Properties

Label 4304.2.a.d.1.1
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{3} -3.61803 q^{5} +4.23607 q^{7} -2.61803 q^{9} -0.236068 q^{11} -1.00000 q^{13} +2.23607 q^{15} +0.236068 q^{17} -2.00000 q^{19} -2.61803 q^{21} +8.23607 q^{23} +8.09017 q^{25} +3.47214 q^{27} +0.854102 q^{29} -7.47214 q^{31} +0.145898 q^{33} -15.3262 q^{35} -8.70820 q^{37} +0.618034 q^{39} +7.70820 q^{41} -2.23607 q^{43} +9.47214 q^{45} +6.85410 q^{47} +10.9443 q^{49} -0.145898 q^{51} +0.854102 q^{55} +1.23607 q^{57} +6.56231 q^{59} -5.47214 q^{61} -11.0902 q^{63} +3.61803 q^{65} -1.76393 q^{67} -5.09017 q^{69} -9.70820 q^{71} -10.7082 q^{73} -5.00000 q^{75} -1.00000 q^{77} +13.7984 q^{79} +5.70820 q^{81} +5.23607 q^{83} -0.854102 q^{85} -0.527864 q^{87} -9.79837 q^{89} -4.23607 q^{91} +4.61803 q^{93} +7.23607 q^{95} +12.6525 q^{97} +0.618034 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 5 q^{5} + 4 q^{7} - 3 q^{9} + 4 q^{11} - 2 q^{13} - 4 q^{17} - 4 q^{19} - 3 q^{21} + 12 q^{23} + 5 q^{25} - 2 q^{27} - 5 q^{29} - 6 q^{31} + 7 q^{33} - 15 q^{35} - 4 q^{37} - q^{39} + 2 q^{41}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.618034 −0.356822 −0.178411 0.983956i \(-0.557096\pi\)
−0.178411 + 0.983956i \(0.557096\pi\)
\(4\) 0 0
\(5\) −3.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(6\) 0 0
\(7\) 4.23607 1.60108 0.800542 0.599277i \(-0.204545\pi\)
0.800542 + 0.599277i \(0.204545\pi\)
\(8\) 0 0
\(9\) −2.61803 −0.872678
\(10\) 0 0
\(11\) −0.236068 −0.0711772 −0.0355886 0.999367i \(-0.511331\pi\)
−0.0355886 + 0.999367i \(0.511331\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 2.23607 0.577350
\(16\) 0 0
\(17\) 0.236068 0.0572549 0.0286274 0.999590i \(-0.490886\pi\)
0.0286274 + 0.999590i \(0.490886\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −2.61803 −0.571302
\(22\) 0 0
\(23\) 8.23607 1.71734 0.858669 0.512530i \(-0.171292\pi\)
0.858669 + 0.512530i \(0.171292\pi\)
\(24\) 0 0
\(25\) 8.09017 1.61803
\(26\) 0 0
\(27\) 3.47214 0.668213
\(28\) 0 0
\(29\) 0.854102 0.158603 0.0793014 0.996851i \(-0.474731\pi\)
0.0793014 + 0.996851i \(0.474731\pi\)
\(30\) 0 0
\(31\) −7.47214 −1.34204 −0.671018 0.741441i \(-0.734143\pi\)
−0.671018 + 0.741441i \(0.734143\pi\)
\(32\) 0 0
\(33\) 0.145898 0.0253976
\(34\) 0 0
\(35\) −15.3262 −2.59061
\(36\) 0 0
\(37\) −8.70820 −1.43162 −0.715810 0.698295i \(-0.753942\pi\)
−0.715810 + 0.698295i \(0.753942\pi\)
\(38\) 0 0
\(39\) 0.618034 0.0989646
\(40\) 0 0
\(41\) 7.70820 1.20382 0.601910 0.798564i \(-0.294407\pi\)
0.601910 + 0.798564i \(0.294407\pi\)
\(42\) 0 0
\(43\) −2.23607 −0.340997 −0.170499 0.985358i \(-0.554538\pi\)
−0.170499 + 0.985358i \(0.554538\pi\)
\(44\) 0 0
\(45\) 9.47214 1.41202
\(46\) 0 0
\(47\) 6.85410 0.999774 0.499887 0.866091i \(-0.333375\pi\)
0.499887 + 0.866091i \(0.333375\pi\)
\(48\) 0 0
\(49\) 10.9443 1.56347
\(50\) 0 0
\(51\) −0.145898 −0.0204298
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0.854102 0.115167
\(56\) 0 0
\(57\) 1.23607 0.163721
\(58\) 0 0
\(59\) 6.56231 0.854339 0.427170 0.904171i \(-0.359511\pi\)
0.427170 + 0.904171i \(0.359511\pi\)
\(60\) 0 0
\(61\) −5.47214 −0.700635 −0.350318 0.936631i \(-0.613926\pi\)
−0.350318 + 0.936631i \(0.613926\pi\)
\(62\) 0 0
\(63\) −11.0902 −1.39723
\(64\) 0 0
\(65\) 3.61803 0.448762
\(66\) 0 0
\(67\) −1.76393 −0.215499 −0.107749 0.994178i \(-0.534364\pi\)
−0.107749 + 0.994178i \(0.534364\pi\)
\(68\) 0 0
\(69\) −5.09017 −0.612784
\(70\) 0 0
\(71\) −9.70820 −1.15215 −0.576076 0.817396i \(-0.695417\pi\)
−0.576076 + 0.817396i \(0.695417\pi\)
\(72\) 0 0
\(73\) −10.7082 −1.25330 −0.626650 0.779301i \(-0.715575\pi\)
−0.626650 + 0.779301i \(0.715575\pi\)
\(74\) 0 0
\(75\) −5.00000 −0.577350
\(76\) 0 0
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) 13.7984 1.55244 0.776219 0.630463i \(-0.217135\pi\)
0.776219 + 0.630463i \(0.217135\pi\)
\(80\) 0 0
\(81\) 5.70820 0.634245
\(82\) 0 0
\(83\) 5.23607 0.574733 0.287367 0.957821i \(-0.407220\pi\)
0.287367 + 0.957821i \(0.407220\pi\)
\(84\) 0 0
\(85\) −0.854102 −0.0926404
\(86\) 0 0
