Defining parameters
Level: | \( N \) | \(=\) | \( 43 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 43.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(43))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 10 | 2 |
Cusp forms | 10 | 10 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(43\) | Dim. |
---|---|
\(+\) | \(6\) |
\(-\) | \(4\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(43))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 43 | |||||||
43.4.a.a | \(4\) | \(2.537\) | 4.4.45868.1 | None | \(-4\) | \(-11\) | \(-27\) | \(-20\) | \(-\) | \(q+(-1+\beta _{3})q^{2}+(-3+\beta _{2}-\beta _{3})q^{3}+\cdots\) | |
43.4.a.b | \(6\) | \(2.537\) | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(6\) | \(7\) | \(43\) | \(8\) | \(+\) | \(q+(1-\beta _{1})q^{2}+(1-\beta _{3})q^{3}+(4-\beta _{1}+\cdots)q^{4}+\cdots\) |