(256\) 0 0
\(257\) 28.7806 1.79529 0.897644 0.440722i \(-0.145277\pi\)
0.897644 + 0.440722i \(0.145277\pi\)
\(258\) 0 0
\(259\) −2.06184 −0.128117
\(260\) 0 0
\(261\) 4.87080 0.301495
\(262\) 0 0
\(263\) 4.35407 0.268483 0.134242 0.990949i \(-0.457140\pi\)
0.134242 + 0.990949i \(0.457140\pi\)
\(264\) 0 0
\(265\) 43.4436 2.66872
\(266\) 0 0
\(267\) −2.51327 −0.153809
\(268\) 0 0
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) 19.6940 1.19632 0.598162 0.801375i \(-0.295898\pi\)
0.598162 + 0.801375i \(0.295898\pi\)
\(272\) 0 0
\(273\) −2.32001 −0.140413
\(274\) 0 0
\(275\) −41.5255 −2.50408
\(276\) 0 0
\(277\) −1.31009 −0.0787158 −0.0393579 0.999225i \(-0.512531\pi\)
−0.0393579 + 0.999225i \(0.512531\pi\)
\(278\) 0 0
\(279\) −9.38007 −0.561570
\(280\) 0 0
\(281\) 7.94749 0.474107 0.237054 0.971497i \(-0.423818\pi\)
0.237054 + 0.971497i \(0.423818\pi\)
\(282\) 0 0
\(283\) −20.7544 −1.23372 −0.616861 0.787072i \(-0.711596\pi\)
−0.616861 + 0.787072i \(0.711596\pi\)
\(284\) 0 0
\(285\) 5.12311 0.303467
\(286\) 0 0
\(287\) −1.01178 −0.0597235
\(288\) 0 0
\(289\) 23.6146 1.38910
\(290\) 0 0
\(291\) 12.9543 0.759397
\(292\) 0 0
\(293\) −10.9994 −0.642593 −0.321296 0.946979i \(-0.604119\pi\)
−0.321296 + 0.946979i \(0.604119\pi\)
\(294\) 0 0
\(295\) 11.6410 0.677767
\(296\) 0 0
\(297\) −22.8244 −1.32440
\(298\) 0 0
\(299\) −2.65357 −0.153460
\(300\) 0 0
\(301\) −5.23749 −0.301884
\(302\) 0 0
\(303\) −7.95399 −0.456945
\(304\) 0 0
\(305\) −29.4389 −1.68567
\(306\) 0 0
\(307\) −15.1961 −0.867290 −0.433645 0.901084i \(-0.642773\pi\)
−0.433645 + 0.901084i \(0.642773\pi\)
\(308\) 0 0
\(309\) 0.646287 0.0367660
\(310\) 0 0
\(311\) −9.02476 −0.511747 −0.255873 0.966710i \(-0.582363\pi\)
−0.255873 + 0.966710i \(0.582363\pi\)
\(312\) 0 0
\(313\) 34.3481 1.94147 0.970734 0.240159i \(-0.0771995\pi\)
0.970734 + 0.240159i \(0.0771995\pi\)
\(314\) 0 0
\(315\) −2.27400 −0.128125
\(316\) 0 0
\(317\) 20.5386 1.15356 0.576781 0.816898i \(-0.304308\pi\)
0.576781 + 0.816898i \(0.304308\pi\)
\(318\) 0 0
\(319\) 16.5297 0.925486
\(320\) 0 0
\(321\) 5.14133 0.286961
\(322\) 0 0
\(323\) 6.21910 0.346040
\(324\) 0 0
\(325\) 36.2744 2.01214
\(326\) 0 0
\(327\) 22.9670 1.27008
\(328\) 0 0
\(329\) −4.54572 −0.250614
\(330\) 0 0
\(331\) 8.30867 0.456686 0.228343 0.973581i \(-0.426669\pi\)
0.228343 + 0.973581i \(0.426669\pi\)
\(332\) 0 0
\(333\) 5.04237 0.276320
\(334\) 0 0
\(335\) −13.7171 −0.749446
\(336\) 0 0
\(337\) −17.9588 −0.978276 −0.489138 0.872206i \(-0.662689\pi\)
−0.489138 + 0.872206i \(0.662689\pi\)
\(338\) 0 0
\(339\) −17.9033 −0.972375
\(340\) 0 0
\(341\) −31.8325 −1.72383
\(342\) 0 0
\(343\) −6.71483 −0.362567
\(344\) 0 0
\(345\) 3.93816 0.212023
\(346\) 0 0
\(347\) −6.69769 −0.359551 −0.179775 0.983708i \(-0.557537\pi\)
−0.179775 + 0.983708i \(0.557537\pi\)
\(348\) 0 0
\(349\) 0.974251 0.0521505 0.0260752 0.999660i \(-0.491699\pi\)
