Properties

Label 4304.2.a.e.1.1
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4913.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.344151\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.04948 q^{3} +1.48793 q^{5} -0.344151 q^{7} +6.29934 q^{9} +O(q^{10})\) \(q-3.04948 q^{3} +1.48793 q^{5} -0.344151 q^{7} +6.29934 q^{9} +0.905704 q^{11} -2.24985 q^{13} -4.53741 q^{15} +2.58570 q^{17} +0.688301 q^{19} +1.04948 q^{21} -1.46259 q^{23} -2.78607 q^{25} -10.0613 q^{27} -4.24274 q^{29} -1.92985 q^{31} -2.76193 q^{33} -0.512072 q^{35} -1.84911 q^{37} +6.86089 q^{39} +1.21740 q^{41} +6.59036 q^{43} +9.37296 q^{45} +6.42244 q^{47} -6.88156 q^{49} -7.88503 q^{51} +2.87689 q^{53} +1.34762 q^{55} -2.09896 q^{57} -11.0118 q^{59} -1.75015 q^{61} -2.16792 q^{63} -3.34762 q^{65} -4.34415 q^{67} +4.46014 q^{69} -5.29586 q^{71} +5.90206 q^{73} +8.49607 q^{75} -0.311699 q^{77} +15.1107 q^{79} +11.7836 q^{81} -15.7701 q^{83} +3.84733 q^{85} +12.9382 q^{87} -1.61934 q^{89} +0.774289 q^{91} +5.88503 q^{93} +1.02414 q^{95} +14.3436 q^{97} +5.70533 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} + 5 q^{5} + q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 3 q^{3} + 5 q^{5} + q^{7} + 3 q^{9} - 7 q^{11} + 4 q^{13} - 8 q^{15} + 4 q^{17} - 2 q^{19} - 5 q^{21} - 16 q^{23} - q^{25} - 6 q^{27} + q^{31} + q^{33} - 3 q^{35} - 2 q^{37} - 3 q^{39} - q^{41} - 9 q^{43} + 8 q^{45} - 13 q^{47} - 15 q^{49} - 3 q^{51} + 28 q^{53} - 13 q^{55} + 10 q^{57} - 19 q^{59} - 20 q^{61} - 12 q^{63} + 5 q^{65} - 15 q^{67} - 5 q^{69} - 15 q^{71} - 7 q^{73} - 12 q^{75} - 6 q^{77} + 17 q^{79} + 4 q^{81} - 6 q^{83} - 29 q^{85} + 34 q^{87} + 20 q^{89} + 18 q^{91} - 5 q^{93} + 6 q^{95} + 3 q^{97} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.04948 −1.76062 −0.880309 0.474400i \(-0.842665\pi\)
−0.880309 + 0.474400i \(0.842665\pi\)
\(4\) 0 0
\(5\) 1.48793 0.665422 0.332711 0.943029i \(-0.392037\pi\)
0.332711 + 0.943029i \(0.392037\pi\)
\(6\) 0 0
\(7\) −0.344151 −0.130077 −0.0650384 0.997883i \(-0.520717\pi\)
−0.0650384 + 0.997883i \(0.520717\pi\)
\(8\) 0 0
\(9\) 6.29934 2.09978
\(10\) 0 0
\(11\) 0.905704 0.273080 0.136540 0.990635i \(-0.456402\pi\)
0.136540 + 0.990635i \(0.456402\pi\)
\(12\) 0 0
\(13\) −2.24985 −0.623997 −0.311999 0.950083i \(-0.600998\pi\)
−0.311999 + 0.950083i \(0.600998\pi\)
\(14\) 0 0
\(15\) −4.53741 −1.17155
\(16\) 0 0
\(17\) 2.58570 0.627123 0.313562 0.949568i \(-0.398478\pi\)
0.313562 + 0.949568i \(0.398478\pi\)
\(18\) 0 0
\(19\) 0.688301 0.157907 0.0789536 0.996878i \(-0.474842\pi\)
0.0789536 + 0.996878i \(0.474842\pi\)
\(20\) 0 0
\(21\) 1.04948 0.229016
\(22\) 0 0
\(23\) −1.46259 −0.304971 −0.152486 0.988306i \(-0.548728\pi\)
−0.152486 + 0.988306i \(0.548728\pi\)
\(24\) 0 0
\(25\) −2.78607 −0.557214
\(26\) 0 0
\(27\) −10.0613 −1.93629
\(28\) 0 0
\(29\) −4.24274 −0.787857 −0.393929 0.919141i \(-0.628884\pi\)
−0.393929 + 0.919141i \(0.628884\pi\)
\(30\) 0 0
\(31\) −1.92985 −0.346611 −0.173305 0.984868i \(-0.555445\pi\)
−0.173305 + 0.984868i \(0.555445\pi\)
\(32\) 0 0
\(33\) −2.76193 −0.480790
\(34\) 0 0
\(35\) −0.512072 −0.0865559
\(36\) 0 0
\(37\) −1.84911 −0.303991 −0.151996 0.988381i \(-0.548570\pi\)
−0.151996 + 0.988381i \(0.548570\pi\)
\(38\) 0 0
\(39\) 6.86089 1.09862
\(40\) 0 0
\(41\) 1.21740 0.190126 0.0950631 0.995471i \(-0.469695\pi\)
0.0950631 + 0.995471i \(0.469695\pi\)
\(42\) 0 0
\(43\) 6.59036 1.00502 0.502510 0.864571i \(-0.332410\pi\)
0.502510 + 0.864571i \(0.332410\pi\)
\(44\) 0 0
\(45\) 9.37296 1.39724
\(46\) 0 0
\(47\) 6.42244 0.936809 0.468405 0.883514i \(-0.344829\pi\)
0.468405 + 0.883514i \(0.344829\pi\)
\(48\) 0 0
\(49\) −6.88156 −0.983080
\(50\) 0 0
\(51\) −7.88503 −1.10413
\(52\) 0 0
\(53\) 2.87689 0.395172 0.197586 0.980286i \(-0.436690\pi\)
0.197586 + 0.980286i \(0.436690\pi\)
\(54\) 0 0
\(55\) 1.34762 0.181713
\(56\) 0 0
\(57\) −2.09896 −0.278014
\(58\) 0 0
\(59\) −11.0118 −1.43361 −0.716806 0.697273i \(-0.754397\pi\)
−0.716806 + 0.697273i \(0.754397\pi\)
\(60\) 0 0
\(61\) −1.75015 −0.224083 −0.112042 0.993704i \(-0.535739\pi\)
−0.112042 + 0.993704i \(0.535739\pi\)
\(62\) 0 0
\(63\) −2.16792 −0.273132
\(64\) 0 0
\(65\) −3.34762 −0.415221
