# Properties

 Label 43.5.b.b Level 43 Weight 5 Character orbit 43.b Analytic conductor 4.445 Analytic rank 0 Dimension 12 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$43$$ Weight: $$k$$ $$=$$ $$5$$ Character orbit: $$[\chi]$$ $$=$$ 43.b (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.44490841261$$ Analytic rank: $$0$$ Dimension: $$12$$ Coefficient field: $$\mathbb{Q}[x]/(x^{12} + \cdots)$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2^{8}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{11}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{2} + \beta_{4} q^{3} + ( -8 + \beta_{2} ) q^{4} + ( -\beta_{1} + \beta_{9} ) q^{5} + ( 11 - \beta_{2} + \beta_{3} + \beta_{5} + \beta_{8} ) q^{6} + ( -2 \beta_{1} + 2 \beta_{4} - \beta_{10} ) q^{7} + ( -8 \beta_{1} + 2 \beta_{4} + \beta_{6} ) q^{8} + ( -39 - \beta_{2} - \beta_{5} + \beta_{7} + 2 \beta_{8} ) q^{9} +O(q^{10})$$ $$q + \beta_{1} q^{2} + \beta_{4} q^{3} + ( -8 + \beta_{2} ) q^{4} + ( -\beta_{1} + \beta_{9} ) q^{5} + ( 11 - \beta_{2} + \beta_{3} + \beta_{5} + \beta_{8} ) q^{6} + ( -2 \beta_{1} + 2 \beta_{4} - \beta_{10} ) q^{7} + ( -8 \beta_{1} + 2 \beta_{4} + \beta_{6} ) q^{8} + ( -39 - \beta_{2} - \beta_{5} + \beta_{7} + 2 \beta_{8} ) q^{9} + ( 17 - \beta_{2} - 3 \beta_{7} + 3 \beta_{8} ) q^{10} + ( -14 - 3 \beta_{2} - \beta_{3} + \beta_{5} + \beta_{7} - \beta_{8} ) q^{11} + ( 20 \beta_{1} - 6 \beta_{4} - \beta_{6} - \beta_{9} - \beta_{11} ) q^{12} + ( -19 + 4 \beta_{2} + 4 \beta_{3} - 3 \beta_{5} - 4 \beta_{7} + 2 \beta_{8} ) q^{13} + ( 65 - 2 \beta_{2} - 5 \beta_{3} + 3 \beta_{5} - 3 \beta_{7} + \beta_{8} ) q^{14} + ( -10 + 4 \beta_{2} + 10 \beta_{3} - \beta_{5} - 2 \beta_{7} - 2 \beta_{8} ) q^{15} + ( 96 - 6 \beta_{2} + \beta_{3} + 3 \beta_{5} - 7 \beta_{7} - 4 \beta_{8} ) q^{16} + ( 55 + 3 \beta_{2} - 9 \beta_{3} + 3 \beta_{5} + 6 \beta_{7} + 2 \beta_{8} ) q^{17} + ( -36 \beta_{1} + 11 \beta_{4} + 3 \beta_{6} - 2 \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{18} + ( -2 \beta_{1} + 4 \beta_{4} - \beta_{9} + 2 \beta_{10} + \beta_{11} ) q^{19} + ( 14 \beta_{1} - 11 \beta_{4} - \beta_{6} + 4 \beta_{9} + 3 \beta_{10} ) q^{20} + ( -208 - 2 \beta_{2} - 23 \beta_{3} - 2 \beta_{5} + 25 \beta_{7} - 4 \beta_{8} ) q^{21} + ( 35 \beta_{1} - 17 \beta_{4} - 4 \beta_{6} + 3 \beta_{9} + \beta_{10} - \beta_{11} ) q^{22} + ( 120 + 14 \beta_{2} + 15 \beta_{3} + 2 \beta_{5} + 8 \beta_{7} - 9 \beta_{8} ) q^{23} + ( -368 + 15 \beta_{2} + 14 \beta_{3} - 22 \beta_{5} + \beta_{7} + 6 \beta_{8} ) q^{24} + ( -15 - 13 \beta_{2} - \beta_{3} + 10 \beta_{7} - 26 \beta_{8} ) q^{25} + ( -78 \beta_{1} + 40 \beta_{4} + 5 \beta_{6} - 8 \beta_{9} - 3 \beta_{10} + 3 \beta_{11} ) q^{26} + ( 30 \beta_{1} - 9 \beta_{4} - 6 \beta_{6} + 7 \beta_{9} + 7 \beta_{10} + \beta_{11} ) q^{27} + ( 74 \beta_{1} - 15 \beta_{4} - 7 \beta_{6} - 13 \beta_{9} - 5 \beta_{10} - 3 \beta_{11} ) q^{28} + ( 11 \beta_{1} - 13 \beta_{4} - 2 \beta_{6} - 2 \beta_{9} + 3 \beta_{10} + 3 \beta_{11} ) q^{29} + ( -65 \beta_{1} + 6 \beta_{4} + \beta_{6} + 10 \beta_{9} - 9 \beta_{10} + \beta_{11} ) q^{30} + ( 492 + 2 \beta_{2} - 32 \beta_{3} - 3 \beta_{5} - 25 \beta_{7} - \beta_{8} ) q^{31} + ( 108 \beta_{1} - 29 \beta_{4} - 4 \beta_{6} - 5 \beta_{9} + 9 \beta_{10} - 3 \beta_{11} ) q^{32} + ( -109 \beta_{1} - 6 \beta_{4} + 8 \beta_{6} + 6 \beta_{9} + 4 \beta_{10} + 3 \beta_{11} ) q^{33} + ( -21 \beta_{1} - 22 \beta_{4} + 8 \beta_{6} - \beta_{9} + 6 \beta_{10} - 3 \beta_{11} ) q^{34} + ( 72 + 46 \beta_{2} - 11 \beta_{3} - 15 \beta_{7} - 48 \beta_{8} ) q^{35} + ( 390 - 88 \beta_{2} - 9 \beta_{3} + 31 \beta_{5} + 4 \beta_{7} + 24 \beta_{8} ) q^{36} + ( 30 \beta_{1} - 33 \beta_{4} + 8 \beta_{6} - 30 \beta_{9} + 15 \beta_{10} - 4 \beta_{11} ) q^{37} + ( 104 - 3 \beta_{2} + 15 \beta_{3} + 33 \beta_{5} + 18 \beta_{7} + 10 \beta_{8} ) q^{38} + ( 228 \beta_{1} - 28 \beta_{4} - 18 \beta_{6} - 22 \beta_{9} - 19 \beta_{10} - 4 \beta_{11} ) q^{39} + ( -208 + 15 \beta_{2} + 11 \beta_{3} - 15 \beta_{5} - 44 \beta_{7} + 58 \beta_{8} ) q^{40} + ( 415 - 19 \beta_{2} + 57 \beta_{3} - 16 \beta_{5} - 34 \beta_{7} + 26 \beta_{8} ) q^{41} + ( -231 \beta_{1} + 107 \beta_{4} + 21 \beta_{6} + 35 \beta_{9} - 4 \beta_{10} + 2 \beta_{11} ) q^{42} + ( -74 + 32 \beta_{1} - 11 \beta_{2} + 20 \beta_{3} - 61 \beta_{4} + 15 \beta_{5} - 8 \beta_{6} - 26 \beta_{7} + 49 \beta_{8} - 17 \beta_{9} + 13 \beta_{10} + 3 \beta_{11} ) q^{43} + ( -1302 + 43 \beta_{2} - 19 \beta_{3} - 37 \beta_{5} + 29 \beta_{7} - 6 \beta_{8} ) q^{44} + ( -5 \beta_{1} + 51 \beta_{4} - 14 \beta_{6} + 11 \beta_{9} - 29 \beta_{10} - 4 \beta_{11} ) q^{45} + ( -108 \beta_{1} - 8 \beta_{4} + 11 \beta_{6} + 49 \beta_{9} - 21 \beta_{10} - 2 \beta_{11} ) q^{46} + ( -492 + 51 \beta_{2} - 21 \beta_{3} - 18 \beta_{5} + 24 \beta_{7} - 72 \beta_{8} ) q^{47} + ( -314 \beta_{1} + 247 \beta_{4} + 28 \beta_{6} - 12 \beta_{9} - 37 \beta_{10} + 6 \beta_{11} ) q^{48} + ( -693 - 96 \beta_{2} - 33 \beta_{3} - 24 \beta_{5} + 21 \beta_{7} + 42 \beta_{8} ) q^{49} + ( 284 \beta_{1} + 38 \beta_{4} - 29 \beta_{6} + 71 \beta_{9} - 9 \beta_{10} ) q^{50} + ( -86 \beta_{1} - 4 \beta_{4} + 10 \beta_{6} + 57 \beta_{9} + 41 \beta_{10} - 3 \beta_{11} ) q^{51} + ( 2084 - 87 \beta_{2} + 69 \beta_{3} + 93 \beta_{5} - 57 \beta_{7} + 36 \beta_{8} ) q^{52} + ( 95 - 100 \beta_{2} + 41 \beta_{3} + 15 \beta_{5} + 75 \beta_{7} + 28 \beta_{8} ) q^{53} + ( -898 + 104 \beta_{2} + 43 \beta_{3} + 9 \beta_{5} + 51 \beta_{7} + 62 \beta_{8} ) q^{54} + ( 88 \beta_{1} + 64 \beta_{4} + 14 \beta_{6} - 76 \beta_{9} - \beta_{10} ) q^{55} + ( -890 + 130 \beta_{2} - 114 \beta_{3} - 62 \beta_{5} - 2 \beta_{7} - 22 \beta_{8} ) q^{56} + ( -670 + 142 \beta_{2} + 25 \beta_{3} - 3 \beta_{5} - 47 \beta_{7} - 6 \beta_{8} ) q^{57} + ( -413 + 63 \beta_{2} + \beta_{3} + 75 \beta_{5} + 56 \beta_{7} + 17 \beta_{8} ) q^{58} + ( 1182 - 52 \beta_{2} - 77 \beta_{3} - 2 \beta_{5} + 31 \beta_{7} - 60 \beta_{8} ) q^{59} + ( 1356 + 6 \beta_{2} + 99 \beta_{3} + 31 \beta_{5} - 87 \beta_{7} - 4 \beta_{8} ) q^{60} + ( -289 \beta_{1} - 54 \beta_{4} + 38 \beta_{6} - 88 \beta_{9} - 44 \beta_{10} + 3 \beta_{11} ) q^{61} + ( 600 \beta_{1} + 93 \beta_{4} - 21 \beta_{6} - 80 \beta_{9} + 54 \beta_{10} + 3 \beta_{11} ) q^{62} + ( 278 \beta_{1} - 320 \beta_{4} - 4 \beta_{6} + 128 \beta_{9} + 63 \beta_{10} + 2 \beta_{11} ) q^{63} + ( -1320 + 50 \beta_{2} + 63 \beta_{3} - 87 \beta_{5} - 69 \beta_{7} - 96 \beta_{8} ) q^{64} + ( -231 \beta_{1} - 198 \beta_{4} - 30 \beta_{6} + 74 \beta_{9} + 3 \beta_{11} ) q^{65} + ( 2593 - 186 \beta_{2} + 5 \beta_{3} + 91 \beta_{5} - 35 \beta_{7} - 11 \beta_{8} ) q^{66} + ( -52 - 57 \beta_{2} - 193 \beta_{3} - 45 \beta_{5} - 5 \beta_{7} - 59 \beta_{8} ) q^{67} + ( 1274 - 80 \beta_{2} - 123 \beta_{3} - 65 \beta_{5} + 34 \beta_{7} - 56 \beta_{8} ) q^{68} + ( 115 \beta_{1} + 241 \beta_{4} - 20 \beta_{6} - 131 \beta_{9} - 9 \beta_{10} - 14 \beta_{11} ) q^{69} + ( -353 \beta_{1} + 195 \beta_{4} - 17 \beta_{6} + 55 \beta_{9} + 26 \beta_{10} ) q^{70} + ( -352 \beta_{1} + 90 \beta_{4} - 12 \beta_{6} - 162 \beta_{9} - 30 \beta_{10} + 12 \beta_{11} ) q^{71} + ( 1064 \beta_{1} - 522 \beta_{4} - 43 \beta_{6} - 81 \beta_{9} + 4 \beta_{10} - 15 \beta_{11} ) q^{72} + ( -473 \beta_{1} - 230 \beta_{4} - 14 \beta_{6} + 122 \beta_{9} - 46 \beta_{10} - \beta_{11} ) q^{73} + ( -698 - 91 \beta_{2} + 76 \beta_{3} - 164 \beta_{5} + 43 \beta_{7} - 184 \beta_{8} ) q^{74} + ( 108 \beta_{1} + 195 \beta_{4} + 30 \beta_{6} - 59 \beta_{9} + 16 \beta_{10} + 13 \beta_{11} ) q^{75} + ( -50 \beta_{1} - 502 \beta_{4} - 8 \beta_{6} + 15 \beta_{9} + 32 \beta_{10} - 17 \beta_{11} ) q^{76} + ( -425 \beta_{1} - 98 \beta_{4} + 32 \beta_{6} + 4 \beta_{9} + 42 \beta_{10} + 15 \beta_{11} ) q^{77} + ( -5881 + 482 \beta_{2} - 131 \beta_{3} - 151 \beta_{5} + 99 \beta_{7} - 33 \beta_{8} ) q^{78} + ( 2042 - 191 \beta_{2} + 284 \beta_{3} + 3 \beta_{5} + \beta_{7} + 190 \beta_{8} ) q^{79} + ( -334 \beta_{1} - 88 \beta_{4} + 28 \beta_{6} - 129 \beta_{9} + 66 \beta_{10} + 15 \beta_{11} ) q^{80} + ( -1939 + 22 \beta_{2} + 118 \beta_{3} + 23 \beta_{5} - 104 \beta_{7} + 124 \beta_{8} ) q^{81} + ( 684 \beta_{1} + 18 \beta_{4} - 11 \beta_{6} - 63 \beta_{9} - 39 \beta_{10} + 16 \beta_{11} ) q^{82} + ( -628 - 35 \beta_{2} - 42 \beta_{3} + 121 \beta_{5} + 202 \beta_{7} - 203 \beta_{8} ) q^{83} + ( 3328 - 600 \beta_{2} - 316 \beta_{3} + 162 \beta_{5} + 154 \beta_{7} + 32 \beta_{8} ) q^{84} + ( 109 \beta_{1} + 377 \beta_{4} - 14 \beta_{6} + 177 \beta_{9} - 13 \beta_{10} - 14 \beta_{11} ) q^{85} + ( -1350 - 74 \beta_{1} + 184 \beta_{2} + 29 \beta_{3} - 426 \beta_{4} + 11 \beta_{5} - 3 \beta_{6} + 173 \beta_{7} - 30 \beta_{8} - 130 \beta_{9} + 21 \beta_{10} - 15 \beta_{11} ) q^{86} + ( 1420 + 413 \beta_{2} - 4 \beta_{3} + 63 \beta_{5} - 97 \beta_{7} - 90 \beta_{8} ) q^{87} + ( -1460 \beta_{1} + 485 \beta_{4} + 39 \beta_{6} + 