\(87\) −0.527864 −0.0565930
\(88\) 0 0
\(89\) −9.79837 −1.03863 −0.519313 0.854584i \(-0.673812\pi\)
−0.519313 + 0.854584i \(0.673812\pi\)
\(90\) 0 0
\(91\) −4.23607 −0.444061
\(92\) 0 0
\(93\) 4.61803 0.478868
\(94\) 0 0
\(95\) 7.23607 0.742405
\(96\) 0 0
\(97\) 12.6525 1.28466 0.642332 0.766426i \(-0.277967\pi\)
0.642332 + 0.766426i \(0.277967\pi\)
\(98\) 0 0
\(99\) 0.618034 0.0621148
\(100\) 0 0
\(101\) −5.09017 −0.506491 −0.253245 0.967402i \(-0.581498\pi\)
−0.253245 + 0.967402i \(0.581498\pi\)
\(102\) 0 0
\(103\) −10.8541 −1.06949 −0.534743 0.845015i \(-0.679592\pi\)
−0.534743 + 0.845015i \(0.679592\pi\)
\(104\) 0 0
\(105\) 9.47214 0.924386
\(106\) 0 0
\(107\) 12.2361 1.18291 0.591453 0.806340i \(-0.298555\pi\)
0.591453 + 0.806340i \(0.298555\pi\)
\(108\) 0 0
\(109\) −4.70820 −0.450964 −0.225482 0.974247i \(-0.572396\pi\)
−0.225482 + 0.974247i \(0.572396\pi\)
\(110\) 0 0
\(111\) 5.38197 0.510834
\(112\) 0 0
\(113\) −15.3820 −1.44701 −0.723507 0.690317i \(-0.757471\pi\)
−0.723507 + 0.690317i \(0.757471\pi\)
\(114\) 0 0
\(115\) −29.7984 −2.77871
\(116\) 0 0
\(117\) 2.61803 0.242037
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −10.9443 −0.994934
\(122\) 0 0
\(123\) −4.76393 −0.429549
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) −20.7984 −1.84556 −0.922779 0.385331i \(-0.874087\pi\)
−0.922779 + 0.385331i \(0.874087\pi\)
\(128\) 0 0
\(129\) 1.38197 0.121675
\(130\) 0 0
\(131\) −2.76393 −0.241486 −0.120743 0.992684i \(-0.538528\pi\)
−0.120743 + 0.992684i \(0.538528\pi\)
\(132\) 0 0
\(133\) −8.47214 −0.734627
\(134\) 0 0
\(135\) −12.5623 −1.08119
\(136\) 0 0
\(137\) −15.6180 −1.33434 −0.667169 0.744906i \(-0.732494\pi\)
−0.667169 + 0.744906i \(0.732494\pi\)
\(138\) 0 0
\(139\) −10.5623 −0.895883 −0.447942 0.894063i \(-0.647843\pi\)
−0.447942 + 0.894063i \(0.647843\pi\)
\(140\) 0 0
\(141\) −4.23607 −0.356741
\(142\) 0 0
\(143\) 0.236068 0.0197410
\(144\) 0 0
\(145\) −3.09017 −0.256625
\(146\) 0 0
\(147\) −6.76393 −0.557880
\(148\) 0 0
\(149\) 0.326238 0.0267265 0.0133632 0.999911i \(-0.495746\pi\)
0.0133632 + 0.999911i \(0.495746\pi\)
\(150\) 0 0
\(151\) 9.94427 0.809253 0.404627 0.914482i \(-0.367401\pi\)
0.404627 + 0.914482i \(0.367401\pi\)
\(152\) 0 0
\(153\) −0.618034 −0.0499651
\(154\) 0 0
\(155\) 27.0344 2.17146
\(156\) 0 0
\(157\) 22.6525 1.80786 0.903932 0.427676i \(-0.140668\pi\)
0.903932 + 0.427676i \(0.140668\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 34.8885 2.74960
\(162\) 0 0
\(163\) −17.3262 −1.35710 −0.678548 0.734556i \(-0.737390\pi\)
−0.678548 + 0.734556i \(0.737390\pi\)
\(164\) 0 0
\(165\) −0.527864 −0.0410942
\(166\) 0 0
\(167\) −3.61803 −0.279972 −0.139986 0.990153i \(-0.544706\pi\)
−0.139986 + 0.990153i \(0.544706\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 5.23607 0.400412
\(172\) 0 0
\(173\) −7.47214 −0.568096 −0.284048 0.958810i \(-0.591678\pi\)
−0.284048 + 0.958810i \(0.591678\pi\)
\(174\) 0 0
\(175\) 34.2705 2.59061
\(176\) 0 0
\(177\) −4.05573 −0.304847
\(178\) 0 0
\(179\) −18.7082 −1.39832 −0.699158 0.714967i \(-0.746442\pi\)
−0.699158 + 0.714967i \(0.746442\pi\)
\(180\) 0 0
\(181\) 19.4164 1.44321 0.721605 0.692305i \(-0.243405\pi\)
0.721605 + 0.692305i \(0.243405\pi\)
\(182\) 0 0
\(183\) 3.38197 0.250002
\(184\) 0 0
\(185\) 31.5066 2.31641
\(186\) 0 0
\(187\) −0.0557281 −0.00407524
\(188\) 0 0
\(189\) 14.7082 1.06986
\(190\) 0 0
\(191\) 5.05573 0.365820 0.182910 0.983130i \(-0.441448\pi\)
0.182910 + 0.983130i \(0.441448\pi\)
\(192\) 0 0
\(193\) −8.23607 −0.592845 −0.296423 0.955057i \(-0.595794\pi\)
−0.296423 + 0.955057i \(0.595794\pi\)
\(194\) 0 0
\(195\) −2.23607 −0.160128
\(196\) 0 0
\(197\) −22.3820 −1.59465 −0.797325 0.603551i \(-0.793752\pi\)
−0.797325 + 0.603551i \(0.793752\pi\)
\(198\) 0 0
\(199\) 5.38197 0.381517 0.190759 0.981637i \(-0.438905\pi\)
0.190759 + 0.981637i \(0.438905\pi\)
\(200\) 0 0
\(201\) 1.09017 0.0768947
\(202\) 0 0
\(203\) 3.61803 0.253936
\(204\) 0 0
\(205\) −27.8885 −1.94782
\(206\) 0 0
\(207\) −21.5623 −1.49868
\(208\) 0 0
\(209\) 0.472136 0.0326583
\(210\) 0 0