0.0260752 + 0.999660i \(0.491699\pi\)
\(350\) 0 0
\(351\) 19.9382 1.06422
\(352\) 0 0
\(353\) 15.8928 0.845886 0.422943 0.906156i \(-0.360997\pi\)
0.422943 + 0.906156i \(0.360997\pi\)
\(354\) 0 0
\(355\) −55.2067 −2.93007
\(356\) 0 0
\(357\) 4.17970 0.221213
\(358\) 0 0
\(359\) 8.66535 0.457340 0.228670 0.973504i \(-0.426562\pi\)
0.228670 + 0.973504i \(0.426562\pi\)
\(360\) 0 0
\(361\) −18.0477 −0.949879
\(362\) 0 0
\(363\) −7.25613 −0.380848
\(364\) 0 0
\(365\) −38.1130 −1.99492
\(366\) 0 0
\(367\) −7.50802 −0.391915 −0.195958 0.980612i \(-0.562782\pi\)
−0.195958 + 0.980612i \(0.562782\pi\)
\(368\) 0 0
\(369\) 2.47437 0.128811
\(370\) 0 0
\(371\) 5.42728 0.281770
\(372\) 0 0
\(373\) 2.14911 0.111277 0.0556385 0.998451i \(-0.482281\pi\)
0.0556385 + 0.998451i \(0.482281\pi\)
\(374\) 0 0
\(375\) −27.5855 −1.42451
\(376\) 0 0
\(377\) −14.4395 −0.743671
\(378\) 0 0
\(379\) −7.71644 −0.396367 −0.198183 0.980165i \(-0.563504\pi\)
−0.198183 + 0.980165i \(0.563504\pi\)
\(380\) 0 0
\(381\) 4.28732 0.219646
\(382\) 0 0
\(383\) −1.88104 −0.0961165 −0.0480582 0.998845i \(-0.515303\pi\)
−0.0480582 + 0.998845i \(0.515303\pi\)
\(384\) 0 0
\(385\) −7.71711 −0.393300
\(386\) 0 0
\(387\) 12.8086 0.651098
\(388\) 0 0
\(389\) −10.7025 −0.542640 −0.271320 0.962489i \(-0.587460\pi\)
−0.271320 + 0.962489i \(0.587460\pi\)
\(390\) 0 0
\(391\) 4.78065 0.241768
\(392\) 0 0
\(393\) −15.5888 −0.786349
\(394\) 0 0
\(395\) −8.95274 −0.450461
\(396\) 0 0
\(397\) 3.84774 0.193113 0.0965563 0.995328i \(-0.469217\pi\)
0.0965563 + 0.995328i \(0.469217\pi\)
\(398\) 0 0
\(399\) 0.640015 0.0320408
\(400\) 0 0
\(401\) −0.717694 −0.0358399 −0.0179200 0.999839i \(-0.505704\pi\)
−0.0179200 + 0.999839i \(0.505704\pi\)
\(402\) 0 0
\(403\) 27.8072 1.38517
\(404\) 0 0
\(405\) −15.6086 −0.775597
\(406\) 0 0
\(407\) 17.1119 0.848207
\(408\) 0 0
\(409\) −11.7906 −0.583006 −0.291503 0.956570i \(-0.594155\pi\)
−0.291503 + 0.956570i \(0.594155\pi\)
\(410\) 0 0
\(411\) 9.85342 0.486033
\(412\) 0 0
\(413\) 1.45428 0.0715605
\(414\) 0 0
\(415\) 66.9142 3.28469
\(416\) 0 0
\(417\) −17.7329 −0.868386
\(418\) 0 0
\(419\) 7.07076 0.345429 0.172715 0.984972i \(-0.444746\pi\)
0.172715 + 0.984972i \(0.444746\pi\)
\(420\) 0 0
\(421\) −4.96469 −0.241964 −0.120982 0.992655i \(-0.538604\pi\)
−0.120982 + 0.992655i \(0.538604\pi\)
\(422\) 0 0
\(423\) 11.1168 0.540519
\(424\) 0 0
\(425\) −65.3516 −3.17002
\(426\) 0 0
\(427\) −3.67772 −0.177977
\(428\) 0 0
\(429\) 19.2545 0.929617
\(430\) 0 0
\(431\) −25.6140 −1.23378 −0.616892 0.787048i \(-0.711609\pi\)
−0.616892 + 0.787048i \(0.711609\pi\)
\(432\) 0 0
\(433\) −20.5767 −0.988855 −0.494428 0.869219i \(-0.664622\pi\)
−0.494428 + 0.869219i \(0.664622\pi\)
\(434\) 0 0
\(435\) 21.4296 1.02747
\(436\) 0 0
\(437\) 0.732035 0.0350180
\(438\) 0 0
\(439\) −15.6900 −0.748843 −0.374421 0.927259i \(-0.622159\pi\)