\(66\) 0 0
\(67\) −4.34415 −0.530722 −0.265361 0.964149i \(-0.585491\pi\)
−0.265361 + 0.964149i \(0.585491\pi\)
\(68\) 0 0
\(69\) 4.46014 0.536938
\(70\) 0 0
\(71\) −5.29586 −0.628503 −0.314252 0.949340i \(-0.601754\pi\)
−0.314252 + 0.949340i \(0.601754\pi\)
\(72\) 0 0
\(73\) 5.90206 0.690784 0.345392 0.938459i \(-0.387746\pi\)
0.345392 + 0.938459i \(0.387746\pi\)
\(74\) 0 0
\(75\) 8.49607 0.981041
\(76\) 0 0
\(77\) −0.311699 −0.0355213
\(78\) 0 0
\(79\) 15.1107 1.70009 0.850046 0.526709i \(-0.176574\pi\)
0.850046 + 0.526709i \(0.176574\pi\)
\(80\) 0 0
\(81\) 11.7836 1.30929
\(82\) 0 0
\(83\) −15.7701 −1.73099 −0.865495 0.500918i \(-0.832996\pi\)
−0.865495 + 0.500918i \(0.832996\pi\)
\(84\) 0 0
\(85\) 3.84733 0.417302
\(86\) 0 0
\(87\) 12.9382 1.38712
\(88\) 0 0
\(89\) −1.61934 −0.171650 −0.0858250 0.996310i \(-0.527353\pi\)
−0.0858250 + 0.996310i \(0.527353\pi\)
\(90\) 0 0
\(91\) 0.774289 0.0811675
\(92\) 0 0
\(93\) 5.88503 0.610249
\(94\) 0 0
\(95\) 1.02414 0.105075
\(96\) 0 0
\(97\) 14.3436 1.45637 0.728184 0.685381i \(-0.240364\pi\)
0.728184 + 0.685381i \(0.240364\pi\)
\(98\) 0 0
\(99\) 5.70533 0.573407
\(100\) 0 0
\(101\) 2.90690 0.289247 0.144624 0.989487i \(-0.453803\pi\)
0.144624 + 0.989487i \(0.453803\pi\)
\(102\) 0 0
\(103\) 12.0866 1.19093 0.595464 0.803382i \(-0.296968\pi\)
0.595464 + 0.803382i \(0.296968\pi\)
\(104\) 0 0
\(105\) 1.56155 0.152392
\(106\) 0 0
\(107\) 7.03712 0.680304 0.340152 0.940370i \(-0.389521\pi\)
0.340152 + 0.940370i \(0.389521\pi\)
\(108\) 0 0
\(109\) −4.91926 −0.471180 −0.235590 0.971853i \(-0.575702\pi\)
−0.235590 + 0.971853i \(0.575702\pi\)
\(110\) 0 0
\(111\) 5.63882 0.535213
\(112\) 0 0
\(113\) 10.5108 0.988775 0.494387 0.869242i \(-0.335392\pi\)
0.494387 + 0.869242i \(0.335392\pi\)
\(114\) 0 0
\(115\) −2.17623 −0.202934
\(116\) 0 0
\(117\) −14.1726 −1.31026
\(118\) 0 0
\(119\) −0.889869 −0.0815742
\(120\) 0 0
\(121\) −10.1797 −0.925427
\(122\) 0 0
\(123\) −3.71244 −0.334740
\(124\) 0 0
\(125\) −11.5851 −1.03620
\(126\) 0 0
\(127\) 20.0830 1.78207 0.891037 0.453930i \(-0.149979\pi\)
0.891037 + 0.453930i \(0.149979\pi\)
\(128\) 0 0
\(129\) −20.0972 −1.76946
\(130\) 0 0
\(131\) 8.54572 0.746643 0.373321 0.927702i \(-0.378219\pi\)
0.373321 + 0.927702i \(0.378219\pi\)
\(132\) 0 0
\(133\) −0.236879 −0.0205401
\(134\) 0 0
\(135\) −14.9704 −1.28845
\(136\) 0 0
\(137\) −15.0625 −1.28687 −0.643436 0.765500i \(-0.722492\pi\)
−0.643436 + 0.765500i \(0.722492\pi\)
\(138\) 0 0
\(139\) 2.85030 0.241760 0.120880 0.992667i \(-0.461428\pi\)
0.120880 + 0.992667i \(0.461428\pi\)
\(140\) 0 0
\(141\) −19.5851 −1.64936
\(142\) 0 0
\(143\) −2.03770 −0.170401
\(144\) 0 0
\(145\) −6.31289 −0.524257
\(146\) 0 0
\(147\) 20.9852 1.73083
\(148\) 0 0
\(149\) −5.24502 −0.429689 −0.214844 0.976648i \(-0.568924\pi\)
−0.214844 + 0.976648i \(0.568924\pi\)
\(150\) 0 0
\(151\) −12.0613 −0.981532 −0.490766 0.871292i \(-0.663283\pi\)
−0.490766 + 0.871292i \(0.663283\pi\)
\(152\) 0 0
\(153\) 16.2882 1.31682
\(154\) 0 0
\(155\) −2.87147 −0.230642
\(156\) 0 0
\(157\) −14.4190 −1.15076 −0.575380 0.817887i \(-0.695146\pi\)
−0.575380 + 0.817887i \(0.695146\pi\)
\(158\) 0 0
\(159\) −8.77304 −0.695747
\(160\) 0 0
\(161\) 0.503352 0.0396697
\(162\) 0 0
\(163\) −20.9562 −1.64142 −0.820708 0.571347i \(-0.806421\pi\)
−0.820708 + 0.571347i \(0.806421\pi\)
\(164\) 0 0
\(165\) −4.10955 −0.319928
\(166\) 0 0
\(167\) 2.59520 0.200823 0.100411 0.994946i \(-0.467984\pi\)
0.100411 + 0.994946i \(0.467984\pi\)
\(168\) 0 0
\(169\) −7.93816 −0.610627
\(170\) 0 0
\(171\) 4.33584 0.331570
\(172\) 0 0
\(173\) −15.6629 −1.19083 −0.595414 0.803419i \(-0.703012\pi\)
−0.595414 + 0.803419i \(0.703012\pi\)
\(174\) 0 0
\(175\) 0.958828 0.0724806
\(176\) 0 0
\(177\) 33.5802 2.52404
\(178\) 0 0
\(179\) −25.1868 −1.88255 −0.941273 0.337646i \(-0.890369\pi\)
−0.941273 + 0.337646i \(0.890369\pi\)
\(180\) 0 0
\(181\) 6.06957 0.451148 0.225574 0.974226i \(-0.427574\pi\)
0.225574 + 0.974226i \(0.427574\pi\)
\(182\) 0 0
\(183\) 5.33704 0.394525
\(184\) 0 0
\(185\) −2.75134 −0.202283
\(186\) 0 0
\(187\) 2.34187 0.171255
\(188\) 0 0
\(189\) 3.46259 0.251866
\(190\) 0 0