99 \beta_{9} - 31 \beta_{10} + 21 \beta_{11} ) q^{88} + ( -131 \beta_{1} - 206 \beta_{4} + 20 \beta_{6} + 190 \beta_{9} - 30 \beta_{10} + 15 \beta_{11} ) q^{89} + ( 339 + 142 \beta_{2} - 126 \beta_{3} - 58 \beta_{5} - 58 \beta_{7} + 111 \beta_{8} ) q^{90} + ( 1190 \beta_{1} + 378 \beta_{4} - 56 \beta_{6} - 4 \beta_{9} - 5 \beta_{10} - 34 \beta_{11} ) q^{91} + ( 4096 + 20 \beta_{2} + 80 \beta_{3} - 6 \beta_{5} - 177 \beta_{7} - 106 \beta_{8} ) q^{92} + ( 545 \beta_{1} + 656 \beta_{4} + 44 \beta_{6} + 187 \beta_{9} - 34 \beta_{10} - 2 \beta_{11} ) q^{93} + ( -1005 \beta_{1} + 600 \beta_{4} + 21 \beta_{6} + 171 \beta_{9} - 21 \beta_{10} + 18 \beta_{11} ) q^{94} + ( 16 - 75 \beta_{2} - 46 \beta_{3} - 20 \beta_{5} + 121 \beta_{7} + 98 \beta_{8} ) q^{95} + ( 4514 - 541 \beta_{2} + 166 \beta_{3} + 146 \beta_{5} - 201 \beta_{7} + 144 \beta_{8} ) q^{96} + ( -489 + 311 \beta_{2} - 18 \beta_{3} + 48 \beta_{5} - 165 \beta_{7} + 6 \beta_{8} ) q^{97} + ( 606 \beta_{1} + 195 \beta_{4} - 9 \beta_{6} - 75 \beta_{9} - 12 \beta_{10} + 24 \beta_{11} ) q^{98} + ( -2320 + 399 \beta_{2} + 124 \beta_{3} - 105 \beta_{5} - 58 \beta_{7} - 179 \beta_{8} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12q - 92q^{4} + 126q^{6} - 462q^{9} + O(q^{10})$$ $$12q - 92q^{4} + 126q^{6} - 462q^{9} + 182q^{10} - 180q^{11} - 216q^{13} + 732q^{14} - 92q^{15} + 1076q^{16} + 678q^{17} - 2392q^{21} + 1566q^{23} - 4234q^{24} - 174q^{25} + 5710q^{31} + 936q^{35} + 4210q^{36} + 1242q^{38} - 2618q^{40} + 4878q^{41} - 1108q^{43} - 15168q^{44} - 5526q^{47} - 8544q^{49} + 24084q^{52} + 1212q^{53} - 10004q^{54} - 10152q^{56} - 7692q^{57} - 4666q^{58} + 14016q^{59} + 15848q^{60} - 15580q^{64} + 29808q^{66} - 1088q^{67} + 15186q^{68} - 7674q^{74} - 67708q^{78} + 24302q^{79} - 23660q^{81} - 7032q^{83} + 37180q^{84} - 14412q^{86} + 17850q^{87} + 4268q^{90} + 48354q^{92} + 606q^{95} + 50546q^{96} - 5842q^{97} - 25924q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{12} + 142 x^{10} + 7173 x^{8} + 157368 x^{6} + 1510016 x^{4} + 5098688 x^{2} + 90352$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2} + 24$$ $$\beta_{3}$$ $$=$$ $$($$$$-1013 \nu^{10} - 51724 \nu^{8} + 3751835 \nu^{6} + 249791190 \nu^{4} + 3190508236 \nu^{2} + 4858167448$$$$)/ 218680368$$ $$\beta_{4}$$ $$=$$ $$($$$$7373 \nu^{11} + 1060068 \nu^{9} + 54814785 \nu^{7} + 1256312182 \nu^{5} + 12979904372 \nu^{3} + 48750171768 \nu$$$$)/ 437360736$$ $$\beta_{5}$$ $$=$$ $$($$$$-8029 \nu^{10} - 1003616 \nu^{8} - 42059193 \nu^{6} - 669406178 \nu^{4} - 3108074228 \nu^{2} + 2072740888$$$$)/ 218680368$$ $$\beta_{6}$$ $$=$$ $$($$$$-7373 \nu^{11} - 1060068 \nu^{9} - 54814785 \nu^{7} - 1256312182 \nu^{5} - 12761224004 \nu^{3} - 40002957048 \nu$$$$)/ 218680368$$ $$\beta_{7}$$ $$=$$ $$($$$$-3124 \nu^{10} - 397873 \nu^{8} - 16704679 \nu^{6} - 262452874 \nu^{4} - 1457233216 \nu^{2} - 1347066320$$$$)/54670092$$ $$\beta_{8}$$ $$=$$ $$($$$$15593 \nu^{10} + 2019468 \nu^{8} + 86326317 \nu^{6} + 1342893190 \nu^{4} + 5715018932 \nu^{2} - 4421146200$$$$)/ 218680368$$ $$\beta_{9}$$ $$=$$ $$($$$$-10113 \nu^{11} - 1379868 \nu^{9} - 65318629 \nu^{7} - 1285172518 \nu^{5} - 10485382436 \nu^{3} - 28475128152 \nu$$$$)/ 145786912$$ $$\beta_{10}$$ $$=$$ $$($$$$-43059 \nu^{11} - 6156292 \nu^{9} - 313089127 \nu^{7} - 6867724298 \nu^{5} - 63796972524 \nu^{3} - 193079423624 \nu$$$$)/ 437360736$$ $$\beta_{11}$$ $$=$$ $$($$$$-130223 \nu^{11} - 18990012 \nu^{9} - 996377731 \nu^{7} - 23117282490 \nu^{5} - 239736846012 \nu^{3} - 897659100328 \nu$$$$)/ 437360736$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{2} - 24$$ $$\nu^{3}$$ $$=$$ $$\beta_{6} + 2 \beta_{4} - 40 \beta_{1}$$ $$\nu^{4}$$ $$=$$ $$-4 \beta_{8} - 7 \beta_{7} + 3 \beta_{5} + \beta_{3} - 54 \beta_{2} + 992$$ $$\nu^{5}$$ $$=$$ $$-3 \beta_{11} + 9 \beta_{10} - 5 \beta_{9} - 68 \beta_{6} - 157 \beta_{4} + 1900 \beta_{1}$$ $$\nu^{6}$$ $$=$$ $$224 \beta_{8} + 491 \beta_{7} - 327 \beta_{5} - 17 \beta_{3} + 2834 \beta_{2} - 47912$$ $$\nu^{7}$$ $$=$$ $$327 \beta_{11} - 801 \beta_{10} + 517 \beta_{9} + 3876 \beta_{6} + 10977 \beta_{4} - 95996 \beta_{1}$$ $$\nu^{8}$$ $$=$$ $$-9240 \beta_{8} - 28143 \beta_{7} + 25791 \beta_{5} + 513 \beta_{3} - 149594 \beta_{2} + 2454152$$ $$\nu^{9}$$ $$=$$ $$-25791 \beta_{11} + 53421 \beta_{10} - 37293 \beta_{9} - 212768 \beta_{6} - 722533 \beta_{4} + 4980124 \beta_{1}$$ $$\nu^{10}$$ $$=$$ $$315080 \beta_{8} + 1529399 \beta_{7} - 1788243 \beta_{5} - 58445 \beta_{3} + 7968494 \beta_{2} - 128941408$$ $$\nu^{11}$$ $$=$$ $$1788243 \beta_{11} - 3259197 \beta_{10} + 2370193 \beta_{9} + 11601216 \beta_{6} + 45565005 \beta_{4} - 262283620 \beta_{1}$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/43\mathbb{Z}\right)^\times$$.

 $$n$$ $$3$$ $$\chi(n)$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
42.1
 − 7.49282i − 6.72223i − 4.43775i − 3.65497i − 2.75662i − 0.133471i 0.133471i 2.75662i 3.65497i 4.43775i 6.72223i 7.49282i
7.49282i 14.5182i −40.1424 9.40180i 108.782 53.5326i 180.895i −129.777 70.4460
42.2 6.72223i 8.31879i −29.1884 1.48242i −55.9208 13.7963i 88.6554i 11.7977 9.96518
42.3 4.43775i 6.93950i −3.69363 22.3554i 30.7958 51.9837i 54.6126i 32.8434 −99.2077
42.4 3.65497i 4.18965i 2.64117 45.6695i 15.3130 34.3337i 68.1330i 63.4469 166.921
42.5 2.75662i 12.3317i 8.40105 21.9831i −33.9937 63.3272i 67.2644i −71.0696 −60.5989
42.6 0.133471i 14.8068i 15.9822 26.0324i −1.97628 87.9232i 4.26869i −138.241 3.47456
42.7 0.133471i 14.8068i 15.9822 26.0324i −1.97628 87.9232i 4.26869i −138.241 3.47456
42.8 2.75662i 12.3317i 8.40105 21.9831i −33.9937 63.3272i 67.2644i −71.0696 −60.5989
42.9 3.65497i 4.18965i 2.64117 45.6695i 15.3130 34.3337i 68.1330i 63.4469 166.921
42.10 4.43775i 6.93950i −3.69363 22.3554i 30.7958 51.9837i 54.6126i 32.8434 −99.2077
42.11 6.72223i 8.31879i −29.1884 1.48242i −55.9208 13.7963i 88.6554i 11.7977 9.96518
42.12 7.49282i 14.5182i −40.1424 9.40180i 108.782 53.5326i 180.895i −129.777 70.4460