−0.374421 + 0.927259i \(0.622159\pi\)
\(440\) 0 0
\(441\) 8.06873 0.384225
\(442\) 0 0
\(443\) −29.0018 −1.37792 −0.688959 0.724801i \(-0.741932\pi\)
−0.688959 + 0.724801i \(0.741932\pi\)
\(444\) 0 0
\(445\) 7.30281 0.346186
\(446\) 0 0
\(447\) −25.8254 −1.22150
\(448\) 0 0
\(449\) 18.1978 0.858805 0.429403 0.903113i \(-0.358724\pi\)
0.429403 + 0.903113i \(0.358724\pi\)
\(450\) 0 0
\(451\) 8.39710 0.395404
\(452\) 0 0
\(453\) −4.88783 −0.229650
\(454\) 0 0
\(455\) 6.74125 0.316035
\(456\) 0 0
\(457\) 32.1933 1.50594 0.752969 0.658056i \(-0.228621\pi\)
0.752969 + 0.658056i \(0.228621\pi\)
\(458\) 0 0
\(459\) −35.9204 −1.67662
\(460\) 0 0
\(461\) −26.9152 −1.25357 −0.626783 0.779194i \(-0.715629\pi\)
−0.626783 + 0.779194i \(0.715629\pi\)
\(462\) 0 0
\(463\) 24.2349 1.12629 0.563145 0.826358i \(-0.309591\pi\)
0.563145 + 0.826358i \(0.309591\pi\)
\(464\) 0 0
\(465\) −41.2685 −1.91378
\(466\) 0 0
\(467\) 17.7628 0.821963 0.410982 0.911644i \(-0.365186\pi\)
0.410982 + 0.911644i \(0.365186\pi\)
\(468\) 0 0
\(469\) −1.71364 −0.0791285
\(470\) 0 0
\(471\) 20.1781 0.929758
\(472\) 0 0
\(473\) 43.4677 1.99865
\(474\) 0 0
\(475\) −10.0069 −0.459150
\(476\) 0 0
\(477\) −13.2727 −0.607717
\(478\) 0 0
\(479\) −11.4930 −0.525130 −0.262565 0.964914i \(-0.584568\pi\)
−0.262565 + 0.964914i \(0.584568\pi\)
\(480\) 0 0
\(481\) −14.9481 −0.681573
\(482\) 0 0
\(483\) 0.491983 0.0223860
\(484\) 0 0
\(485\) −37.6415 −1.70921
\(486\) 0 0
\(487\) −5.85514 −0.265322 −0.132661 0.991161i \(-0.542352\pi\)
−0.132661 + 0.991161i \(0.542352\pi\)
\(488\) 0 0
\(489\) −6.41874 −0.290265
\(490\) 0 0
\(491\) −18.6544 −0.841862 −0.420931 0.907093i \(-0.638297\pi\)
−0.420931 + 0.907093i \(0.638297\pi\)
\(492\) 0 0
\(493\) 26.0140 1.17161
\(494\) 0 0
\(495\) 18.8727 0.848263
\(496\) 0 0
\(497\) −6.89681 −0.309364
\(498\) 0 0
\(499\) −35.1119 −1.57183 −0.785913 0.618337i \(-0.787807\pi\)
−0.785913 + 0.618337i \(0.787807\pi\)
\(500\) 0 0
\(501\) −5.29814 −0.236703
\(502\) 0 0
\(503\) −29.7342 −1.32578 −0.662892 0.748715i \(-0.730671\pi\)
−0.662892 + 0.748715i \(0.730671\pi\)
\(504\) 0 0
\(505\) 23.1119 1.02847
\(506\) 0 0
\(507\) 0.654243 0.0290560
\(508\) 0 0
\(509\) 30.1456 1.33618 0.668090 0.744081i \(-0.267112\pi\)
0.668090 + 0.744081i \(0.267112\pi\)
\(510\) 0 0
\(511\) −4.76134 −0.210629
\(512\) 0 0
\(513\) −5.50029 −0.242844
\(514\) 0 0
\(515\) −1.87792 −0.0827509
\(516\) 0 0
\(517\) 37.7264 1.65921
\(518\) 0 0
\(519\) 32.3412 1.41962
\(520\) 0 0
\(521\) 37.9804 1.66395 0.831975 0.554813i \(-0.187210\pi\)
0.831975 + 0.554813i \(0.187210\pi\)
\(522\) 0 0
\(523\) −10.1012 −0.441696 −0.220848 0.975308i \(-0.570883\pi\)
−0.220848 + 0.975308i \(0.570883\pi\)
\(524\) 0 0
\(525\) −6.72542 −0.293521
\(526\) 0 0
\(527\) −50.0971 −2.18227
\(528\) 0 0
\(529\) −22.4373 −0.975534
\(530\) 0 0
\(531\) −3.55653 −0.154340