\(191\) −8.11319 −0.587050 −0.293525 0.955951i \(-0.594828\pi\)
−0.293525 + 0.955951i \(0.594828\pi\)
\(192\) 0 0
\(193\) −12.8968 −0.928333 −0.464166 0.885748i \(-0.653646\pi\)
−0.464166 + 0.885748i \(0.653646\pi\)
\(194\) 0 0
\(195\) 10.2085 0.731047
\(196\) 0 0
\(197\) 14.4920 1.03251 0.516257 0.856434i \(-0.327325\pi\)
0.516257 + 0.856434i \(0.327325\pi\)
\(198\) 0 0
\(199\) −20.5344 −1.45564 −0.727822 0.685766i \(-0.759467\pi\)
−0.727822 + 0.685766i \(0.759467\pi\)
\(200\) 0 0
\(201\) 13.2474 0.934400
\(202\) 0 0
\(203\) 1.46014 0.102482
\(204\) 0 0
\(205\) 1.81141 0.126514
\(206\) 0 0
\(207\) −9.21335 −0.640372
\(208\) 0 0
\(209\) 0.623397 0.0431213
\(210\) 0 0
\(211\) 6.99356 0.481456 0.240728 0.970593i \(-0.422614\pi\)
0.240728 + 0.970593i \(0.422614\pi\)
\(212\) 0 0
\(213\) 16.1496 1.10655
\(214\) 0 0
\(215\) 9.80599 0.668763
\(216\) 0 0
\(217\) 0.664158 0.0450860
\(218\) 0 0
\(219\) −17.9982 −1.21621
\(220\) 0 0
\(221\) −5.81744 −0.391323
\(222\) 0 0
\(223\) 8.26630 0.553552 0.276776 0.960934i \(-0.410734\pi\)
0.276776 + 0.960934i \(0.410734\pi\)
\(224\) 0 0
\(225\) −17.5504 −1.17003
\(226\) 0 0
\(227\) 3.27586 0.217427 0.108713 0.994073i \(-0.465327\pi\)
0.108713 + 0.994073i \(0.465327\pi\)
\(228\) 0 0
\(229\) −3.04601 −0.201286 −0.100643 0.994923i \(-0.532090\pi\)
−0.100643 + 0.994923i \(0.532090\pi\)
\(230\) 0 0
\(231\) 0.950519 0.0625395
\(232\) 0 0
\(233\) 12.9540 0.848644 0.424322 0.905511i \(-0.360512\pi\)
0.424322 + 0.905511i \(0.360512\pi\)
\(234\) 0 0
\(235\) 9.55613 0.623373
\(236\) 0 0
\(237\) −46.0799 −2.99321
\(238\) 0 0
\(239\) −8.68652 −0.561885 −0.280942 0.959725i \(-0.590647\pi\)
−0.280942 + 0.959725i \(0.590647\pi\)
\(240\) 0 0
\(241\) −15.8491 −1.02093 −0.510465 0.859898i \(-0.670527\pi\)
−0.510465 + 0.859898i \(0.670527\pi\)
\(242\) 0 0
\(243\) −5.75015 −0.368872
\(244\) 0 0
\(245\) −10.2393 −0.654163
\(246\) 0 0
\(247\) −1.54858 −0.0985337
\(248\) 0 0
\(249\) 48.0905 3.04761
\(250\) 0 0
\(251\) −4.61103 −0.291046 −0.145523 0.989355i \(-0.546486\pi\)
−0.145523 + 0.989355i \(0.546486\pi\)
\(252\) 0 0
\(253\) −1.32467 −0.0832815
\(254\) 0 0
\(255\) −11.7324 −0.734709
\(256\) 0 0
\(257\) 20.2182 1.26118 0.630588 0.776118i \(-0.282814\pi\)
0.630588 + 0.776118i \(0.282814\pi\)
\(258\) 0 0
\(259\) 0.636372 0.0395422
\(260\) 0 0
\(261\) −26.7264 −1.65433
\(262\) 0 0
\(263\) −15.7471 −0.971009 −0.485504 0.874234i \(-0.661364\pi\)
−0.485504 + 0.874234i \(0.661364\pi\)
\(264\) 0 0
\(265\) 4.28061 0.262956
\(266\) 0 0
\(267\) 4.93816 0.302210
\(268\) 0 0
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) −17.3316 −1.05282 −0.526410 0.850231i \(-0.676462\pi\)
−0.526410 + 0.850231i \(0.676462\pi\)
\(272\) 0 0
\(273\) −2.36118 −0.142905
\(274\) 0 0
\(275\) −2.52335 −0.152164
\(276\) 0 0
\(277\) −23.1578 −1.39142 −0.695708 0.718325i \(-0.744909\pi\)
−0.695708 + 0.718325i \(0.744909\pi\)
\(278\) 0 0
\(279\) −12.1568 −0.727806
\(280\) 0 0
\(281\) −14.0106 −0.835801 −0.417901 0.908493i \(-0.637234\pi\)
−0.417901 + 0.908493i \(0.637234\pi\)
\(282\) 0 0
\(283\) −26.1135 −1.55229 −0.776145 0.630555i \(-0.782827\pi\)
−0.776145 + 0.630555i \(0.782827\pi\)
\(284\) 0 0
\(285\) −3.12311 −0.184997
\(286\) 0 0
\(287\) −0.418970 −0.0247310
\(288\) 0 0
\(289\) −10.3142 −0.606716
\(290\) 0 0
\(291\) −43.7404 −2.56411
\(292\) 0 0
\(293\) −8.14964 −0.476107 −0.238053 0.971252i \(-0.576509\pi\)
−0.238053 + 0.971252i \(0.576509\pi\)
\(294\) 0 0
\(295\) −16.3847 −0.953956
\(296\) 0 0
\(297\) −9.11252 −0.528762
\(298\) 0 0
\(299\) 3.29062 0.190301
\(300\) 0 0
\(301\) −2.26808 −0.130730
\(302\) 0 0
\(303\) −8.86453 −0.509254
\(304\) 0 0
\(305\) −2.60409 −0.149110
\(306\) 0 0
\(307\) −0.809130 −0.0461795 −0.0230898 0.999733i \(-0.507350\pi\)
−0.0230898 + 0.999733i \(0.507350\pi\)
\(308\) 0 0
\(309\) −36.8579 −2.09677
\(310\) 0 0
\(311\) 0.444367 0.0251977 0.0125989 0.999921i \(-0.495990\pi\)
0.0125989 + 0.999921i \(0.495990\pi\)
\(312\) 0 0
\(313\) 1.05085 0.0593974 0.0296987 0.999559i \(-0.490545\pi\)
0.0296987 + 0.999559i \(0.490545\pi\)
\(314\) 0 0
\(315\) −3.22571 −0.181748
\(316\) 0 0
\(317\) 6.46784 0.363270 0.181635 0.983366i \(-0.441861\pi\)
0.181635 + 0.983366i \(0.441861\pi\)
\(318\) 0 0