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 42.12 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
43.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 43.5.b.b 12
3.b odd 2 1 387.5.b.c 12
4.b odd 2 1 688.5.b.d 12
43.b odd 2 1 inner 43.5.b.b 12
129.d even 2 1 387.5.b.c 12
172.d even 2 1 688.5.b.d 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
43.5.b.b 12 1.a even 1 1 trivial
43.5.b.b 12 43.b odd 2 1 inner
387.5.b.c 12 3.b odd 2 1
387.5.b.c 12 129.d even 2 1
688.5.b.d 12 4.b odd 2 1
688.5.b.d 12 172.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{12} + 142 T_{2}^{10} + 7173 T_{2}^{8} + 157368 T_{2}^{6} + 1510016 T_{2}^{4} + 5098688 T_{2}^{2} + 90352$$ acting on $$S_{5}^{\mathrm{new}}(43, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - 50 T^{2} + 1349 T^{4} - 26056 T^{6} + 463232 T^{8} - 8751936 T^{10} + 150915312 T^{12} - 2240495616 T^{14} + 30358372352 T^{16} - 437147140096 T^{18} + 5793910882304 T^{20} - 54975581388800 T^{22} + 281474976710656 T^{24}$$
$3$ $$1 - 255 T^{2} + 47783 T^{4} - 6646421 T^{6} + 799989903 T^{8} - 79711532676 T^{10} + 6990833564658 T^{12} - 522987365887236 T^{14} + 34436942157258063 T^{16} - 1877145602287584501 T^{18} + 88542863683907518503 T^{20} -$$$$31\!\cdots\!55$$$$T^{22} +$$$$79\!\cdots\!61$$$$T^{24}$$
$5$ $$1 - 3663 T^{2} + 6511015 T^{4} - 7365160765 T^{6} + 5973224140031 T^{8} - 3902236317085676 T^{10} + 2399998678381934162 T^{12} -$$$$15\!\cdots\!00$$$$T^{14} +$$$$91\!\cdots\!75$$$$T^{16} -$$$$43\!\cdots\!25$$$$T^{18} +$$$$15\!\cdots\!75$$$$T^{20} -$$$$33\!\cdots\!75$$$$T^{22} +$$$$35\!\cdots\!25$$$$T^{24}$$
$7$ $$1 - 10134 T^{2} + 60060006 T^{4} - 249160434566 T^{6} + 812915964019071 T^{8} - 2246049549704995236 T^{10} +$$$$56\!\cdots\!48$$$$T^{12} -$$$$12\!\cdots\!36$$$$T^{14} +$$$$27\!\cdots\!71$$$$T^{16} -$$$$47\!\cdots\!66$$$$T^{18} +$$$$66\!\cdots\!06$$$$T^{20} -$$$$64\!\cdots\!34$$$$T^{22} +$$$$36\!\cdots\!01$$$$T^{24}$$
$11$ $$( 1 + 90 T + 69626 T^{2} + 4275732 T^{3} + 2084651350 T^{4} + 90865763142 T^{5} + 37469241503078 T^{6} + 1330365638162022 T^{7} + 446863530661139350 T^{8} + 13419078640054034772 T^{9} +$$$$31\!\cdots\!86$$$$T^{10} +$$$$60\!\cdots\!90$$$$T^{11} +$$$$98\!\cdots\!41$$$$T^{12} )^{2}$$
$13$ $$( 1 + 108 T + 78130 T^{2} + 14124934 T^{3} + 3639591614 T^{4} + 705010114760 T^{5} + 121575713991590 T^{6} + 20135793887660360 T^{7} + 2968926691433773694 T^{8} +$$$$32\!\cdots\!54$$$$T^{9} +$$$$51\!\cdots\!30$$$$T^{10} +$$$$20\!\cdots\!08$$$$T^{11} +$$$$54\!\cdots\!61$$$$T^{12} )^{2}$$
$17$ $$( 1 - 339 T + 345843 T^{2} - 103717833 T^{3} + 57770879546 T^{4} - 15179725016055 T^{5} + 6016834256618483 T^{6} - 1267825813065929655 T^{7} +$$$$40\!\cdots\!86$$$$T^{8} -$$$$60\!\cdots\!13$$$$T^{9} +$$$$16\!\cdots\!83$$$$T^{10} -$$$$13\!\cdots\!39$$$$T^{11} +$$$$33\!\cdots\!21$$$$T^{12} )^{2}$$