\(532\) 0 0
\(533\) −7.33526 −0.317725
\(534\) 0 0
\(535\) −14.9392 −0.645877
\(536\) 0 0
\(537\) 23.0851 0.996194
\(538\) 0 0
\(539\) 27.3823 1.17944
\(540\) 0 0
\(541\) 1.06610 0.0458352 0.0229176 0.999737i \(-0.492704\pi\)
0.0229176 + 0.999737i \(0.492704\pi\)
\(542\) 0 0
\(543\) 9.79718 0.420437
\(544\) 0 0
\(545\) −66.7352 −2.85862
\(546\) 0 0
\(547\) −8.62634 −0.368836 −0.184418 0.982848i \(-0.559040\pi\)
−0.184418 + 0.982848i \(0.559040\pi\)
\(548\) 0 0
\(549\) 8.99408 0.383858
\(550\) 0 0
\(551\) 3.98338 0.169698
\(552\) 0 0
\(553\) −1.11844 −0.0475609
\(554\) 0 0
\(555\) 22.1844 0.941674
\(556\) 0 0
\(557\) 39.3859 1.66884 0.834418 0.551132i \(-0.185804\pi\)
0.834418 + 0.551132i \(0.185804\pi\)
\(558\) 0 0
\(559\) −37.9710 −1.60600
\(560\) 0 0
\(561\) −34.6887 −1.46456
\(562\) 0 0
\(563\) 29.8436 1.25776 0.628879 0.777503i \(-0.283514\pi\)
0.628879 + 0.777503i \(0.283514\pi\)
\(564\) 0 0
\(565\) 52.0217 2.18857
\(566\) 0 0
\(567\) −1.94994 −0.0818896
\(568\) 0 0
\(569\) 18.1766 0.762004 0.381002 0.924574i \(-0.375579\pi\)
0.381002 + 0.924574i \(0.375579\pi\)
\(570\) 0 0
\(571\) 34.4465 1.44154 0.720771 0.693173i \(-0.243788\pi\)
0.720771 + 0.693173i \(0.243788\pi\)
\(572\) 0 0
\(573\) −8.80470 −0.367822
\(574\) 0 0
\(575\) −7.69238 −0.320795
\(576\) 0 0
\(577\) 6.04440 0.251632 0.125816 0.992054i \(-0.459845\pi\)
0.125816 + 0.992054i \(0.459845\pi\)
\(578\) 0 0
\(579\) −23.5855 −0.980178
\(580\) 0 0
\(581\) 8.35940 0.346806
\(582\) 0 0
\(583\) −45.0428 −1.86548
\(584\) 0 0
\(585\) −16.4862 −0.681618
\(586\) 0 0
\(587\) 38.6176 1.59392 0.796959 0.604034i \(-0.206441\pi\)
0.796959 + 0.604034i \(0.206441\pi\)
\(588\) 0 0
\(589\) −7.67110 −0.316082
\(590\) 0 0
\(591\) 19.6315 0.807531
\(592\) 0 0
\(593\) −4.06998 −0.167134 −0.0835671 0.996502i \(-0.526631\pi\)
−0.0835671 + 0.996502i \(0.526631\pi\)
\(594\) 0 0
\(595\) −12.1450 −0.497895
\(596\) 0 0
\(597\) −6.23904 −0.255347
\(598\) 0 0
\(599\) 18.2628 0.746199 0.373099 0.927791i \(-0.378295\pi\)
0.373099 + 0.927791i \(0.378295\pi\)
\(600\) 0 0
\(601\) 31.6805 1.29228 0.646138 0.763220i \(-0.276383\pi\)
0.646138 + 0.763220i \(0.276383\pi\)
\(602\) 0 0
\(603\) 4.19081 0.170663
\(604\) 0 0
\(605\) 21.0842 0.857193
\(606\) 0 0
\(607\) −25.5355 −1.03645 −0.518226 0.855244i \(-0.673407\pi\)
−0.518226 + 0.855244i \(0.673407\pi\)
\(608\) 0 0
\(609\) 2.67713 0.108483
\(610\) 0 0
\(611\) −32.9558 −1.33325
\(612\) 0 0
\(613\) −17.6816 −0.714154 −0.357077 0.934075i \(-0.616227\pi\)
−0.357077 + 0.934075i \(0.616227\pi\)
\(614\) 0 0
\(615\) 10.8862 0.438975
\(616\) 0 0
\(617\) 32.8371 1.32197 0.660986 0.750398i \(-0.270138\pi\)
0.660986 + 0.750398i \(0.270138\pi\)
\(618\) 0 0
\(619\) −10.5824 −0.425342 −0.212671 0.977124i \(-0.568216\pi\)
−0.212671 + 0.977124i \(0.568216\pi\)
\(620\) 0 0
\(621\) −4.22810 −0.169668
\(622\) 0 0
\(623\) 0.912319 0.0365513