\(319\) −3.84266 −0.215148
\(320\) 0 0
\(321\) −21.4596 −1.19776
\(322\) 0 0
\(323\) 1.77974 0.0990273
\(324\) 0 0
\(325\) 6.26825 0.347700
\(326\) 0 0
\(327\) 15.0012 0.829568
\(328\) 0 0
\(329\) −2.21029 −0.121857
\(330\) 0 0
\(331\) −22.0153 −1.21007 −0.605034 0.796200i \(-0.706840\pi\)
−0.605034 + 0.796200i \(0.706840\pi\)
\(332\) 0 0
\(333\) −11.6482 −0.638315
\(334\) 0 0
\(335\) −6.46379 −0.353154
\(336\) 0 0
\(337\) 14.2647 0.777047 0.388524 0.921439i \(-0.372985\pi\)
0.388524 + 0.921439i \(0.372985\pi\)
\(338\) 0 0
\(339\) −32.0525 −1.74086
\(340\) 0 0
\(341\) −1.74787 −0.0946524
\(342\) 0 0
\(343\) 4.77735 0.257953
\(344\) 0 0
\(345\) 6.63637 0.357290
\(346\) 0 0
\(347\) −26.0825 −1.40018 −0.700092 0.714052i \(-0.746858\pi\)
−0.700092 + 0.714052i \(0.746858\pi\)
\(348\) 0 0
\(349\) 24.5684 1.31512 0.657559 0.753403i \(-0.271589\pi\)
0.657559 + 0.753403i \(0.271589\pi\)
\(350\) 0 0
\(351\) 22.6364 1.20824
\(352\) 0 0
\(353\) 8.36823 0.445396 0.222698 0.974887i \(-0.428514\pi\)
0.222698 + 0.974887i \(0.428514\pi\)
\(354\) 0 0
\(355\) −7.87987 −0.418220
\(356\) 0 0
\(357\) 2.71364 0.143621
\(358\) 0 0
\(359\) 2.12835 0.112330 0.0561651 0.998421i \(-0.482113\pi\)
0.0561651 + 0.998421i \(0.482113\pi\)
\(360\) 0 0
\(361\) −18.5262 −0.975065
\(362\) 0 0
\(363\) 31.0428 1.62932
\(364\) 0 0
\(365\) 8.78184 0.459663
\(366\) 0 0
\(367\) −9.53496 −0.497721 −0.248860 0.968539i \(-0.580056\pi\)
−0.248860 + 0.968539i \(0.580056\pi\)
\(368\) 0 0
\(369\) 7.66882 0.399223
\(370\) 0 0
\(371\) −0.990085 −0.0514027
\(372\) 0 0
\(373\) 16.7808 0.868875 0.434437 0.900702i \(-0.356947\pi\)
0.434437 + 0.900702i \(0.356947\pi\)
\(374\) 0 0
\(375\) 35.3286 1.82436
\(376\) 0 0
\(377\) 9.54555 0.491621
\(378\) 0 0
\(379\) 29.0341 1.49138 0.745690 0.666293i \(-0.232120\pi\)
0.745690 + 0.666293i \(0.232120\pi\)
\(380\) 0 0
\(381\) −61.2426 −3.13755
\(382\) 0 0
\(383\) −35.5798 −1.81804 −0.909022 0.416749i \(-0.863169\pi\)
−0.909022 + 0.416749i \(0.863169\pi\)
\(384\) 0 0
\(385\) −0.463785 −0.0236367
\(386\) 0 0
\(387\) 41.5149 2.11032
\(388\) 0 0
\(389\) −37.5839 −1.90558 −0.952789 0.303634i \(-0.901800\pi\)
−0.952789 + 0.303634i \(0.901800\pi\)
\(390\) 0 0
\(391\) −3.78181 −0.191255
\(392\) 0 0
\(393\) −26.0600 −1.31455
\(394\) 0 0
\(395\) 22.4837 1.13128
\(396\) 0 0
\(397\) −16.8913 −0.847750 −0.423875 0.905721i \(-0.639330\pi\)
−0.423875 + 0.905721i \(0.639330\pi\)
\(398\) 0 0
\(399\) 0.722359 0.0361632
\(400\) 0 0
\(401\) 3.68585 0.184063 0.0920314 0.995756i \(-0.470664\pi\)
0.0920314 + 0.995756i \(0.470664\pi\)
\(402\) 0 0
\(403\) 4.34187 0.216284
\(404\) 0 0
\(405\) 17.5332 0.871231
\(406\) 0 0
\(407\) −1.67474 −0.0830140
\(408\) 0 0
\(409\) 18.5784 0.918643 0.459322 0.888270i \(-0.348093\pi\)
0.459322 + 0.888270i \(0.348093\pi\)
\(410\) 0 0
\(411\) 45.9327 2.26569
\(412\) 0 0
\(413\) 3.78971 0.186480
\(414\) 0 0
\(415\) −23.4647 −1.15184
\(416\) 0 0
\(417\) −8.69194 −0.425646
\(418\) 0 0
\(419\) −3.30890 −0.161650 −0.0808251 0.996728i \(-0.525756\pi\)
−0.0808251 + 0.996728i \(0.525756\pi\)
\(420\) 0 0
\(421\) 7.23994 0.352853 0.176427 0.984314i \(-0.443546\pi\)
0.176427 + 0.984314i \(0.443546\pi\)
\(422\) 0 0
\(423\) 40.4571 1.96709
\(424\) 0 0
\(425\) −7.20393 −0.349442
\(426\) 0 0
\(427\) 0.602314 0.0291480
\(428\) 0 0
\(429\) 6.21393 0.300011
\(430\) 0 0
\(431\) 11.1645 0.537777 0.268888 0.963171i \(-0.413344\pi\)
0.268888 + 0.963171i \(0.413344\pi\)
\(432\) 0 0
\(433\) 28.8143 1.38473 0.692363 0.721549i \(-0.256570\pi\)
0.692363 + 0.721549i \(0.256570\pi\)
\(434\) 0 0
\(435\) 19.2510 0.923017
\(436\) 0 0
\(437\) −1.00670 −0.0481571
\(438\) 0 0
\(439\) −20.4897 −0.977922 −0.488961 0.872306i \(-0.662624\pi\)
−0.488961 + 0.872306i \(0.662624\pi\)
\(440\) 0 0
\(441\) −43.3493 −2.06425
\(442\) 0 0
\(443\) −9.58503 −0.455398 −0.227699 0.973732i \(-0.573120\pi\)
−0.227699 + 0.973732i \(0.573120\pi\)
\(444\) 0 0
\(445\) −2.40947 −0.114220
\(446\) 0 0
\(447\) 15.9946 0.756518
\(448\) 0 0
\(449\) −21.4476 −1.01218 −0.506088 0.862482i \(-0.668909\pi\)
−0.506088 + 0.862482i \(0.668909\pi\)
\(450\) 0 0
\(451\) 1.10261 0.0519197
\(452\) 0 0
\(453\) 36.7806 1.72810
\(454\) 0 0
