Properties

Label 4304.2
Level 4304
Weight 2
Dimension 324410
Nonzero newspaces 14
Sturm bound 2315520

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 14 \)
Sturm bound: \(2315520\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4304))\).

Total New Old
Modular forms 582632 326812 255820
Cusp forms 575129 324410 250719
Eisenstein series 7503 2402 5101

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4304))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4304.2.a \(\chi_{4304}(1, \cdot)\) 4304.2.a.a 1 1
4304.2.a.b 1
4304.2.a.c 2
4304.2.a.d 2
4304.2.a.e 4
4304.2.a.f 5
4304.2.a.g 6
4304.2.a.h 7
4304.2.a.i 7
4304.2.a.j 13
4304.2.a.k 15
4304.2.a.l 16
4304.2.a.m 17
4304.2.a.n 18
4304.2.a.o 20
4304.2.b \(\chi_{4304}(2153, \cdot)\) None 0 1
4304.2.e \(\chi_{4304}(2689, \cdot)\) n/a 134 1
4304.2.f \(\chi_{4304}(537, \cdot)\) None 0 1
4304.2.j \(\chi_{4304}(187, \cdot)\) n/a 1076 2
4304.2.k \(\chi_{4304}(2503, \cdot)\) None 0 2
4304.2.n \(\chi_{4304}(1077, \cdot)\) n/a 1072 2
4304.2.o \(\chi_{4304}(1613, \cdot)\) n/a 1076 2
4304.2.r \(\chi_{4304}(351, \cdot)\) n/a 270 2
4304.2.t \(\chi_{4304}(2339, \cdot)\) n/a 1076 2
4304.2.u \(\chi_{4304}(81, \cdot)\) n/a 8844 66
4304.2.x \(\chi_{4304}(9, \cdot)\) None 0 66
4304.2.y \(\chi_{4304}(49, \cdot)\) n/a 8844 66
4304.2.bb \(\chi_{4304}(25, \cdot)\) None 0 66
4304.2.bc \(\chi_{4304}(19, \cdot)\) n/a 71016 132
4304.2.be \(\chi_{4304}(15, \cdot)\) n/a 17820 132
4304.2.bh \(\chi_{4304}(13, \cdot)\) n/a 71016 132
4304.2.bi \(\chi_{4304}(5, \cdot)\) n/a 71016 132
4304.2.bl \(\chi_{4304}(7, \cdot)\) None 0 132
4304.2.bm \(\chi_{4304}(3, \cdot)\) n/a 71016 132

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4304))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(4304)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(269))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(538))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1076))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2152))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4304))\)\(^{\oplus 1}\)