\(624\) 0 0
\(625\) 28.8826 1.15530
\(626\) 0 0
\(627\) −5.31170 −0.212129
\(628\) 0 0
\(629\) 26.9303 1.07378
\(630\) 0 0
\(631\) 0.902404 0.0359241 0.0179621 0.999839i \(-0.494282\pi\)
0.0179621 + 0.999839i \(0.494282\pi\)
\(632\) 0 0
\(633\) 21.1777 0.841737
\(634\) 0 0
\(635\) −12.4577 −0.494368
\(636\) 0 0
\(637\) −23.9197 −0.947733
\(638\) 0 0
\(639\) 16.8666 0.667231
\(640\) 0 0
\(641\) −19.2444 −0.760109 −0.380055 0.924964i \(-0.624095\pi\)
−0.380055 + 0.924964i \(0.624095\pi\)
\(642\) 0 0
\(643\) −34.2804 −1.35189 −0.675944 0.736953i \(-0.736264\pi\)
−0.675944 + 0.736953i \(0.736264\pi\)
\(644\) 0 0
\(645\) 56.3527 2.21888
\(646\) 0 0
\(647\) 30.2029 1.18740 0.593698 0.804688i \(-0.297667\pi\)
0.593698 + 0.804688i \(0.297667\pi\)
\(648\) 0 0
\(649\) −12.0696 −0.473772
\(650\) 0 0
\(651\) −5.15556 −0.202062
\(652\) 0 0
\(653\) −21.5877 −0.844794 −0.422397 0.906411i \(-0.638811\pi\)
−0.422397 + 0.906411i \(0.638811\pi\)
\(654\) 0 0
\(655\) 45.2963 1.76987
\(656\) 0 0
\(657\) 11.6442 0.454282
\(658\) 0 0
\(659\) 21.3740 0.832612 0.416306 0.909225i \(-0.363324\pi\)
0.416306 + 0.909225i \(0.363324\pi\)
\(660\) 0 0
\(661\) −19.7195 −0.767000 −0.383500 0.923541i \(-0.625281\pi\)
−0.383500 + 0.923541i \(0.625281\pi\)
\(662\) 0 0
\(663\) 30.3022 1.17684
\(664\) 0 0
\(665\) −1.85969 −0.0721158
\(666\) 0 0
\(667\) 3.06204 0.118563
\(668\) 0 0
\(669\) 26.7205 1.03308
\(670\) 0 0
\(671\) 30.5226 1.17831
\(672\) 0 0
\(673\) −13.2275 −0.509883 −0.254942 0.966956i \(-0.582056\pi\)
−0.254942 + 0.966956i \(0.582056\pi\)
\(674\) 0 0
\(675\) 57.7983 2.22466
\(676\) 0 0
\(677\) −12.7629 −0.490520 −0.245260 0.969457i \(-0.578873\pi\)
−0.245260 + 0.969457i \(0.578873\pi\)
\(678\) 0 0
\(679\) −4.70244 −0.180463
\(680\) 0 0
\(681\) 37.3091 1.42969
\(682\) 0 0
\(683\) 3.12345 0.119515 0.0597577 0.998213i \(-0.480967\pi\)
0.0597577 + 0.998213i \(0.480967\pi\)
\(684\) 0 0
\(685\) −28.6311 −1.09394
\(686\) 0 0
\(687\) 23.7542 0.906280
\(688\) 0 0
\(689\) 39.3470 1.49900
\(690\) 0 0
\(691\) −25.3081 −0.962767 −0.481384 0.876510i \(-0.659866\pi\)
−0.481384 + 0.876510i \(0.659866\pi\)
\(692\) 0 0
\(693\) 2.35771 0.0895619
\(694\) 0 0
\(695\) 51.5267 1.95452
\(696\) 0 0
\(697\) 13.2151 0.500559
\(698\) 0 0
\(699\) 2.24782 0.0850202
\(700\) 0 0
\(701\) −15.5107 −0.585831 −0.292916 0.956138i \(-0.594626\pi\)
−0.292916 + 0.956138i \(0.594626\pi\)
\(702\) 0 0
\(703\) 4.12369 0.155528
\(704\) 0 0
\(705\) 48.9096 1.84204
\(706\) 0 0
\(707\) 2.88731 0.108588
\(708\) 0 0
\(709\) 3.24435 0.121844 0.0609220 0.998143i \(-0.480596\pi\)
0.0609220 + 0.998143i \(0.480596\pi\)
\(710\) 0 0
\(711\) 2.73521 0.102579
\(712\) 0 0
\(713\) −5.89681 −0.220837
\(714\) 0 0
\(715\) −55.9479 −2.09233
\(716\) 0 0
\(717\) −32.3839 −1.20940
\(718\) 0 0
\(719\) −28.5289 −1.06395 −0.531974 0.846761i \(-0.678549\pi\)