\(455\) 1.15209 0.0540107
\(456\) 0 0
\(457\) 10.7176 0.501350 0.250675 0.968071i \(-0.419347\pi\)
0.250675 + 0.968071i \(0.419347\pi\)
\(458\) 0 0
\(459\) −26.0154 −1.21429
\(460\) 0 0
\(461\) −19.6658 −0.915926 −0.457963 0.888971i \(-0.651421\pi\)
−0.457963 + 0.888971i \(0.651421\pi\)
\(462\) 0 0
\(463\) −22.6226 −1.05136 −0.525682 0.850681i \(-0.676190\pi\)
−0.525682 + 0.850681i \(0.676190\pi\)
\(464\) 0 0
\(465\) 8.75651 0.406073
\(466\) 0 0
\(467\) −30.0503 −1.39056 −0.695282 0.718737i \(-0.744720\pi\)
−0.695282 + 0.718737i \(0.744720\pi\)
\(468\) 0 0
\(469\) 1.49504 0.0690347
\(470\) 0 0
\(471\) 43.9704 2.02605
\(472\) 0 0
\(473\) 5.96891 0.274451
\(474\) 0 0
\(475\) −1.91766 −0.0879881
\(476\) 0 0
\(477\) 18.1225 0.829773
\(478\) 0 0
\(479\) 32.6251 1.49068 0.745339 0.666685i \(-0.232288\pi\)
0.745339 + 0.666685i \(0.232288\pi\)
\(480\) 0 0
\(481\) 4.16022 0.189690
\(482\) 0 0
\(483\) −1.53496 −0.0698432
\(484\) 0 0
\(485\) 21.3422 0.969099
\(486\) 0 0
\(487\) 4.12981 0.187139 0.0935697 0.995613i \(-0.470172\pi\)
0.0935697 + 0.995613i \(0.470172\pi\)
\(488\) 0 0
\(489\) 63.9056 2.88991
\(490\) 0 0
\(491\) 35.2225 1.58957 0.794785 0.606891i \(-0.207584\pi\)
0.794785 + 0.606891i \(0.207584\pi\)
\(492\) 0 0
\(493\) −10.9704 −0.494084
\(494\) 0 0
\(495\) 8.48912 0.381558
\(496\) 0 0
\(497\) 1.82258 0.0817537
\(498\) 0 0
\(499\) −16.3253 −0.730819 −0.365409 0.930847i \(-0.619071\pi\)
−0.365409 + 0.930847i \(0.619071\pi\)
\(500\) 0 0
\(501\) −7.91401 −0.353572
\(502\) 0 0
\(503\) −39.0571 −1.74147 −0.870736 0.491751i \(-0.836357\pi\)
−0.870736 + 0.491751i \(0.836357\pi\)
\(504\) 0 0
\(505\) 4.32526 0.192471
\(506\) 0 0
\(507\) 24.2073 1.07508
\(508\) 0 0
\(509\) 8.19139 0.363077 0.181539 0.983384i \(-0.441892\pi\)
0.181539 + 0.983384i \(0.441892\pi\)
\(510\) 0 0
\(511\) −2.03120 −0.0898549
\(512\) 0 0
\(513\) −6.92518 −0.305754
\(514\) 0 0
\(515\) 17.9840 0.792469
\(516\) 0 0
\(517\) 5.81683 0.255824
\(518\) 0 0
\(519\) 47.7637 2.09660
\(520\) 0 0
\(521\) −9.81960 −0.430205 −0.215102 0.976592i \(-0.569009\pi\)
−0.215102 + 0.976592i \(0.569009\pi\)
\(522\) 0 0
\(523\) −4.42973 −0.193698 −0.0968492 0.995299i \(-0.530876\pi\)
−0.0968492 + 0.995299i \(0.530876\pi\)
\(524\) 0 0
\(525\) −2.92393 −0.127611
\(526\) 0 0
\(527\) −4.99000 −0.217368
\(528\) 0 0
\(529\) −20.8608 −0.906993
\(530\) 0 0
\(531\) −69.3669 −3.01027
\(532\) 0 0
\(533\) −2.73898 −0.118638
\(534\) 0 0
\(535\) 10.4707 0.452689
\(536\) 0 0
\(537\) 76.8065 3.31445
\(538\) 0 0
\(539\) −6.23265 −0.268459
\(540\) 0 0
\(541\) 3.01458 0.129607 0.0648035 0.997898i \(-0.479358\pi\)
0.0648035 + 0.997898i \(0.479358\pi\)
\(542\) 0 0
\(543\) −18.5090 −0.794299
\(544\) 0 0
\(545\) −7.31951 −0.313533
\(546\) 0 0
\(547\) −35.5411 −1.51963 −0.759813 0.650141i \(-0.774710\pi\)
−0.759813 + 0.650141i \(0.774710\pi\)
\(548\) 0 0
\(549\) −11.0248 −0.470525
\(550\) 0 0
\(551\) −2.92028 −0.124408
\(552\) 0 0
\(553\) −5.20037 −0.221142
\(554\) 0 0
\(555\) 8.39016 0.356142
\(556\) 0 0
\(557\) 21.5510 0.913144 0.456572 0.889687i \(-0.349077\pi\)
0.456572 + 0.889687i \(0.349077\pi\)
\(558\) 0 0
\(559\) −14.8274 −0.627130
\(560\) 0 0
\(561\) −7.14150 −0.301514
\(562\) 0 0
\(563\) −30.3310 −1.27830 −0.639150 0.769082i \(-0.720714\pi\)
−0.639150 + 0.769082i \(0.720714\pi\)
\(564\) 0 0
\(565\) 15.6393 0.657952
\(566\) 0 0
\(567\) −4.05534 −0.170308
\(568\) 0 0
\(569\) 3.78038 0.158482 0.0792409 0.996855i \(-0.474750\pi\)
0.0792409 + 0.996855i \(0.474750\pi\)
\(570\) 0 0
\(571\) −18.4336 −0.771424 −0.385712 0.922619i \(-0.626044\pi\)
−0.385712 + 0.922619i \(0.626044\pi\)
\(572\) 0 0
\(573\) 24.7410 1.03357
\(574\) 0 0
\(575\) 4.07488 0.169934
\(576\) 0 0
\(577\) 30.3922 1.26524 0.632622 0.774461i \(-0.281979\pi\)
0.632622 + 0.774461i \(0.281979\pi\)
\(578\) 0 0
\(579\) 39.3286 1.63444
\(580\) 0 0
\(581\) 5.42728 0.225161
\(582\) 0 0
\(583\) 2.60561 0.107913
\(584\) 0 0
\(585\) −21.0878 −0.871873
\(586\) 0 0
\(587\) 38.4248 1.58596 0.792981 0.609246i \(-0.208528\pi\)
0.792981 + 0.609246i \(0.208528\pi\)
\(588\) 0 0
\(589\) −1.32832 −0.0547323
\(590\) 0 0
\(591\) −44.1931 −1.81786
\(592\) 0 0
\(593\) 15.0010 0.616018 0.308009 0.951383i \(-0.400337\pi\)