$19$ $$1 - 1175657 T^{2} + 671010023409 T^{4} - 244979577528319381 T^{6} +$$$$63\!\cdots\!63$$$$T^{8} -$$$$12\!\cdots\!10$$$$T^{10} +$$$$18\!\cdots\!98$$$$T^{12} -$$$$20\!\cdots\!10$$$$T^{14} +$$$$18\!\cdots\!03$$$$T^{16} -$$$$12\!\cdots\!01$$$$T^{18} +$$$$55\!\cdots\!49$$$$T^{20} -$$$$16\!\cdots\!57$$$$T^{22} +$$$$23\!\cdots\!41$$$$T^{24}$$
$23$ $$( 1 - 783 T + 1163077 T^{2} - 843582057 T^{3} + 713091466102 T^{4} - 397049506101027 T^{5} + 259574077696956889 T^{6} -$$$$11\!\cdots\!07$$$$T^{7} +$$$$55\!\cdots\!62$$$$T^{8} -$$$$18\!\cdots\!97$$$$T^{9} +$$$$71\!\cdots\!97$$$$T^{10} -$$$$13\!\cdots\!83$$$$T^{11} +$$$$48\!\cdots\!41$$$$T^{12} )^{2}$$
$29$ $$1 - 5231219 T^{2} + 13592412986871 T^{4} - 23367533349246758977 T^{6} +$$$$29\!\cdots\!35$$$$T^{8} -$$$$29\!\cdots\!88$$$$T^{10} +$$$$23\!\cdots\!82$$$$T^{12} -$$$$14\!\cdots\!68$$$$T^{14} +$$$$74\!\cdots\!35$$$$T^{16} -$$$$29\!\cdots\!37$$$$T^{18} +$$$$85\!\cdots\!11$$$$T^{20} -$$$$16\!\cdots\!19$$$$T^{22} +$$$$15\!\cdots\!61$$$$T^{24}$$
$31$ $$( 1 - 2855 T + 6518969 T^{2} - 8600011177 T^{3} + 10228398490358 T^{4} - 8682474860253963 T^{5} + 8850492205571119245 T^{6} -$$$$80\!\cdots\!23$$$$T^{7} +$$$$87\!\cdots\!78$$$$T^{8} -$$$$67\!\cdots\!97$$$$T^{9} +$$$$47\!\cdots\!89$$$$T^{10} -$$$$19\!\cdots\!55$$$$T^{11} +$$$$62\!\cdots\!21$$$$T^{12} )^{2}$$
$37$ $$1 - 6978249 T^{2} + 25643197308697 T^{4} - 70260487375765593853 T^{6} +$$$$17\!\cdots\!59$$$$T^{8} -$$$$39\!\cdots\!70$$$$T^{10} +$$$$80\!\cdots\!70$$$$T^{12} -$$$$13\!\cdots\!70$$$$T^{14} +$$$$21\!\cdots\!19$$$$T^{16} -$$$$30\!\cdots\!33$$$$T^{18} +$$$$39\!\cdots\!57$$$$T^{20} -$$$$37\!\cdots\!49$$$$T^{22} +$$$$18\!\cdots\!21$$$$T^{24}$$
$41$ $$( 1 - 2439 T + 13822603 T^{2} - 19943096547 T^{3} + 69051390319336 T^{4} - 65595635499999207 T^{5} +$$$$21\!\cdots\!21$$$$T^{6} -$$$$18\!\cdots\!27$$$$T^{7} +$$$$55\!\cdots\!56$$$$T^{8} -$$$$44\!\cdots\!07$$$$T^{9} +$$$$88\!\cdots\!23$$$$T^{10} -$$$$43\!\cdots\!39$$$$T^{11} +$$$$50\!\cdots\!61$$$$T^{12} )^{2}$$
$43$ $$1 + 1108 T + 1897246 T^{2} - 4681128092 T^{3} + 681017924063 T^{4} - 846563366867960 T^{5} + 64607141521498794692 T^{6} -$$$$28\!\cdots\!60$$$$T^{7} +$$$$79\!\cdots\!63$$$$T^{8} -$$$$18\!\cdots\!92$$$$T^{9} +$$$$25\!\cdots\!46$$$$T^{10} +$$$$51\!\cdots\!08$$$$T^{11} +$$$$15\!\cdots\!01$$$$T^{12}$$
$47$ $$( 1 + 2763 T + 21754149 T^{2} + 55851382377 T^{3} + 234662825346711 T^{4} + 481604898621884868 T^{5} +$$$$14\!\cdots\!34$$$$T^{6} +$$$$23\!\cdots\!08$$$$T^{7} +$$$$55\!\cdots\!71$$$$T^{8} +$$$$64\!\cdots\!57$$$$T^{9} +$$$$12\!\cdots\!29$$$$T^{10} +$$$$76\!\cdots\!63$$$$T^{11} +$$$$13\!\cdots\!81$$$$T^{12} )^{2}$$
$53$ $$( 1 - 606 T + 25718024 T^{2} - 24674633094 T^{3} + 346581142619392 T^{4} - 336085601563787574 T^{5} +$$$$32\!\cdots\!82$$$$T^{6} -$$$$26\!\cdots\!94$$$$T^{7} +$$$$21\!\cdots\!12$$$$T^{8} -$$$$12\!\cdots\!54$$$$T^{9} +$$$$99\!\cdots\!04$$$$T^{10} -$$$$18\!\cdots\!06$$$$T^{11} +$$$$24\!\cdots\!81$$$$T^{12} )^{2}$$