−0.531974 + 0.846761i \(0.678549\pi\)
\(720\) 0 0
\(721\) −0.234603 −0.00873707
\(722\) 0 0
\(723\) 24.4981 0.911094
\(724\) 0 0
\(725\) −41.8583 −1.55458
\(726\) 0 0
\(727\) −28.4941 −1.05679 −0.528395 0.848999i \(-0.677206\pi\)
−0.528395 + 0.848999i \(0.677206\pi\)
\(728\) 0 0
\(729\) 27.4971 1.01841
\(730\) 0 0
\(731\) 68.4082 2.53017
\(732\) 0 0
\(733\) 31.1617 1.15098 0.575491 0.817808i \(-0.304811\pi\)
0.575491 + 0.817808i \(0.304811\pi\)
\(734\) 0 0
\(735\) 35.4991 1.30940
\(736\) 0 0
\(737\) 14.2221 0.523877
\(738\) 0 0
\(739\) −22.7409 −0.836538 −0.418269 0.908323i \(-0.637363\pi\)
−0.418269 + 0.908323i \(0.637363\pi\)
\(740\) 0 0
\(741\) 4.64001 0.170455
\(742\) 0 0
\(743\) −33.4594 −1.22751 −0.613753 0.789498i \(-0.710341\pi\)
−0.613753 + 0.789498i \(0.710341\pi\)
\(744\) 0 0
\(745\) 75.0410 2.74929
\(746\) 0 0
\(747\) −20.4434 −0.747986
\(748\) 0 0
\(749\) −1.86631 −0.0681934
\(750\) 0 0
\(751\) 48.0493 1.75334 0.876672 0.481089i \(-0.159759\pi\)
0.876672 + 0.481089i \(0.159759\pi\)
\(752\) 0 0
\(753\) −1.63637 −0.0596327
\(754\) 0 0
\(755\) 14.2026 0.516885
\(756\) 0 0
\(757\) 52.5319 1.90930 0.954652 0.297725i \(-0.0962279\pi\)
0.954652 + 0.297725i \(0.0962279\pi\)
\(758\) 0 0
\(759\) −4.08313 −0.148208
\(760\) 0 0
\(761\) 50.4604 1.82919 0.914594 0.404373i \(-0.132510\pi\)
0.914594 + 0.404373i \(0.132510\pi\)
\(762\) 0 0
\(763\) −8.33704 −0.301821
\(764\) 0 0
\(765\) 29.7013 1.07385
\(766\) 0 0
\(767\) 10.5433 0.380698
\(768\) 0 0
\(769\) −38.6684 −1.39442 −0.697209 0.716867i \(-0.745575\pi\)
−0.697209 + 0.716867i \(0.745575\pi\)
\(770\) 0 0
\(771\) −38.6855 −1.39323
\(772\) 0 0
\(773\) −27.8089 −1.00022 −0.500108 0.865963i \(-0.666706\pi\)
−0.500108 + 0.865963i \(0.666706\pi\)
\(774\) 0 0
\(775\) 80.6096 2.89558
\(776\) 0 0
\(777\) 2.77143 0.0994245
\(778\) 0 0
\(779\) 2.02356 0.0725016
\(780\) 0 0
\(781\) 57.2390 2.04817
\(782\) 0 0
\(783\) −23.0073 −0.822214
\(784\) 0 0
\(785\) −58.6316 −2.09265
\(786\) 0 0
\(787\) 35.0440 1.24918 0.624592 0.780951i \(-0.285265\pi\)
0.624592 + 0.780951i \(0.285265\pi\)
\(788\) 0 0
\(789\) −5.85252 −0.208355
\(790\) 0 0
\(791\) 6.49893 0.231075
\(792\) 0 0
\(793\) −26.6629 −0.946827
\(794\) 0 0
\(795\) −58.3947 −2.07105
\(796\) 0 0
\(797\) 44.3028 1.56929 0.784643 0.619947i \(-0.212846\pi\)
0.784643 + 0.619947i \(0.212846\pi\)
\(798\) 0 0
\(799\) 59.3728 2.10046
\(800\) 0 0
\(801\) −2.23113 −0.0788332
\(802\) 0 0
\(803\) 39.5160 1.39449
\(804\) 0 0
\(805\) −1.42956 −0.0503852
\(806\) 0 0
\(807\) −1.34415 −0.0473163
\(808\) 0 0
\(809\) 17.8666 0.628157 0.314079 0.949397i \(-0.398304\pi\)
0.314079 + 0.949397i \(0.398304\pi\)
\(810\) 0 0
\(811\) −7.94755 −0.279076 −0.139538 0.990217i \(-0.544562\pi\)
−0.139538 + 0.990217i \(0.544562\pi\)
\(812\) 0 0
\(813\) −26.4717 −0.928403
\(814\) 0 0
\(815\) 18.6510 0.653314
\(816\) 0 0
\(817\) 10.4750 0.366473