0.308009 + 0.951383i \(0.400337\pi\)
\(594\) 0 0
\(595\) −1.32406 −0.0542812
\(596\) 0 0
\(597\) 62.6192 2.56283
\(598\) 0 0
\(599\) 8.67407 0.354413 0.177207 0.984174i \(-0.443294\pi\)
0.177207 + 0.984174i \(0.443294\pi\)
\(600\) 0 0
\(601\) −20.1244 −0.820891 −0.410445 0.911885i \(-0.634627\pi\)
−0.410445 + 0.911885i \(0.634627\pi\)
\(602\) 0 0
\(603\) −27.3653 −1.11440
\(604\) 0 0
\(605\) −15.1467 −0.615800
\(606\) 0 0
\(607\) −5.35730 −0.217446 −0.108723 0.994072i \(-0.534676\pi\)
−0.108723 + 0.994072i \(0.534676\pi\)
\(608\) 0 0
\(609\) −4.45268 −0.180432
\(610\) 0 0
\(611\) −14.4496 −0.584566
\(612\) 0 0
\(613\) 21.6009 0.872454 0.436227 0.899837i \(-0.356314\pi\)
0.436227 + 0.899837i \(0.356314\pi\)
\(614\) 0 0
\(615\) −5.52385 −0.222743
\(616\) 0 0
\(617\) −36.2231 −1.45829 −0.729144 0.684360i \(-0.760082\pi\)
−0.729144 + 0.684360i \(0.760082\pi\)
\(618\) 0 0
\(619\) −31.9927 −1.28590 −0.642948 0.765910i \(-0.722289\pi\)
−0.642948 + 0.765910i \(0.722289\pi\)
\(620\) 0 0
\(621\) 14.7155 0.590513
\(622\) 0 0
\(623\) 0.557298 0.0223277
\(624\) 0 0
\(625\) −3.30747 −0.132299
\(626\) 0 0
\(627\) −1.90104 −0.0759201
\(628\) 0 0
\(629\) −4.78123 −0.190640
\(630\) 0 0
\(631\) 22.3539 0.889894 0.444947 0.895557i \(-0.353222\pi\)
0.444947 + 0.895557i \(0.353222\pi\)
\(632\) 0 0
\(633\) −21.3267 −0.847661
\(634\) 0 0
\(635\) 29.8820 1.18583
\(636\) 0 0
\(637\) 15.4825 0.613439
\(638\) 0 0
\(639\) −33.3604 −1.31972
\(640\) 0 0
\(641\) −8.18573 −0.323317 −0.161659 0.986847i \(-0.551684\pi\)
−0.161659 + 0.986847i \(0.551684\pi\)
\(642\) 0 0
\(643\) −17.4703 −0.688961 −0.344480 0.938793i \(-0.611945\pi\)
−0.344480 + 0.938793i \(0.611945\pi\)
\(644\) 0 0
\(645\) −29.9032 −1.17744
\(646\) 0 0
\(647\) 44.5260 1.75050 0.875249 0.483673i \(-0.160697\pi\)
0.875249 + 0.483673i \(0.160697\pi\)
\(648\) 0 0
\(649\) −9.97341 −0.391491
\(650\) 0 0
\(651\) −2.02534 −0.0793793
\(652\) 0 0
\(653\) 37.0875 1.45134 0.725672 0.688041i \(-0.241529\pi\)
0.725672 + 0.688041i \(0.241529\pi\)
\(654\) 0 0
\(655\) 12.7154 0.496832
\(656\) 0 0
\(657\) 37.1791 1.45049
\(658\) 0 0
\(659\) −15.6928 −0.611305 −0.305652 0.952143i \(-0.598874\pi\)
−0.305652 + 0.952143i \(0.598874\pi\)
\(660\) 0 0
\(661\) 4.10083 0.159504 0.0797519 0.996815i \(-0.474587\pi\)
0.0797519 + 0.996815i \(0.474587\pi\)
\(662\) 0 0
\(663\) 17.7402 0.688971
\(664\) 0 0
\(665\) −0.352460 −0.0136678
\(666\) 0 0
\(667\) 6.20539 0.240274
\(668\) 0 0
\(669\) −25.2079 −0.974595
\(670\) 0 0
\(671\) −1.58511 −0.0611926
\(672\) 0 0
\(673\) 8.56587 0.330190 0.165095 0.986278i \(-0.447207\pi\)
0.165095 + 0.986278i \(0.447207\pi\)
\(674\) 0 0
\(675\) 28.0314 1.07893
\(676\) 0 0
\(677\) 15.2255 0.585165 0.292583 0.956240i \(-0.405485\pi\)
0.292583 + 0.956240i \(0.405485\pi\)
\(678\) 0 0
\(679\) −4.93635 −0.189440
\(680\) 0 0
\(681\) −9.98968 −0.382805
\(682\) 0 0
\(683\) 34.5265 1.32112 0.660560 0.750774i \(-0.270319\pi\)
0.660560 + 0.750774i \(0.270319\pi\)
\(684\) 0 0
\(685\) −22.4119 −0.856313
\(686\) 0 0
\(687\) 9.28875 0.354388
\(688\) 0 0
\(689\) −6.47259 −0.246586
\(690\) 0 0
\(691\) −32.7649 −1.24644 −0.623218 0.782048i \(-0.714175\pi\)
−0.623218 + 0.782048i \(0.714175\pi\)
\(692\) 0 0
\(693\) −1.96349 −0.0745870
\(694\) 0 0
\(695\) 4.24105 0.160872
\(696\) 0 0
\(697\) 3.14783 0.119233
\(698\) 0 0
\(699\) −39.5029 −1.49414
\(700\) 0 0
\(701\) −4.80166 −0.181356 −0.0906782 0.995880i \(-0.528903\pi\)
−0.0906782 + 0.995880i \(0.528903\pi\)
\(702\) 0 0
\(703\) −1.27274 −0.0480024
\(704\) 0 0
\(705\) −29.1412 −1.09752
\(706\) 0 0
\(707\) −1.00041 −0.0376243
\(708\) 0 0
\(709\) −34.4618 −1.29424 −0.647120 0.762389i \(-0.724027\pi\)
−0.647120 + 0.762389i \(0.724027\pi\)
\(710\) 0 0
\(711\) 95.1876 3.56982
\(712\) 0 0
\(713\) 2.82258 0.105706
\(714\) 0 0
\(715\) −3.03195 −0.113389
\(716\) 0 0
\(717\) 26.4894 0.989264
\(718\) 0 0
\(719\) 41.1653 1.53521 0.767604 0.640925i \(-0.221449\pi\)
0.767604 + 0.640925i \(0.221449\pi\)
\(720\) 0 0
\(721\) −4.15961 −0.154912
\(722\) 0 0
\(723\) 48.3316 1.79747
\(724\) 0 0
\(725\) 11.8206 0.439005
\(726\) 0 0
\(727\) 50.5549 1.87498 0.937489 0.348015i \(-0.113144\pi\)
0.937489 + 0.348015i \(0.113144\pi\)