\(211\) −0.854102 −0.0587988 −0.0293994 0.999568i \(-0.509359\pi\)
−0.0293994 + 0.999568i \(0.509359\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) 8.09017 0.551745
\(216\) 0 0
\(217\) −31.6525 −2.14871
\(218\) 0 0
\(219\) 6.61803 0.447205
\(220\) 0 0
\(221\) −0.236068 −0.0158797
\(222\) 0 0
\(223\) 5.32624 0.356671 0.178336 0.983970i \(-0.442929\pi\)
0.178336 + 0.983970i \(0.442929\pi\)
\(224\) 0 0
\(225\) −21.1803 −1.41202
\(226\) 0 0
\(227\) 24.0344 1.59522 0.797611 0.603172i \(-0.206097\pi\)
0.797611 + 0.603172i \(0.206097\pi\)
\(228\) 0 0
\(229\) −10.7082 −0.707618 −0.353809 0.935318i \(-0.615114\pi\)
−0.353809 + 0.935318i \(0.615114\pi\)
\(230\) 0 0
\(231\) 0.618034 0.0406637
\(232\) 0 0
\(233\) 4.23607 0.277514 0.138757 0.990326i \(-0.455689\pi\)
0.138757 + 0.990326i \(0.455689\pi\)
\(234\) 0 0
\(235\) −24.7984 −1.61767
\(236\) 0 0
\(237\) −8.52786 −0.553944
\(238\) 0 0
\(239\) 19.2705 1.24651 0.623253 0.782020i \(-0.285811\pi\)
0.623253 + 0.782020i \(0.285811\pi\)
\(240\) 0 0
\(241\) −4.70820 −0.303282 −0.151641 0.988436i \(-0.548456\pi\)
−0.151641 + 0.988436i \(0.548456\pi\)
\(242\) 0 0
\(243\) −13.9443 −0.894525
\(244\) 0 0
\(245\) −39.5967 −2.52974
\(246\) 0 0
\(247\) 2.00000 0.127257
\(248\) 0 0
\(249\) −3.23607 −0.205077
\(250\) 0 0
\(251\) −24.0902 −1.52056 −0.760279 0.649597i \(-0.774938\pi\)
−0.760279 + 0.649597i \(0.774938\pi\)
\(252\) 0 0
\(253\) −1.94427 −0.122235
\(254\) 0 0
\(255\) 0.527864 0.0330561
\(256\) 0 0
\(257\) −5.47214 −0.341342 −0.170671 0.985328i \(-0.554594\pi\)
−0.170671 + 0.985328i \(0.554594\pi\)
\(258\) 0 0
\(259\) −36.8885 −2.29214
\(260\) 0 0
\(261\) −2.23607 −0.138409
\(262\) 0 0
\(263\) −23.2705 −1.43492 −0.717461 0.696599i \(-0.754696\pi\)
−0.717461 + 0.696599i \(0.754696\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 6.05573 0.370605
\(268\) 0 0
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) −24.1246 −1.46547 −0.732733 0.680516i \(-0.761756\pi\)
−0.732733 + 0.680516i \(0.761756\pi\)
\(272\) 0 0
\(273\) 2.61803 0.158451
\(274\) 0 0
\(275\) −1.90983 −0.115167
\(276\) 0 0
\(277\) −21.3820 −1.28472 −0.642359 0.766404i \(-0.722044\pi\)
−0.642359 + 0.766404i \(0.722044\pi\)
\(278\) 0 0
\(279\) 19.5623 1.17116
\(280\) 0 0
\(281\) −29.1803 −1.74075 −0.870377 0.492387i \(-0.836125\pi\)
−0.870377 + 0.492387i \(0.836125\pi\)
\(282\) 0 0
\(283\) −5.76393 −0.342630 −0.171315 0.985216i \(-0.554802\pi\)
−0.171315 + 0.985216i \(0.554802\pi\)
\(284\) 0 0
\(285\) −4.47214 −0.264906
\(286\) 0 0
\(287\) 32.6525 1.92741
\(288\) 0 0
\(289\) −16.9443 −0.996722
\(290\) 0 0
\(291\) −7.81966 −0.458397
\(292\) 0 0
\(293\) 7.52786 0.439783 0.219891 0.975524i \(-0.429430\pi\)
0.219891 + 0.975524i \(0.429430\pi\)
\(294\) 0 0
\(295\) −23.7426 −1.38235
\(296\) 0 0
\(297\) −0.819660 −0.0475615
\(298\) 0 0
\(299\) −8.23607 −0.476304
\(300\) 0 0
\(301\) −9.47214 −0.545965
\(302\) 0 0
\(303\) 3.14590 0.180727
\(304\) 0 0
\(305\) 19.7984 1.13365
\(306\) 0 0
\(307\) −32.1246 −1.83345 −0.916724 0.399521i \(-0.869177\pi\)
−0.916724 + 0.399521i \(0.869177\pi\)
\(308\) 0 0
\(309\) 6.70820 0.381616
\(310\) 0 0
\(311\) 17.2361 0.977368 0.488684 0.872461i \(-0.337477\pi\)
0.488684 + 0.872461i \(0.337477\pi\)
\(312\) 0 0
\(313\) 13.1459 0.743050 0.371525 0.928423i \(-0.378835\pi\)
0.371525 + 0.928423i \(0.378835\pi\)
\(314\) 0 0
\(315\) 40.1246 2.26077
\(316\) 0 0
\(317\) −30.2361 −1.69823 −0.849113 0.528211i \(-0.822863\pi\)
−0.849113 + 0.528211i \(0.822863\pi\)
\(318\) 0 0
\(319\) −0.201626 −0.0112889
\(320\) 0 0
\(321\) −7.56231 −0.422087
\(322\) 0 0
\(323\) −0.472136 −0.0262703
\(324\) 0 0
\(325\) −8.09017 −0.448762
\(326\) 0 0
\(327\) 2.90983 0.160914
\(328\) 0 0
\(329\) 29.0344 1.60072
\(330\) 0 0
\(331\) −0.819660 −0.0450526 −0.0225263 0.999746i \(-0.507171\pi\)
−0.0225263 + 0.999746i \(0.507171\pi\)
\(332\) 0 0
\(333\) 22.7984 1.24934
\(334\) 0 0
\(335\) 6.38197 0.348684
\(336\) 0 0
\(337\) −27.9787 −1.52410 −0.762049 0.647520i \(-0.775806\pi\)
−0.762049 + 0.647520i \(0.775806\pi\)
\(338\) 0 0
\(339\) 9.50658 0.516326
