Defining parameters
Level: | \( N \) | = | \( 4304 = 2^{4} \cdot 269 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 14 \) | ||
Sturm bound: | \(2315520\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4304))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 582632 | 326812 | 255820 |
Cusp forms | 575129 | 324410 | 250719 |
Eisenstein series | 7503 | 2402 | 5101 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4304))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4304))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(4304)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(269))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(538))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1076))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2152))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4304))\)\(^{\oplus 1}\)