\(818\) 0 0
\(819\) −2.05957 −0.0719671
\(820\) 0 0
\(821\) 14.0212 0.489342 0.244671 0.969606i \(-0.421320\pi\)
0.244671 + 0.969606i \(0.421320\pi\)
\(822\) 0 0
\(823\) 56.0461 1.95364 0.976822 0.214052i \(-0.0686663\pi\)
0.976822 + 0.214052i \(0.0686663\pi\)
\(824\) 0 0
\(825\) 55.8165 1.94328
\(826\) 0 0
\(827\) −28.6027 −0.994612 −0.497306 0.867575i \(-0.665677\pi\)
−0.497306 + 0.867575i \(0.665677\pi\)
\(828\) 0 0
\(829\) 7.08499 0.246072 0.123036 0.992402i \(-0.460737\pi\)
0.123036 + 0.992402i \(0.460737\pi\)
\(830\) 0 0
\(831\) 1.76096 0.0610871
\(832\) 0 0
\(833\) 43.0935 1.49310
\(834\) 0 0
\(835\) 15.3948 0.532760
\(836\) 0 0
\(837\) 44.3069 1.53147
\(838\) 0 0
\(839\) 16.9860 0.586423 0.293211 0.956048i \(-0.405276\pi\)
0.293211 + 0.956048i \(0.405276\pi\)
\(840\) 0 0
\(841\) −12.3378 −0.425442
\(842\) 0 0
\(843\) −10.6826 −0.367929
\(844\) 0 0
\(845\) −1.90104 −0.0653977
\(846\) 0 0
\(847\) 2.63398 0.0905047
\(848\) 0 0
\(849\) 27.8970 0.957424
\(850\) 0 0
\(851\) 3.16990 0.108663
\(852\) 0 0
\(853\) −25.5249 −0.873957 −0.436979 0.899472i \(-0.643951\pi\)
−0.436979 + 0.899472i \(0.643951\pi\)
\(854\) 0 0
\(855\) 4.54800 0.155538
\(856\) 0 0
\(857\) −47.9302 −1.63726 −0.818632 0.574318i \(-0.805267\pi\)
−0.818632 + 0.574318i \(0.805267\pi\)
\(858\) 0 0
\(859\) 6.23647 0.212786 0.106393 0.994324i \(-0.466070\pi\)
0.106393 + 0.994324i \(0.466070\pi\)
\(860\) 0 0
\(861\) 1.35999 0.0463482
\(862\) 0 0
\(863\) −8.46337 −0.288097 −0.144048 0.989571i \(-0.546012\pi\)
−0.144048 + 0.989571i \(0.546012\pi\)
\(864\) 0 0
\(865\) −93.9739 −3.19521
\(866\) 0 0
\(867\) −31.7416 −1.07800
\(868\) 0 0
\(869\) 9.28231 0.314881
\(870\) 0 0
\(871\) −12.4236 −0.420959
\(872\) 0 0
\(873\) 11.5001 0.389220
\(874\) 0 0
\(875\) 10.0136 0.338520
\(876\) 0 0
\(877\) 42.1172 1.42220 0.711098 0.703093i \(-0.248198\pi\)
0.711098 + 0.703093i \(0.248198\pi\)
\(878\) 0 0
\(879\) 14.7849 0.498681
\(880\) 0 0
\(881\) −35.0575 −1.18112 −0.590558 0.806995i \(-0.701092\pi\)
−0.590558 + 0.806995i \(0.701092\pi\)
\(882\) 0 0
\(883\) −49.3854 −1.66195 −0.830976 0.556308i \(-0.812217\pi\)
−0.830976 + 0.556308i \(0.812217\pi\)
\(884\) 0 0
\(885\) −15.6473 −0.525979
\(886\) 0 0
\(887\) 20.5875 0.691261 0.345630 0.938371i \(-0.387665\pi\)
0.345630 + 0.938371i \(0.387665\pi\)
\(888\) 0 0
\(889\) −1.55630 −0.0521968
\(890\) 0 0
\(891\) 16.1832 0.542157
\(892\) 0 0
\(893\) 9.09144 0.304233
\(894\) 0 0
\(895\) −67.0783 −2.24218
\(896\) 0 0
\(897\) 3.56680 0.119092
\(898\) 0 0
\(899\) −32.0876 −1.07018
\(900\) 0 0
\(901\) −70.8871 −2.36159
\(902\) 0 0
\(903\) 7.03998 0.234276
\(904\) 0 0
\(905\) −28.4677 −0.946298
\(906\) 0 0
\(907\) 57.1062 1.89618 0.948090 0.318003i \(-0.103012\pi\)
0.948090 + 0.318003i \(0.103012\pi\)
\(908\) 0 0
\(909\) −7.06109 −0.234202
\(910\) 0 0
\(911\) −1.11278 −0.0368680 −0.0184340 0.999830i \(-0.505868\pi\)