$59$ $$( 1 - 7008 T + 80137258 T^{2} - 394451068512 T^{3} + 2532059909380847 T^{4} - 9247600606403540352 T^{5} +$$$$41\!\cdots\!80$$$$T^{6} -$$$$11\!\cdots\!72$$$$T^{7} +$$$$37\!\cdots\!87$$$$T^{8} -$$$$70\!\cdots\!72$$$$T^{9} +$$$$17\!\cdots\!78$$$$T^{10} -$$$$18\!\cdots\!08$$$$T^{11} +$$$$31\!\cdots\!61$$$$T^{12} )^{2}$$
$61$ $$1 - 32665486 T^{2} + 1118892201421590 T^{4} -$$$$24\!\cdots\!14$$$$T^{6} +$$$$52\!\cdots\!07$$$$T^{8} -$$$$83\!\cdots\!88$$$$T^{10} +$$$$13\!\cdots\!08$$$$T^{12} -$$$$16\!\cdots\!28$$$$T^{14} +$$$$19\!\cdots\!27$$$$T^{16} -$$$$17\!\cdots\!74$$$$T^{18} +$$$$15\!\cdots\!90$$$$T^{20} -$$$$84\!\cdots\!86$$$$T^{22} +$$$$49\!\cdots\!81$$$$T^{24}$$
$67$ $$( 1 + 544 T + 66684038 T^{2} + 18315837698 T^{3} + 2452178722840730 T^{4} + 587634295199545788 T^{5} +$$$$60\!\cdots\!70$$$$T^{6} +$$$$11\!\cdots\!48$$$$T^{7} +$$$$99\!\cdots\!30$$$$T^{8} +$$$$14\!\cdots\!78$$$$T^{9} +$$$$10\!\cdots\!78$$$$T^{10} +$$$$18\!\cdots\!44$$$$T^{11} +$$$$66\!\cdots\!21$$$$T^{12} )^{2}$$
$71$ $$1 - 101562020 T^{2} + 5784818387848562 T^{4} -$$$$20\!\cdots\!64$$$$T^{6} +$$$$47\!\cdots\!67$$$$T^{8} -$$$$75\!\cdots\!84$$$$T^{10} +$$$$13\!\cdots\!88$$$$T^{12} -$$$$48\!\cdots\!24$$$$T^{14} +$$$$20\!\cdots\!07$$$$T^{16} -$$$$54\!\cdots\!84$$$$T^{18} +$$$$10\!\cdots\!42$$$$T^{20} -$$$$11\!\cdots\!20$$$$T^{22} +$$$$72\!\cdots\!61$$$$T^{24}$$
$73$ $$1 - 193491698 T^{2} + 19000747654703030 T^{4} -$$$$12\!\cdots\!18$$$$T^{6} +$$$$60\!\cdots\!75$$$$T^{8} -$$$$23\!\cdots\!56$$$$T^{10} +$$$$72\!\cdots\!44$$$$T^{12} -$$$$18\!\cdots\!36$$$$T^{14} +$$$$39\!\cdots\!75$$$$T^{16} -$$$$65\!\cdots\!38$$$$T^{18} +$$$$80\!\cdots\!30$$$$T^{20} -$$$$66\!\cdots\!98$$$$T^{22} +$$$$27\!\cdots\!81$$$$T^{24}$$
$79$ $$( 1 - 12151 T + 155715789 T^{2} - 800821687889 T^{3} + 4128429862975343 T^{4} + 5685482156720652576 T^{5} -$$$$30\!\cdots\!42$$$$T^{6} +$$$$22\!\cdots\!56$$$$T^{7} +$$$$62\!\cdots\!23$$$$T^{8} -$$$$47\!\cdots\!49$$$$T^{9} +$$$$35\!\cdots\!69$$$$T^{10} -$$$$10\!\cdots\!51$$$$T^{11} +$$$$34\!\cdots\!81$$$$T^{12} )^{2}$$
$83$ $$( 1 + 3516 T + 117162268 T^{2} + 863865543048 T^{3} + 7914887456622244 T^{4} + 75598926847021341108 T^{5} +$$$$40\!\cdots\!22$$$$T^{6} +$$$$35\!\cdots\!68$$$$T^{7} +$$$$17\!\cdots\!04$$$$T^{8} +$$$$92\!\cdots\!28$$$$T^{9} +$$$$59\!\cdots\!08$$$$T^{10} +$$$$84\!\cdots\!16$$$$T^{11} +$$$$11\!\cdots\!21$$$$T^{12} )^{2}$$
$89$ $$1 - 474457834 T^{2} + 111655192487117862 T^{4} -$$$$17\!\cdots\!66$$$$T^{6} +$$$$19\!\cdots\!11$$$$T^{8} -$$$$17\!\cdots\!92$$$$T^{10} +$$$$12\!\cdots\!28$$$$T^{12} -$$$$68\!\cdots\!52$$$$T^{14} +$$$$30\!\cdots\!71$$$$T^{16} -$$$$10\!\cdots\!06$$$$T^{18} +$$$$26\!\cdots\!02$$$$T^{20} -$$$$44\!\cdots\!34$$$$T^{22} +$$$$37\!\cdots\!81$$$$T^{24}$$
$97$ $$( 1 + 2921 T + 384124299 T^{2} + 837647682043 T^{3} + 69794294829141482 T^{4} +$$$$11\!\cdots\!33$$$$T^{5} +$$$$76\!\cdots\!95$$$$T^{6} +$$$$10\!\cdots\!73$$$$T^{7} +$$$$54\!\cdots\!02$$$$T^{8} +$$$$58\!\cdots\!63$$$$T^{9} +$$$$23\!\cdots\!79$$$$T^{10} +$$$$15\!\cdots\!21$$$$T^{11} +$$$$48\!\cdots\!81$$$$T^{12} )^{2}$$