\(340\) 0 0
\(341\) 1.76393 0.0955223
\(342\) 0 0
\(343\) 16.7082 0.902158
\(344\) 0 0
\(345\) 18.4164 0.991506
\(346\) 0 0
\(347\) −13.3607 −0.717239 −0.358619 0.933484i \(-0.616752\pi\)
−0.358619 + 0.933484i \(0.616752\pi\)
\(348\) 0 0
\(349\) 21.2705 1.13858 0.569292 0.822135i \(-0.307217\pi\)
0.569292 + 0.822135i \(0.307217\pi\)
\(350\) 0 0
\(351\) −3.47214 −0.185329
\(352\) 0 0
\(353\) −9.85410 −0.524481 −0.262240 0.965003i \(-0.584461\pi\)
−0.262240 + 0.965003i \(0.584461\pi\)
\(354\) 0 0
\(355\) 35.1246 1.86422
\(356\) 0 0
\(357\) −0.618034 −0.0327098
\(358\) 0 0
\(359\) 16.9443 0.894284 0.447142 0.894463i \(-0.352442\pi\)
0.447142 + 0.894463i \(0.352442\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 6.76393 0.355014
\(364\) 0 0
\(365\) 38.7426 2.02788
\(366\) 0 0
\(367\) 9.20163 0.480321 0.240160 0.970733i \(-0.422800\pi\)
0.240160 + 0.970733i \(0.422800\pi\)
\(368\) 0 0
\(369\) −20.1803 −1.05055
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6.94427 0.359561 0.179780 0.983707i \(-0.442461\pi\)
0.179780 + 0.983707i \(0.442461\pi\)
\(374\) 0 0
\(375\) 6.90983 0.356822
\(376\) 0 0
\(377\) −0.854102 −0.0439885
\(378\) 0 0
\(379\) −6.14590 −0.315694 −0.157847 0.987464i \(-0.550455\pi\)
−0.157847 + 0.987464i \(0.550455\pi\)
\(380\) 0 0
\(381\) 12.8541 0.658536
\(382\) 0 0
\(383\) 17.3820 0.888177 0.444088 0.895983i \(-0.353528\pi\)
0.444088 + 0.895983i \(0.353528\pi\)
\(384\) 0 0
\(385\) 3.61803 0.184392
\(386\) 0 0
\(387\) 5.85410 0.297581
\(388\) 0 0
\(389\) 28.9443 1.46753 0.733766 0.679402i \(-0.237761\pi\)
0.733766 + 0.679402i \(0.237761\pi\)
\(390\) 0 0
\(391\) 1.94427 0.0983261
\(392\) 0 0
\(393\) 1.70820 0.0861675
\(394\) 0 0
\(395\) −49.9230 −2.51190
\(396\) 0 0
\(397\) −34.2705 −1.71999 −0.859994 0.510304i \(-0.829533\pi\)
−0.859994 + 0.510304i \(0.829533\pi\)
\(398\) 0 0
\(399\) 5.23607 0.262131
\(400\) 0 0
\(401\) −4.27051 −0.213259 −0.106630 0.994299i \(-0.534006\pi\)
−0.106630 + 0.994299i \(0.534006\pi\)
\(402\) 0 0
\(403\) 7.47214 0.372214
\(404\) 0 0
\(405\) −20.6525 −1.02623
\(406\) 0 0
\(407\) 2.05573 0.101899
\(408\) 0 0
\(409\) −11.6525 −0.576178 −0.288089 0.957604i \(-0.593020\pi\)
−0.288089 + 0.957604i \(0.593020\pi\)
\(410\) 0 0
\(411\) 9.65248 0.476122
\(412\) 0 0
\(413\) 27.7984 1.36787
\(414\) 0 0
\(415\) −18.9443 −0.929938
\(416\) 0 0
\(417\) 6.52786 0.319671
\(418\) 0 0
\(419\) 17.4377 0.851887 0.425944 0.904750i \(-0.359942\pi\)
0.425944 + 0.904750i \(0.359942\pi\)
\(420\) 0 0
\(421\) 11.4721 0.559118 0.279559 0.960129i \(-0.409812\pi\)
0.279559 + 0.960129i \(0.409812\pi\)
\(422\) 0 0
\(423\) −17.9443 −0.872480
\(424\) 0 0
\(425\) 1.90983 0.0926404
\(426\) 0 0
\(427\) −23.1803 −1.12178
\(428\) 0 0
\(429\) −0.145898 −0.00704402
\(430\) 0 0
\(431\) 15.4721 0.745267 0.372633 0.927979i \(-0.378455\pi\)
0.372633 + 0.927979i \(0.378455\pi\)
\(432\) 0 0
\(433\) 12.2016 0.586373 0.293186 0.956055i \(-0.405284\pi\)
0.293186 + 0.956055i \(0.405284\pi\)
\(434\) 0 0
\(435\) 1.90983 0.0915693
\(436\) 0 0
\(437\) −16.4721 −0.787969
\(438\) 0 0
\(439\) −19.1459 −0.913784 −0.456892 0.889522i \(-0.651037\pi\)
−0.456892 + 0.889522i \(0.651037\pi\)
\(440\) 0 0
\(441\) −28.6525 −1.36440
\(442\) 0 0
\(443\) −33.4164 −1.58766 −0.793831 0.608139i \(-0.791916\pi\)
−0.793831 + 0.608139i \(0.791916\pi\)
\(444\) 0 0
\(445\) 35.4508 1.68053
\(446\) 0 0
\(447\) −0.201626 −0.00953659
\(448\) 0 0
\(449\) 2.90983 0.137323 0.0686617 0.997640i \(-0.478127\pi\)
0.0686617 + 0.997640i \(0.478127\pi\)
\(450\) 0 0
\(451\) −1.81966 −0.0856844
\(452\) 0 0
\(453\) −6.14590 −0.288759
\(454\) 0 0
\(455\) 15.3262 0.718505
\(456\) 0 0
\(457\) 26.7984 1.25358 0.626788 0.779190i \(-0.284369\pi\)
0.626788 + 0.779190i \(0.284369\pi\)
\(458\) 0 0
\(459\) 0.819660 0.0382585
\(460\) 0 0
\(461\) 21.1246 0.983871 0.491936 0.870632i \(-0.336290\pi\)
0.491936 + 0.870632i \(0.336290\pi\)
\(462\) 0 0
\(463\) 20.0902 0.933669 0.466835 0.884345i \(-0.345394\pi\)
0.466835 + 0.884345i \(0.345394\pi\)
\(464\) 0 0
\(465\) −16.7082 −0.774824
\(466\) 0 0