\(728\) 0 0
\(729\) −17.8159 −0.659848
\(730\) 0 0
\(731\) 17.0407 0.630272
\(732\) 0 0
\(733\) −29.3797 −1.08516 −0.542581 0.840003i \(-0.682553\pi\)
−0.542581 + 0.840003i \(0.682553\pi\)
\(734\) 0 0
\(735\) 31.2245 1.15173
\(736\) 0 0
\(737\) −3.93451 −0.144930
\(738\) 0 0
\(739\) 22.4975 0.827584 0.413792 0.910371i \(-0.364204\pi\)
0.413792 + 0.910371i \(0.364204\pi\)
\(740\) 0 0
\(741\) 4.72236 0.173480
\(742\) 0 0
\(743\) 7.49123 0.274826 0.137413 0.990514i \(-0.456121\pi\)
0.137413 + 0.990514i \(0.456121\pi\)
\(744\) 0 0
\(745\) −7.80421 −0.285924
\(746\) 0 0
\(747\) −99.3409 −3.63469
\(748\) 0 0
\(749\) −2.42183 −0.0884917
\(750\) 0 0
\(751\) −31.3441 −1.14376 −0.571881 0.820337i \(-0.693786\pi\)
−0.571881 + 0.820337i \(0.693786\pi\)
\(752\) 0 0
\(753\) 14.0613 0.512421
\(754\) 0 0
\(755\) −17.9463 −0.653132
\(756\) 0 0
\(757\) −44.8626 −1.63056 −0.815280 0.579067i \(-0.803417\pi\)
−0.815280 + 0.579067i \(0.803417\pi\)
\(758\) 0 0
\(759\) 4.03957 0.146627
\(760\) 0 0
\(761\) −18.5983 −0.674189 −0.337094 0.941471i \(-0.609444\pi\)
−0.337094 + 0.941471i \(0.609444\pi\)
\(762\) 0 0
\(763\) 1.69297 0.0612895
\(764\) 0 0
\(765\) 24.2356 0.876241
\(766\) 0 0
\(767\) 24.7749 0.894570
\(768\) 0 0
\(769\) 52.1929 1.88213 0.941063 0.338232i \(-0.109829\pi\)
0.941063 + 0.338232i \(0.109829\pi\)
\(770\) 0 0
\(771\) −61.6550 −2.22045
\(772\) 0 0
\(773\) 41.7206 1.50059 0.750293 0.661105i \(-0.229912\pi\)
0.750293 + 0.661105i \(0.229912\pi\)
\(774\) 0 0
\(775\) 5.37669 0.193136
\(776\) 0 0
\(777\) −1.94060 −0.0696188
\(778\) 0 0
\(779\) 0.837940 0.0300223
\(780\) 0 0
\(781\) −4.79648 −0.171632
\(782\) 0 0
\(783\) 42.6873 1.52552
\(784\) 0 0
\(785\) −21.4544 −0.765740
\(786\) 0 0
\(787\) −20.8879 −0.744574 −0.372287 0.928118i \(-0.621426\pi\)
−0.372287 + 0.928118i \(0.621426\pi\)
\(788\) 0 0
\(789\) 48.0205 1.70958
\(790\) 0 0
\(791\) −3.61731 −0.128617
\(792\) 0 0
\(793\) 3.93757 0.139827
\(794\) 0 0
\(795\) −13.0536 −0.462965
\(796\) 0 0
\(797\) 20.6075 0.729955 0.364978 0.931016i \(-0.381077\pi\)
0.364978 + 0.931016i \(0.381077\pi\)
\(798\) 0 0
\(799\) 16.6065 0.587495
\(800\) 0 0
\(801\) −10.2008 −0.360427
\(802\) 0 0
\(803\) 5.34552 0.188639
\(804\) 0 0
\(805\) 0.748951 0.0263971
\(806\) 0 0
\(807\) −3.04948 −0.107347
\(808\) 0 0
\(809\) 8.27012 0.290762 0.145381 0.989376i \(-0.453559\pi\)
0.145381 + 0.989376i \(0.453559\pi\)
\(810\) 0 0
\(811\) −26.6200 −0.934753 −0.467377 0.884058i \(-0.654801\pi\)
−0.467377 + 0.884058i \(0.654801\pi\)
\(812\) 0 0
\(813\) 52.8524 1.85362
\(814\) 0 0
\(815\) −31.1813 −1.09223
\(816\) 0 0
\(817\) 4.53616 0.158700
\(818\) 0 0
\(819\) 4.87751 0.170434
\(820\) 0 0
\(821\) 29.4026 1.02616 0.513078 0.858342i \(-0.328505\pi\)
0.513078 + 0.858342i \(0.328505\pi\)
\(822\) 0 0
\(823\) −15.4716 −0.539305 −0.269653 0.962958i \(-0.586909\pi\)
−0.269653 + 0.962958i \(0.586909\pi\)
\(824\) 0 0
\(825\) 7.69492 0.267903
\(826\) 0 0
\(827\) 24.5579 0.853963 0.426982 0.904260i \(-0.359577\pi\)
0.426982 + 0.904260i \(0.359577\pi\)
\(828\) 0 0
\(829\) 20.1760 0.700741 0.350371 0.936611i \(-0.386056\pi\)
0.350371 + 0.936611i \(0.386056\pi\)
\(830\) 0 0
\(831\) 70.6192 2.44975
\(832\) 0 0
\(833\) −17.7936 −0.616513
\(834\) 0 0
\(835\) 3.86147 0.133632
\(836\) 0 0
\(837\) 19.4167 0.671139
\(838\) 0 0
\(839\) 39.9874 1.38052 0.690259 0.723562i \(-0.257496\pi\)
0.690259 + 0.723562i \(0.257496\pi\)
\(840\) 0 0
\(841\) −10.9992 −0.379281
\(842\) 0 0
\(843\) 42.7250 1.47153
\(844\) 0 0
\(845\) −11.8114 −0.406325
\(846\) 0 0
\(847\) 3.50335 0.120377
\(848\) 0 0
\(849\) 79.6328 2.73299
\(850\) 0 0
\(851\) 2.70449 0.0927086
\(852\) 0 0
\(853\) −38.2866 −1.31091 −0.655453 0.755236i \(-0.727522\pi\)
−0.655453 + 0.755236i \(0.727522\pi\)
\(854\) 0 0
\(855\) 6.45142 0.220634
\(856\) 0 0
\(857\) 10.4287 0.356239 0.178120 0.984009i \(-0.442999\pi\)
0.178120 + 0.984009i \(0.442999\pi\)
\(858\) 0 0
\(859\) 31.3752 1.07051 0.535254 0.844691i \(-0.320216\pi\)
0.535254 + 0.844691i \(0.320216\pi\)
\(860\) 0 0
\(861\) 1.27764 0.0435419
\(862\) 0 0
\(863\) −22.9420 −0.780954 −0.390477 0.920613i \(-0.627690\pi\)
−0.390477 + 0.920613i \(0.627690\pi\)
\(864\) 0 0
