Properties

Label 4304.2.a
Level $4304$
Weight $2$
Character orbit 4304.a
Rep. character $\chi_{4304}(1,\cdot)$
Character field $\Q$
Dimension $134$
Newform subspaces $15$
Sturm bound $1080$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(1080\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4304))\).

Total New Old
Modular forms 546 134 412
Cusp forms 535 134 401
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(269\)FrickeDim
\(+\)\(+\)\(+\)\(28\)
\(+\)\(-\)\(-\)\(39\)
\(-\)\(+\)\(-\)\(39\)
\(-\)\(-\)\(+\)\(28\)
Plus space\(+\)\(56\)
Minus space\(-\)\(78\)

Trace form

\( 134 q + 2 q^{3} + 2 q^{7} + 130 q^{9} - 4 q^{11} - 4 q^{15} - 4 q^{17} + 2 q^{19} + 8 q^{23} + 134 q^{25} + 8 q^{27} + 8 q^{29} + 2 q^{31} + 12 q^{35} + 8 q^{37} + 20 q^{39} - 4 q^{41} - 4 q^{43} - 12 q^{47}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4304))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 269
4304.2.a.a 4304.a 1.a $1$ $34.368$ \(\Q\) None 269.2.a.a \(0\) \(0\) \(1\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+4q^{7}-3q^{9}+3q^{11}+2q^{13}+\cdots\)
4304.2.a.b 4304.a 1.a $1$ $34.368$ \(\Q\) None 2152.2.a.a \(0\) \(2\) \(-3\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-3q^{5}+2q^{7}+q^{9}+q^{11}+\cdots\)
4304.2.a.c 4304.a 1.a $2$ $34.368$ \(\Q(\sqrt{13}) \) None 538.2.a.b \(0\) \(-1\) \(1\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(1-\beta )q^{5}+q^{7}+\beta q^{9}-3q^{11}+\cdots\)
4304.2.a.d 4304.a 1.a $2$ $34.368$ \(\Q(\sqrt{5}) \) None 538.2.a.a \(0\) \(1\) \(-5\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-3+\beta )q^{5}+(3-2\beta )q^{7}+\cdots\)
4304.2.a.e 4304.a 1.a $4$ $34.368$ 4.4.4913.1 None 538.2.a.c \(0\) \(-3\) \(5\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2})q^{3}+(1-\beta _{3})q^{5}+\beta _{1}q^{7}+\cdots\)
4304.2.a.f 4304.a 1.a $5$ $34.368$ 5.5.65657.1 None 269.2.a.b \(0\) \(5\) \(-4\) \(5\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{2}-\beta _{3})q^{3}+(-1-\beta _{3})q^{5}+\cdots\)
4304.2.a.g 4304.a 1.a $6$ $34.368$ 6.6.4125937.1 None 1076.2.a.a \(0\) \(1\) \(-3\) \(5\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1-\beta _{5})q^{5}+(1-\beta _{1}+\beta _{3}+\cdots)q^{7}+\cdots\)
4304.2.a.h 4304.a 1.a $7$ $34.368$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 538.2.a.e \(0\) \(-1\) \(7\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+(1+\beta _{4})q^{5}+(-1+\beta _{2}+\beta _{3}+\cdots)q^{7}+\cdots\)
4304.2.a.i 4304.a 1.a $7$ $34.368$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 538.2.a.d \(0\) \(4\) \(-6\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1}-\beta _{6})q^{3}+(\beta _{3}-\beta _{4})q^{5}+(1+\cdots)q^{7}+\cdots\)
4304.2.a.j 4304.a 1.a $13$ $34.368$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 2152.2.a.b \(0\) \(3\) \(-9\) \(-6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1+\beta _{4})q^{5}-\beta _{9}q^{7}+\beta _{2}q^{9}+\cdots\)
4304.2.a.k 4304.a 1.a $15$ $34.368$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 2152.2.a.c \(0\) \(-3\) \(5\) \(-13\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+\beta _{8}q^{5}+(-1-\beta _{6})q^{7}+(1+\cdots)q^{9}+\cdots\)
4304.2.a.l 4304.a 1.a $16$ $34.368$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 269.2.a.c \(0\) \(-5\) \(-1\) \(-11\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{7}q^{3}+\beta _{12}q^{5}+(-1-\beta _{15})q^{7}+\cdots\)
4304.2.a.m 4304.a 1.a $17$ $34.368$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 1076.2.a.b \(0\) \(1\) \(5\) \(-9\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-\beta _{10}q^{5}+(-1-\beta _{7})q^{7}+\cdots\)
4304.2.a.n 4304.a 1.a $18$ $34.368$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 2152.2.a.d \(0\) \(4\) \(-6\) \(17\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+\beta _{6}q^{5}+(1+\beta _{3})q^{7}+(1+\beta _{1}+\cdots)q^{9}+\cdots\)
4304.2.a.o 4304.a 1.a $20$ $34.368$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 2152.2.a.e \(0\) \(-6\) \(13\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(1-\beta _{10})q^{5}-\beta _{9}q^{7}+(1+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4304))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4304)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(538))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1076))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2152))\)\(^{\oplus 2}\)