\(467\) 6.58359 0.304652 0.152326 0.988330i \(-0.451324\pi\)
0.152326 + 0.988330i \(0.451324\pi\)
\(468\) 0 0
\(469\) −7.47214 −0.345031
\(470\) 0 0
\(471\) −14.0000 −0.645086
\(472\) 0 0
\(473\) 0.527864 0.0242712
\(474\) 0 0
\(475\) −16.1803 −0.742405
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 36.5967 1.67215 0.836074 0.548617i \(-0.184845\pi\)
0.836074 + 0.548617i \(0.184845\pi\)
\(480\) 0 0
\(481\) 8.70820 0.397060
\(482\) 0 0
\(483\) −21.5623 −0.981119
\(484\) 0 0
\(485\) −45.7771 −2.07863
\(486\) 0 0
\(487\) 14.8328 0.672139 0.336070 0.941837i \(-0.390902\pi\)
0.336070 + 0.941837i \(0.390902\pi\)
\(488\) 0 0
\(489\) 10.7082 0.484242
\(490\) 0 0
\(491\) −6.76393 −0.305252 −0.152626 0.988284i \(-0.548773\pi\)
−0.152626 + 0.988284i \(0.548773\pi\)
\(492\) 0 0
\(493\) 0.201626 0.00908078
\(494\) 0 0
\(495\) −2.23607 −0.100504
\(496\) 0 0
\(497\) −41.1246 −1.84469
\(498\) 0 0
\(499\) −11.9443 −0.534699 −0.267350 0.963600i \(-0.586148\pi\)
−0.267350 + 0.963600i \(0.586148\pi\)
\(500\) 0 0
\(501\) 2.23607 0.0999001
\(502\) 0 0
\(503\) −34.3607 −1.53207 −0.766033 0.642801i \(-0.777772\pi\)
−0.766033 + 0.642801i \(0.777772\pi\)
\(504\) 0 0
\(505\) 18.4164 0.819519
\(506\) 0 0
\(507\) 7.41641 0.329374
\(508\) 0 0
\(509\) 26.6738 1.18229 0.591147 0.806564i \(-0.298675\pi\)
0.591147 + 0.806564i \(0.298675\pi\)
\(510\) 0 0
\(511\) −45.3607 −2.00664
\(512\) 0 0
\(513\) −6.94427 −0.306597
\(514\) 0 0
\(515\) 39.2705 1.73047
\(516\) 0 0
\(517\) −1.61803 −0.0711611
\(518\) 0 0
\(519\) 4.61803 0.202709
\(520\) 0 0
\(521\) 30.4164 1.33257 0.666284 0.745699i \(-0.267884\pi\)
0.666284 + 0.745699i \(0.267884\pi\)
\(522\) 0 0
\(523\) −27.6180 −1.20765 −0.603826 0.797116i \(-0.706358\pi\)
−0.603826 + 0.797116i \(0.706358\pi\)
\(524\) 0 0
\(525\) −21.1803 −0.924386
\(526\) 0 0
\(527\) −1.76393 −0.0768381
\(528\) 0 0
\(529\) 44.8328 1.94925
\(530\) 0 0
\(531\) −17.1803 −0.745563
\(532\) 0 0
\(533\) −7.70820 −0.333879
\(534\) 0 0
\(535\) −44.2705 −1.91398
\(536\) 0 0
\(537\) 11.5623 0.498950
\(538\) 0 0
\(539\) −2.58359 −0.111283
\(540\) 0 0
\(541\) 20.4721 0.880166 0.440083 0.897957i \(-0.354949\pi\)
0.440083 + 0.897957i \(0.354949\pi\)
\(542\) 0 0
\(543\) −12.0000 −0.514969
\(544\) 0 0
\(545\) 17.0344 0.729675
\(546\) 0 0
\(547\) −3.20163 −0.136892 −0.0684458 0.997655i \(-0.521804\pi\)
−0.0684458 + 0.997655i \(0.521804\pi\)
\(548\) 0 0
\(549\) 14.3262 0.611429
\(550\) 0 0
\(551\) −1.70820 −0.0727719
\(552\) 0 0
\(553\) 58.4508 2.48558
\(554\) 0 0
\(555\) −19.4721 −0.826546
\(556\) 0 0
\(557\) 28.2918 1.19876 0.599381 0.800464i \(-0.295413\pi\)
0.599381 + 0.800464i \(0.295413\pi\)
\(558\) 0 0
\(559\) 2.23607 0.0945756
\(560\) 0 0
\(561\) 0.0344419 0.00145414
\(562\) 0 0
\(563\) −7.29180 −0.307313 −0.153656 0.988124i \(-0.549105\pi\)
−0.153656 + 0.988124i \(0.549105\pi\)
\(564\) 0 0
\(565\) 55.6525 2.34132
\(566\) 0 0
\(567\) 24.1803 1.01548
\(568\) 0 0
\(569\) −5.90983 −0.247753 −0.123876 0.992298i \(-0.539533\pi\)
−0.123876 + 0.992298i \(0.539533\pi\)
\(570\) 0 0
\(571\) −10.0000 −0.418487 −0.209243 0.977864i \(-0.567100\pi\)
−0.209243 + 0.977864i \(0.567100\pi\)
\(572\) 0 0
\(573\) −3.12461 −0.130533
\(574\) 0 0
\(575\) 66.6312 2.77871
\(576\) 0 0
\(577\) 3.00000 0.124892 0.0624458 0.998048i \(-0.480110\pi\)
0.0624458 + 0.998048i \(0.480110\pi\)
\(578\) 0 0
\(579\) 5.09017 0.211540
\(580\) 0 0
\(581\) 22.1803 0.920196
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −9.47214 −0.391625
\(586\) 0 0
\(587\) 10.6738 0.440553 0.220277 0.975437i \(-0.429304\pi\)
0.220277 + 0.975437i \(0.429304\pi\)
\(588\) 0 0
\(589\) 14.9443 0.615768
\(590\) 0 0
\(591\) 13.8328 0.569006
\(592\) 0 0
\(593\) −0.583592 −0.0239653 −0.0119826 0.999928i \(-0.503814\pi\)
−0.0119826 + 0.999928i \(0.503814\pi\)
\(594\) 0 0
\(595\) −3.61803 −0.148325
\(596\) 0 0
\(597\) −3.32624 −0.136134
\(598\) 0 0
\(599\) 15.5967 0.637266 0.318633 0.947878i \(-0.396776\pi\)
0.318633 + 0.947878i \(0.396776\pi\)
\(600\) 0 0
\(601\) −25.6869 −1.04779 −0.523896 0.851782i \(-0.675522\pi\)
−0.523896 + 0.851782i \(0.675522\pi\)