\(865\) −23.3053 −0.792403
\(866\) 0 0
\(867\) 31.4529 1.06820
\(868\) 0 0
\(869\) 13.6859 0.464261
\(870\) 0 0
\(871\) 9.77371 0.331169
\(872\) 0 0
\(873\) 90.3549 3.05805
\(874\) 0 0
\(875\) 3.98703 0.134786
\(876\) 0 0
\(877\) 13.8521 0.467754 0.233877 0.972266i \(-0.424859\pi\)
0.233877 + 0.972266i \(0.424859\pi\)
\(878\) 0 0
\(879\) 24.8522 0.838243
\(880\) 0 0
\(881\) 20.0782 0.676451 0.338225 0.941065i \(-0.390173\pi\)
0.338225 + 0.941065i \(0.390173\pi\)
\(882\) 0 0
\(883\) −55.3481 −1.86261 −0.931306 0.364237i \(-0.881330\pi\)
−0.931306 + 0.364237i \(0.881330\pi\)
\(884\) 0 0
\(885\) 49.9650 1.67955
\(886\) 0 0
\(887\) −1.28823 −0.0432544 −0.0216272 0.999766i \(-0.506885\pi\)
−0.0216272 + 0.999766i \(0.506885\pi\)
\(888\) 0 0
\(889\) −6.91156 −0.231806
\(890\) 0 0
\(891\) 10.6725 0.357541
\(892\) 0 0
\(893\) 4.42058 0.147929
\(894\) 0 0
\(895\) −37.4761 −1.25269
\(896\) 0 0
\(897\) −10.0347 −0.335048
\(898\) 0 0
\(899\) 8.18784 0.273080
\(900\) 0 0
\(901\) 7.43877 0.247822
\(902\) 0 0
\(903\) 6.91646 0.230165
\(904\) 0 0
\(905\) 9.03109 0.300203
\(906\) 0 0
\(907\) −11.6760 −0.387695 −0.193848 0.981032i \(-0.562097\pi\)
−0.193848 + 0.981032i \(0.562097\pi\)
\(908\) 0 0
\(909\) 18.3115 0.607355
\(910\) 0 0
\(911\) −31.6479 −1.04854 −0.524271 0.851551i \(-0.675662\pi\)
−0.524271 + 0.851551i \(0.675662\pi\)
\(912\) 0 0
\(913\) −14.2830 −0.472698
\(914\) 0 0
\(915\) 7.94113 0.262526
\(916\) 0 0
\(917\) −2.94102 −0.0971209
\(918\) 0 0
\(919\) 49.3145 1.62674 0.813368 0.581749i \(-0.197632\pi\)
0.813368 + 0.581749i \(0.197632\pi\)
\(920\) 0 0
\(921\) 2.46743 0.0813045
\(922\) 0 0
\(923\) 11.9149 0.392184
\(924\) 0 0
\(925\) 5.15174 0.169388
\(926\) 0 0
\(927\) 76.1375 2.50069
\(928\) 0 0
\(929\) −25.7689 −0.845450 −0.422725 0.906258i \(-0.638926\pi\)
−0.422725 + 0.906258i \(0.638926\pi\)
\(930\) 0 0
\(931\) −4.73659 −0.155235
\(932\) 0 0
\(933\) −1.35509 −0.0443636
\(934\) 0 0
\(935\) 3.48454 0.113957
\(936\) 0 0
\(937\) −6.22816 −0.203465 −0.101733 0.994812i \(-0.532439\pi\)
−0.101733 + 0.994812i \(0.532439\pi\)
\(938\) 0 0
\(939\) −3.20454 −0.104576
\(940\) 0 0
\(941\) 15.3930 0.501799 0.250900 0.968013i \(-0.419274\pi\)
0.250900 + 0.968013i \(0.419274\pi\)
\(942\) 0 0
\(943\) −1.78056 −0.0579830
\(944\) 0 0
\(945\) 5.15209 0.167597
\(946\) 0 0
\(947\) 19.0683 0.619635 0.309818 0.950796i \(-0.399732\pi\)
0.309818 + 0.950796i \(0.399732\pi\)
\(948\) 0 0
\(949\) −13.2788 −0.431047
\(950\) 0 0
\(951\) −19.7236 −0.639580
\(952\) 0 0
\(953\) −39.7141 −1.28647 −0.643234 0.765670i \(-0.722408\pi\)
−0.643234 + 0.765670i \(0.722408\pi\)
\(954\) 0 0
\(955\) −12.0718 −0.390636
\(956\) 0 0
\(957\) 11.7181 0.378793
\(958\) 0 0
\(959\) 5.18376 0.167392
\(960\) 0 0
\(961\) −27.2757 −0.879861
\(962\) 0 0
\(963\) 44.3292 1.42849
\(964\) 0 0
\(965\) −19.1895 −0.617733
\(966\) 0 0
\(967\) 54.5429 1.75398 0.876991 0.480507i \(-0.159547\pi\)
0.876991 + 0.480507i \(0.159547\pi\)
\(968\) 0 0
\(969\) −5.42728 −0.174349
\(970\) 0 0
\(971\) 20.6894 0.663955 0.331977 0.943287i \(-0.392284\pi\)
0.331977 + 0.943287i \(0.392284\pi\)
\(972\) 0 0
\(973\) −0.980934 −0.0314473
\(974\) 0 0
\(975\) −19.1149 −0.612167
\(976\) 0 0
\(977\) 3.49749 0.111895 0.0559473 0.998434i \(-0.482182\pi\)
0.0559473 + 0.998434i \(0.482182\pi\)
\(978\) 0 0
\(979\) −1.46664 −0.0468742
\(980\) 0 0
\(981\) −30.9881 −0.989373
\(982\) 0 0
\(983\) −16.5884 −0.529086 −0.264543 0.964374i \(-0.585221\pi\)
−0.264543 + 0.964374i \(0.585221\pi\)
\(984\) 0 0
\(985\) 21.5631 0.687057
\(986\) 0 0
\(987\) 6.74023 0.214544
\(988\) 0 0
\(989\) −9.63900 −0.306502
\(990\) 0 0
\(991\) 27.1297 0.861805 0.430902 0.902399i \(-0.358195\pi\)
0.430902 + 0.902399i \(0.358195\pi\)
\(992\) 0 0
\(993\) 67.1351 2.13047
\(994\) 0 0
\(995\) −30.5537 −0.968617
\(996\) 0 0
\(997\) 56.5029 1.78946 0.894732 0.446603i \(-0.147366\pi\)
0.894732 + 0.446603i \(0.147366\pi\)
\(998\) 0 0
\(999\) 18.6044 0.588616
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.e.1.1 4
4.3 odd 2 538.2.a.c.1.4 4
12.11 even 2 4842.2.a.j.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.c.1.4 4 4.3 odd 2
4304.2.a.e.1.1 4 1.1 even 1 trivial
4842.2.a.j.1.2 4 12.11 even 2