−0.0184340 + 0.999830i \(0.505868\pi\)
\(912\) 0 0
\(913\) −69.3775 −2.29606
\(914\) 0 0
\(915\) 39.5703 1.30815
\(916\) 0 0
\(917\) 5.65874 0.186868
\(918\) 0 0
\(919\) 24.6902 0.814453 0.407227 0.913327i \(-0.366496\pi\)
0.407227 + 0.913327i \(0.366496\pi\)
\(920\) 0 0
\(921\) 20.4259 0.673057
\(922\) 0 0
\(923\) −50.0009 −1.64580
\(924\) 0 0
\(925\) −43.3326 −1.42477
\(926\) 0 0
\(927\) 0.573736 0.0188440
\(928\) 0 0
\(929\) 53.4317 1.75304 0.876519 0.481368i \(-0.159860\pi\)
0.876519 + 0.481368i \(0.159860\pi\)
\(930\) 0 0
\(931\) 6.59867 0.216263
\(932\) 0 0
\(933\) 12.1306 0.397139
\(934\) 0 0
\(935\) 100.795 3.29636
\(936\) 0 0
\(937\) −8.01583 −0.261866 −0.130933 0.991391i \(-0.541797\pi\)
−0.130933 + 0.991391i \(0.541797\pi\)
\(938\) 0 0
\(939\) −46.1690 −1.50667
\(940\) 0 0
\(941\) −10.2934 −0.335556 −0.167778 0.985825i \(-0.553659\pi\)
−0.167778 + 0.985825i \(0.553659\pi\)
\(942\) 0 0
\(943\) 1.55552 0.0506547
\(944\) 0 0
\(945\) 10.7413 0.349413
\(946\) 0 0
\(947\) −42.4848 −1.38057 −0.690285 0.723538i \(-0.742515\pi\)
−0.690285 + 0.723538i \(0.742515\pi\)
\(948\) 0 0
\(949\) −34.5190 −1.12054
\(950\) 0 0
\(951\) −27.6070 −0.895218
\(952\) 0 0
\(953\) 59.0011 1.91123 0.955617 0.294612i \(-0.0951905\pi\)
0.955617 + 0.294612i \(0.0951905\pi\)
\(954\) 0 0
\(955\) 25.5839 0.827874
\(956\) 0 0
\(957\) −22.2184 −0.718220
\(958\) 0 0
\(959\) −3.57680 −0.115501
\(960\) 0 0
\(961\) 30.7936 0.993341
\(962\) 0 0
\(963\) 4.56417 0.147078
\(964\) 0 0
\(965\) 68.5324 2.20614
\(966\) 0 0
\(967\) 0.781747 0.0251393 0.0125696 0.999921i \(-0.495999\pi\)
0.0125696 + 0.999921i \(0.495999\pi\)
\(968\) 0 0
\(969\) −8.35940 −0.268543
\(970\) 0 0
\(971\) −51.5702 −1.65497 −0.827484 0.561489i \(-0.810229\pi\)
−0.827484 + 0.561489i \(0.810229\pi\)
\(972\) 0 0
\(973\) 6.43708 0.206363
\(974\) 0 0
\(975\) −48.7583 −1.56152
\(976\) 0 0
\(977\) 3.02820 0.0968806 0.0484403 0.998826i \(-0.484575\pi\)
0.0484403 + 0.998826i \(0.484575\pi\)
\(978\) 0 0
\(979\) −7.57164 −0.241991
\(980\) 0 0
\(981\) 20.3887 0.650962
\(982\) 0 0
\(983\) 45.6956 1.45746 0.728732 0.684799i \(-0.240110\pi\)
0.728732 + 0.684799i \(0.240110\pi\)
\(984\) 0 0
\(985\) −57.0432 −1.81755
\(986\) 0 0
\(987\) 6.11013 0.194488
\(988\) 0 0
\(989\) 8.05217 0.256044
\(990\) 0 0
\(991\) 30.3370 0.963685 0.481843 0.876258i \(-0.339968\pi\)
0.481843 + 0.876258i \(0.339968\pi\)
\(992\) 0 0
\(993\) −11.1681 −0.354409
\(994\) 0 0
\(995\) 18.1288 0.574721
\(996\) 0 0
\(997\) 27.9443 0.885004 0.442502 0.896767i \(-0.354091\pi\)
0.442502 + 0.896767i \(0.354091\pi\)
\(998\) 0 0
\(999\) −23.8177 −0.753558
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.e.1.2 4
4.3 odd 2 538.2.a.c.1.3 4
12.11 even 2 4842.2.a.j.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.c.1.3 4 4.3 odd 2
4304.2.a.e.1.2 4 1.1 even 1 trivial
4842.2.a.j.1.1 4 12.11 even 2