\(602\) 0 0
\(603\) 4.61803 0.188061
\(604\) 0 0
\(605\) 39.5967 1.60984
\(606\) 0 0
\(607\) −47.5755 −1.93103 −0.965514 0.260350i \(-0.916162\pi\)
−0.965514 + 0.260350i \(0.916162\pi\)
\(608\) 0 0
\(609\) −2.23607 −0.0906100
\(610\) 0 0
\(611\) −6.85410 −0.277287
\(612\) 0 0
\(613\) −26.5279 −1.07145 −0.535725 0.844392i \(-0.679962\pi\)
−0.535725 + 0.844392i \(0.679962\pi\)
\(614\) 0 0
\(615\) 17.2361 0.695025
\(616\) 0 0
\(617\) 36.1591 1.45571 0.727854 0.685732i \(-0.240518\pi\)
0.727854 + 0.685732i \(0.240518\pi\)
\(618\) 0 0
\(619\) 40.8328 1.64121 0.820605 0.571496i \(-0.193637\pi\)
0.820605 + 0.571496i \(0.193637\pi\)
\(620\) 0 0
\(621\) 28.5967 1.14755
\(622\) 0 0
\(623\) −41.5066 −1.66293
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.291796 −0.0116532
\(628\) 0 0
\(629\) −2.05573 −0.0819672
\(630\) 0 0
\(631\) −5.20163 −0.207073 −0.103537 0.994626i \(-0.533016\pi\)
−0.103537 + 0.994626i \(0.533016\pi\)
\(632\) 0 0
\(633\) 0.527864 0.0209807
\(634\) 0 0
\(635\) 75.2492 2.98617
\(636\) 0 0
\(637\) −10.9443 −0.433628
\(638\) 0 0
\(639\) 25.4164 1.00546
\(640\) 0 0
\(641\) 3.18034 0.125616 0.0628079 0.998026i \(-0.479994\pi\)
0.0628079 + 0.998026i \(0.479994\pi\)
\(642\) 0 0
\(643\) 4.14590 0.163498 0.0817491 0.996653i \(-0.473949\pi\)
0.0817491 + 0.996653i \(0.473949\pi\)
\(644\) 0 0
\(645\) −5.00000 −0.196875
\(646\) 0 0
\(647\) 2.81966 0.110852 0.0554261 0.998463i \(-0.482348\pi\)
0.0554261 + 0.998463i \(0.482348\pi\)
\(648\) 0 0
\(649\) −1.54915 −0.0608095
\(650\) 0 0
\(651\) 19.5623 0.766707
\(652\) 0 0
\(653\) −27.5410 −1.07776 −0.538882 0.842381i \(-0.681153\pi\)
−0.538882 + 0.842381i \(0.681153\pi\)
\(654\) 0 0
\(655\) 10.0000 0.390732
\(656\) 0 0
\(657\) 28.0344 1.09373
\(658\) 0 0
\(659\) 31.3262 1.22030 0.610148 0.792287i \(-0.291110\pi\)
0.610148 + 0.792287i \(0.291110\pi\)
\(660\) 0 0
\(661\) −20.8541 −0.811131 −0.405565 0.914066i \(-0.632925\pi\)
−0.405565 + 0.914066i \(0.632925\pi\)
\(662\) 0 0
\(663\) 0.145898 0.00566621
\(664\) 0 0
\(665\) 30.6525 1.18865
\(666\) 0 0
\(667\) 7.03444 0.272375
\(668\) 0 0
\(669\) −3.29180 −0.127268
\(670\) 0 0
\(671\) 1.29180 0.0498692
\(672\) 0 0
\(673\) 10.7082 0.412771 0.206385 0.978471i \(-0.433830\pi\)
0.206385 + 0.978471i \(0.433830\pi\)
\(674\) 0 0
\(675\) 28.0902 1.08119
\(676\) 0 0
\(677\) −17.4377 −0.670185 −0.335093 0.942185i \(-0.608768\pi\)
−0.335093 + 0.942185i \(0.608768\pi\)
\(678\) 0 0
\(679\) 53.5967 2.05685
\(680\) 0 0
\(681\) −14.8541 −0.569210
\(682\) 0 0
\(683\) 21.2361 0.812576 0.406288 0.913745i \(-0.366823\pi\)
0.406288 + 0.913745i \(0.366823\pi\)
\(684\) 0 0
\(685\) 56.5066 2.15901
\(686\) 0 0
\(687\) 6.61803 0.252494
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 15.1246 0.575367 0.287684 0.957725i \(-0.407115\pi\)
0.287684 + 0.957725i \(0.407115\pi\)
\(692\) 0 0
\(693\) 2.61803 0.0994509
\(694\) 0 0
\(695\) 38.2148 1.44957
\(696\) 0 0
\(697\) 1.81966 0.0689245
\(698\) 0 0
\(699\) −2.61803 −0.0990231
\(700\) 0 0
\(701\) −10.9787 −0.414660 −0.207330 0.978271i \(-0.566477\pi\)
−0.207330 + 0.978271i \(0.566477\pi\)
\(702\) 0 0
\(703\) 17.4164 0.656872
\(704\) 0 0
\(705\) 15.3262 0.577220
\(706\) 0 0
\(707\) −21.5623 −0.810934
\(708\) 0 0
\(709\) −37.9443 −1.42503 −0.712514 0.701658i \(-0.752443\pi\)
−0.712514 + 0.701658i \(0.752443\pi\)
\(710\) 0 0
\(711\) −36.1246 −1.35478
\(712\) 0 0
\(713\) −61.5410 −2.30473
\(714\) 0 0
\(715\) −0.854102 −0.0319416
\(716\) 0 0
\(717\) −11.9098 −0.444781
\(718\) 0 0
\(719\) −42.1803 −1.57306 −0.786531 0.617551i \(-0.788125\pi\)
−0.786531 + 0.617551i \(0.788125\pi\)
\(720\) 0 0
\(721\) −45.9787 −1.71234
\(722\) 0 0
\(723\) 2.90983 0.108218
\(724\) 0 0
\(725\) 6.90983 0.256625
\(726\) 0 0
\(727\) 44.7082 1.65814 0.829068 0.559148i \(-0.188872\pi\)
0.829068 + 0.559148i \(0.188872\pi\)
\(728\) 0 0
\(729\) −8.50658 −0.315058
\(730\) 0 0
\(731\) −0.527864 −0.0195238
\(732\) 0 0
\(733\) −33.3607 −1.23220 −0.616102 0.787666i \(-0.711289\pi\)
−0.616102 + 0.787666i \(0.711289\pi\)
\(734\) 0 0
\(735\) 24.4721 0.902668
