Defining parameters
Level: | \( N \) | \(=\) | \( 4304 = 2^{4} \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4304.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(1080\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4304))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 546 | 134 | 412 |
Cusp forms | 535 | 134 | 401 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(269\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(28\) |
\(+\) | \(-\) | \(-\) | \(39\) |
\(-\) | \(+\) | \(-\) | \(39\) |
\(-\) | \(-\) | \(+\) | \(28\) |
Plus space | \(+\) | \(56\) | |
Minus space | \(-\) | \(78\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4304))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4304))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4304)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(538))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1076))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2152))\)\(^{\oplus 2}\)