\(736\) 0 0
\(737\) 0.416408 0.0153386
\(738\) 0 0
\(739\) −35.0344 −1.28876 −0.644381 0.764704i \(-0.722885\pi\)
−0.644381 + 0.764704i \(0.722885\pi\)
\(740\) 0 0
\(741\) −1.23607 −0.0454081
\(742\) 0 0
\(743\) 9.20163 0.337575 0.168787 0.985652i \(-0.446015\pi\)
0.168787 + 0.985652i \(0.446015\pi\)
\(744\) 0 0
\(745\) −1.18034 −0.0432443
\(746\) 0 0
\(747\) −13.7082 −0.501557
\(748\) 0 0
\(749\) 51.8328 1.89393
\(750\) 0 0
\(751\) −39.8673 −1.45478 −0.727388 0.686226i \(-0.759266\pi\)
−0.727388 + 0.686226i \(0.759266\pi\)
\(752\) 0 0
\(753\) 14.8885 0.542569
\(754\) 0 0
\(755\) −35.9787 −1.30940
\(756\) 0 0
\(757\) −38.9443 −1.41545 −0.707727 0.706486i \(-0.750279\pi\)
−0.707727 + 0.706486i \(0.750279\pi\)
\(758\) 0 0
\(759\) 1.20163 0.0436163
\(760\) 0 0
\(761\) −1.41641 −0.0513447 −0.0256724 0.999670i \(-0.508173\pi\)
−0.0256724 + 0.999670i \(0.508173\pi\)
\(762\) 0 0
\(763\) −19.9443 −0.722031
\(764\) 0 0
\(765\) 2.23607 0.0808452
\(766\) 0 0
\(767\) −6.56231 −0.236951
\(768\) 0 0
\(769\) −33.3262 −1.20177 −0.600887 0.799334i \(-0.705186\pi\)
−0.600887 + 0.799334i \(0.705186\pi\)
\(770\) 0 0
\(771\) 3.38197 0.121799
\(772\) 0 0
\(773\) 47.5967 1.71194 0.855968 0.517029i \(-0.172962\pi\)
0.855968 + 0.517029i \(0.172962\pi\)
\(774\) 0 0
\(775\) −60.4508 −2.17146
\(776\) 0 0
\(777\) 22.7984 0.817887
\(778\) 0 0
\(779\) −15.4164 −0.552350
\(780\) 0 0
\(781\) 2.29180 0.0820069
\(782\) 0 0
\(783\) 2.96556 0.105980
\(784\) 0 0
\(785\) −81.9574 −2.92519
\(786\) 0 0
\(787\) 2.34752 0.0836802 0.0418401 0.999124i \(-0.486678\pi\)
0.0418401 + 0.999124i \(0.486678\pi\)
\(788\) 0 0
\(789\) 14.3820 0.512012
\(790\) 0 0
\(791\) −65.1591 −2.31679
\(792\) 0 0
\(793\) 5.47214 0.194321
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.2016 0.467626 0.233813 0.972282i \(-0.424880\pi\)
0.233813 + 0.972282i \(0.424880\pi\)
\(798\) 0 0
\(799\) 1.61803 0.0572419
\(800\) 0 0
\(801\) 25.6525 0.906386
\(802\) 0 0
\(803\) 2.52786 0.0892064
\(804\) 0 0
\(805\) −126.228 −4.44895
\(806\) 0 0
\(807\) −0.618034 −0.0217558
\(808\) 0 0
\(809\) 15.5279 0.545931 0.272965 0.962024i \(-0.411996\pi\)
0.272965 + 0.962024i \(0.411996\pi\)
\(810\) 0 0
\(811\) 47.5967 1.67135 0.835674 0.549226i \(-0.185077\pi\)
0.835674 + 0.549226i \(0.185077\pi\)
\(812\) 0 0
\(813\) 14.9098 0.522911
\(814\) 0 0
\(815\) 62.6869 2.19583
\(816\) 0 0
\(817\) 4.47214 0.156460
\(818\) 0 0
\(819\) 11.0902 0.387522
\(820\) 0 0
\(821\) 38.3607 1.33880 0.669398 0.742904i \(-0.266552\pi\)
0.669398 + 0.742904i \(0.266552\pi\)
\(822\) 0 0
\(823\) 50.8885 1.77386 0.886932 0.461901i \(-0.152832\pi\)
0.886932 + 0.461901i \(0.152832\pi\)
\(824\) 0 0
\(825\) 1.18034 0.0410942
\(826\) 0 0
\(827\) 37.7426 1.31244 0.656220 0.754569i \(-0.272154\pi\)
0.656220 + 0.754569i \(0.272154\pi\)
\(828\) 0 0
\(829\) 43.7984 1.52118 0.760590 0.649232i \(-0.224910\pi\)
0.760590 + 0.649232i \(0.224910\pi\)
\(830\) 0 0
\(831\) 13.2148 0.458416
\(832\) 0 0
\(833\) 2.58359 0.0895162
\(834\) 0 0
\(835\) 13.0902 0.453004
\(836\) 0 0
\(837\) −25.9443 −0.896765
\(838\) 0 0
\(839\) −14.4508 −0.498899 −0.249449 0.968388i \(-0.580250\pi\)
−0.249449 + 0.968388i \(0.580250\pi\)
\(840\) 0 0
\(841\) −28.2705 −0.974845
\(842\) 0 0
\(843\) 18.0344 0.621139
\(844\) 0 0
\(845\) 43.4164 1.49357
\(846\) 0 0
\(847\) −46.3607 −1.59297
\(848\) 0 0
\(849\) 3.56231 0.122258
\(850\) 0 0
\(851\) −71.7214 −2.45858
\(852\) 0 0
\(853\) 51.8115 1.77399 0.886996 0.461776i \(-0.152788\pi\)
0.886996 + 0.461776i \(0.152788\pi\)
\(854\) 0 0
\(855\) −18.9443 −0.647880
\(856\) 0 0
\(857\) −42.0689 −1.43705 −0.718523 0.695503i \(-0.755181\pi\)
−0.718523 + 0.695503i \(0.755181\pi\)
\(858\) 0 0
\(859\) 12.7426 0.434773 0.217387 0.976086i \(-0.430247\pi\)
0.217387 + 0.976086i \(0.430247\pi\)
\(860\) 0 0
\(861\) −20.1803 −0.687744
\(862\) 0 0
\(863\) −17.3262 −0.589792 −0.294896 0.955529i \(-0.595285\pi\)
−0.294896 + 0.955529i \(0.595285\pi\)
\(864\) 0 0
\(865\) 27.0344 0.919199
\(866\) 0 0
\(867\) 10.4721 0.355652
\(868\) 0 0
\(869\) −3.25735 −0.110498
\(870\) 0 0
\(871\) 1.76393 0.0597686
\(872\) 0 0
\(873\) −33.1246 −1.12110
\(874\) 0 0
\(875\) −47.3607 −1.60108
\(876\) 0 0
\(877\) 42.5755 1.43767 0.718836 0.695180i \(-0.244675\pi\)
0.718836 + 0.695180i \(0.244675\pi\)
\(878\) 0 0
\(879\) −4.65248 −0.156924
\(880\) 0 0
\(881\) −44.5066 −1.49946 −0.749732 0.661741i \(-0.769818\pi\)
−0.749732 + 0.661741i \(0.769818\pi\)
\(882\) 0 0
\(883\) 50.1935 1.68915 0.844573 0.535441i \(-0.179854\pi\)
0.844573 + 0.535441i \(0.179854\pi\)
\(884\) 0 0
\(885\) 14.6738 0.493253
\(886\) 0 0
\(887\) 13.8328 0.464460 0.232230 0.972661i \(-0.425398\pi\)
0.232230 + 0.972661i \(0.425398\pi\)
\(888\) 0 0
\(889\) −88.1033 −2.95489
\(890\) 0 0
\(891\) −1.34752 −0.0451438
\(892\) 0 0
\(893\) −13.7082 −0.458728
\(894\) 0 0
\(895\) 67.6869 2.26252
\(896\) 0 0
\(897\) 5.09017 0.169956
\(898\) 0 0
\(899\) −6.38197 −0.212850
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 5.85410 0.194812
\(904\) 0 0
\(905\) −70.2492 −2.33516
\(906\) 0 0
\(907\) 14.1246 0.469000 0.234500 0.972116i \(-0.424655\pi\)
0.234500 + 0.972116i \(0.424655\pi\)
\(908\) 0 0
\(909\) 13.3262 0.442003
\(910\) 0 0
\(911\) −47.3394 −1.56842 −0.784212 0.620493i \(-0.786933\pi\)
−0.784212 + 0.620493i \(0.786933\pi\)
\(912\) 0 0
\(913\) −1.23607 −0.0409079
\(914\) 0 0
\(915\) −12.2361 −0.404512
\(916\) 0 0
\(917\) −11.7082 −0.386639
\(918\) 0 0
\(919\) 5.34752 0.176399 0.0881993 0.996103i \(-0.471889\pi\)
0.0881993 + 0.996103i \(0.471889\pi\)
\(920\) 0 0
\(921\) 19.8541 0.654215
\(922\) 0 0
\(923\) 9.70820 0.319549
\(924\) 0 0
\(925\) −70.4508 −2.31641
\(926\) 0 0
\(927\) 28.4164 0.933317
\(928\) 0 0
\(929\) 17.8197 0.584644 0.292322 0.956320i \(-0.405572\pi\)
0.292322 + 0.956320i \(0.405572\pi\)
\(930\) 0 0
\(931\) −21.8885 −0.717368
\(932\) 0 0
\(933\) −10.6525 −0.348746
\(934\) 0 0
\(935\) 0.201626 0.00659388
\(936\) 0 0
\(937\) −33.0902 −1.08101 −0.540504 0.841341i \(-0.681767\pi\)
−0.540504 + 0.841341i \(0.681767\pi\)
\(938\) 0 0
\(939\) −8.12461 −0.265137
\(940\) 0 0
\(941\) −46.9787 −1.53146 −0.765731 0.643161i \(-0.777623\pi\)
−0.765731 + 0.643161i \(0.777623\pi\)
\(942\) 0 0
\(943\) 63.4853 2.06737
\(944\) 0 0
\(945\) −53.2148 −1.73108
\(946\) 0 0
\(947\) 50.2148 1.63176 0.815881 0.578220i \(-0.196253\pi\)
0.815881 + 0.578220i \(0.196253\pi\)
\(948\) 0 0
\(949\) 10.7082 0.347603
\(950\) 0 0
\(951\) 18.6869 0.605965
\(952\) 0 0
\(953\) 25.3050 0.819708 0.409854 0.912151i \(-0.365580\pi\)
0.409854 + 0.912151i \(0.365580\pi\)
\(954\) 0 0
\(955\) −18.2918 −0.591909
\(956\) 0 0
\(957\) 0.124612 0.00402813
\(958\) 0 0
\(959\) −66.1591 −2.13639
\(960\) 0 0
\(961\) 24.8328 0.801059
\(962\) 0 0
\(963\) −32.0344 −1.03230
\(964\) 0 0
\(965\) 29.7984 0.959244
\(966\) 0 0
\(967\) −1.85410 −0.0596239 −0.0298119 0.999556i \(-0.509491\pi\)
−0.0298119 + 0.999556i \(0.509491\pi\)
\(968\) 0 0
\(969\) 0.291796 0.00937384
\(970\) 0 0
\(971\) 0.652476 0.0209389 0.0104695 0.999945i \(-0.496667\pi\)
0.0104695 + 0.999945i \(0.496667\pi\)
\(972\) 0 0
\(973\) −44.7426 −1.43438
\(974\) 0 0
\(975\) 5.00000 0.160128
\(976\) 0 0
\(977\) 31.1459 0.996446 0.498223 0.867049i \(-0.333986\pi\)
0.498223 + 0.867049i \(0.333986\pi\)
\(978\) 0 0
\(979\) 2.31308 0.0739264
\(980\) 0 0
\(981\) 12.3262 0.393546
\(982\) 0 0
\(983\) 31.4377 1.00271 0.501353 0.865243i \(-0.332836\pi\)
0.501353 + 0.865243i \(0.332836\pi\)
\(984\) 0 0
\(985\) 80.9787 2.58020
\(986\) 0 0
\(987\) −17.9443 −0.571172
\(988\) 0 0
\(989\) −18.4164 −0.585608
\(990\) 0 0
\(991\) 16.3820 0.520390 0.260195 0.965556i \(-0.416213\pi\)
0.260195 + 0.965556i \(0.416213\pi\)
\(992\) 0 0
\(993\) 0.506578 0.0160758
\(994\) 0 0
\(995\) −19.4721 −0.617308
\(996\) 0 0
\(997\) −17.5836 −0.556878 −0.278439 0.960454i \(-0.589817\pi\)
−0.278439 + 0.960454i \(0.589817\pi\)
\(998\) 0 0
\(999\) −30.2361 −0.956627
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.d.1.1 2
4.3 odd 2 538.2.a.a.1.2 2
12.11 even 2 4842.2.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.a.1.2 2 4.3 odd 2
4304.2.a.d.1.1 2 1.1 even 1 trivial
4842.2.a.f.1.2 2 12.11 even 2