Properties

Label 43.3.b.b
Level 43
Weight 3
Character orbit 43.b
Analytic conductor 1.172
Analytic rank 0
Dimension 6
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 43 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 43.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.17166513675\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} -\beta_{5} q^{3} + ( -2 + \beta_{3} + \beta_{4} ) q^{4} -\beta_{2} q^{5} + ( 2 - \beta_{3} + 4 \beta_{4} ) q^{6} + ( -\beta_{1} + \beta_{2} + \beta_{5} ) q^{7} + ( \beta_{2} + \beta_{5} ) q^{8} + ( -9 - 4 \beta_{3} - 5 \beta_{4} ) q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} -\beta_{5} q^{3} + ( -2 + \beta_{3} + \beta_{4} ) q^{4} -\beta_{2} q^{5} + ( 2 - \beta_{3} + 4 \beta_{4} ) q^{6} + ( -\beta_{1} + \beta_{2} + \beta_{5} ) q^{7} + ( \beta_{2} + \beta_{5} ) q^{8} + ( -9 - 4 \beta_{3} - 5 \beta_{4} ) q^{9} + ( 2 + 8 \beta_{3} - \beta_{4} ) q^{10} + ( 7 + 3 \beta_{3} - \beta_{4} ) q^{11} + ( -\beta_{1} - \beta_{2} ) q^{12} + ( 5 - 5 \beta_{3} + 5 \beta_{4} ) q^{13} + ( 2 - 8 \beta_{3} - 4 \beta_{4} ) q^{14} + ( 2 + \beta_{3} - 9 \beta_{4} ) q^{15} + ( -12 - 3 \beta_{3} + \beta_{4} ) q^{16} + ( -5 - 5 \beta_{4} ) q^{17} + ( -4 \beta_{2} - 5 \beta_{5} ) q^{18} + ( -5 \beta_{1} + 5 \beta_{5} ) q^{19} + ( -5 \beta_{1} + 4 \beta_{2} - \beta_{5} ) q^{20} + ( 14 + 4 \beta_{3} + 10 \beta_{4} ) q^{21} + ( 5 \beta_{1} + 3 \beta_{2} - \beta_{5} ) q^{22} + ( -15 + 5 \beta_{3} - 10 \beta_{4} ) q^{23} + ( 16 + 3 \beta_{3} + 14 \beta_{4} ) q^{24} + ( -9 + 5 \beta_{3} + 10 \beta_{4} ) q^{25} + ( 5 \beta_{1} - 5 \beta_{2} + 5 \beta_{5} ) q^{26} + ( 6 \beta_{1} + 5 \beta_{2} + 9 \beta_{5} ) q^{27} + ( 10 \beta_{1} - 4 \beta_{2} ) q^{28} + ( -10 \beta_{1} - 5 \beta_{5} ) q^{29} + ( 10 \beta_{1} + \beta_{2} - 9 \beta_{5} ) q^{30} + ( -15 - 4 \beta_{3} + 15 \beta_{4} ) q^{31} + ( -10 \beta_{1} + \beta_{2} + 5 \beta_{5} ) q^{32} + ( 5 \beta_{1} + \beta_{2} - 9 \beta_{5} ) q^{33} -5 \beta_{5} q^{34} + ( 30 - 14 \beta_{3} ) q^{35} + ( -18 + 11 \beta_{3} - 4 \beta_{4} ) q^{36} + ( \beta_{1} - 5 \beta_{2} ) q^{37} + ( 20 - 25 \beta_{4} ) q^{38} + ( -15 \beta_{1} - 5 \beta_{2} - 5 \beta_{5} ) q^{39} + ( 32 - 6 \beta_{3} - \beta_{4} ) q^{40} + ( -23 + 11 \beta_{3} + 6 \beta_{4} ) q^{41} + ( 4 \beta_{2} + 10 \beta_{5} ) q^{42} + ( -5 + 10 \beta_{1} - \beta_{2} - 5 \beta_{3} - 15 \beta_{4} - 5 \beta_{5} ) q^{43} + ( -6 - 8 \beta_{3} + 8 \beta_{4} ) q^{44} + ( 19 \beta_{1} + 6 \beta_{5} ) q^{45} + ( -10 \beta_{1} + 5 \beta_{2} - 10 \beta_{5} ) q^{46} -15 \beta_{3} q^{47} + ( -5 \beta_{1} - \beta_{2} + 14 \beta_{5} ) q^{48} + ( 3 + 18 \beta_{3} - 6 \beta_{4} ) q^{49} + ( -24 \beta_{1} + 5 \beta_{2} + 10 \beta_{5} ) q^{50} + ( 10 \beta_{1} + 5 \beta_{2} + 10 \beta_{5} ) q^{51} + ( -10 + 30 \beta_{3} ) q^{52} + ( -25 - 25 \beta_{3} + 5 \beta_{4} ) q^{53} + ( -64 - 25 \beta_{3} - 25 \beta_{4} ) q^{54} + ( -19 \beta_{1} - 5 \beta_{2} + 5 \beta_{5} ) q^{55} + ( -44 + 10 \beta_{3} - 10 \beta_{4} ) q^{56} + ( 80 + 25 \beta_{3} + 5 \beta_{4} ) q^{57} + ( 70 - 15 \beta_{3} + 10 \beta_{4} ) q^{58} + ( 12 + 26 \beta_{3} + 16 \beta_{4} ) q^{59} + ( -36 - 3 \beta_{3} + 11 \beta_{4} ) q^{60} + ( -5 \beta_{1} + 5 \beta_{2} - 15 \beta_{5} ) q^{61} + ( -26 \beta_{1} - 4 \beta_{2} + 15 \beta_{5} ) q^{62} + ( -25 \beta_{1} - \beta_{2} - 19 \beta_{5} ) q^{63} + ( -25 \beta_{3} - 25 \beta_{4} ) q^{64} + ( 35 \beta_{1} - 5 \beta_{2} - 15 \beta_{5} ) q^{65} + ( -14 - 12 \beta_{3} + 42 \beta_{4} ) q^{66} + ( -25 - 15 \beta_{3} - 25 \beta_{4} ) q^{67} + ( -10 - 5 \beta_{3} ) q^{68} + ( 25 \beta_{1} + 10 \beta_{2} + 20 \beta_{5} ) q^{69} + ( 44 \beta_{1} - 14 \beta_{2} ) q^{70} + 20 \beta_{1} q^{71} + ( -25 \beta_{1} - 5 \beta_{2} - 24 \beta_{5} ) q^{72} + ( 15 \beta_{1} + 5 \beta_{2} - \beta_{5} ) q^{73} + ( 4 + 41 \beta_{3} - 4 \beta_{4} ) q^{74} + ( -15 \beta_{1} - 10 \beta_{2} - 6 \beta_{5} ) q^{75} + ( 25 \beta_{1} - 5 \beta_{5} ) q^{76} + ( 9 \beta_{1} + \beta_{2} + 5 \beta_{5} ) q^{77} + ( 110 + 20 \beta_{3} ) q^{78} + ( 32 - 2 \beta_{3} + 9 \beta_{4} ) q^{79} + ( 19 \beta_{1} + 10 \beta_{2} - 5 \beta_{5} ) q^{80} + ( 83 - 11 \beta_{3} + 69 \beta_{4} ) q^{81} + ( -40 \beta_{1} + 11 \beta_{2} + 6 \beta_{5} ) q^{82} + ( 5 + 25 \beta_{3} - 15 \beta_{4} ) q^{83} + ( 28 - 6 \beta_{3} + 4 \beta_{4} ) q^{84} + ( -5 \beta_{1} + 10 \beta_{5} ) q^{85} + ( -48 + 15 \beta_{1} - 5 \beta_{2} + 13 \beta_{3} + 29 \beta_{4} - 15 \beta_{5} ) q^{86} + ( -110 - 10 \beta_{3} - 65 \beta_{4} ) q^{87} + ( 14 \beta_{1} + 4 \beta_{2} + 4 \beta_{5} ) q^{88} + ( -15 \beta_{1} - 5 \beta_{2} + 5 \beta_{5} ) q^{89} + ( -126 + 25 \beta_{3} - 5 \beta_{4} ) q^{90} + ( -25 \beta_{1} + 15 \beta_{2} + 15 \beta_{5} ) q^{91} + ( 10 - 40 \beta_{3} - 5 \beta_{4} ) q^{92} + ( -34 \beta_{1} - 15 \beta_{2} + 4 \beta_{5} ) q^{93} + ( 15 \beta_{1} - 15 \beta_{2} ) q^{94} + ( -20 - 45 \beta_{3} + 50 \beta_{4} ) q^{95} + ( 68 + 29 \beta_{3} - 6 \beta_{4} ) q^{96} + ( -45 + 5 \beta_{3} + 50 \beta_{4} ) q^{97} + ( -9 \beta_{1} + 18 \beta_{2} - 6 \beta_{5} ) q^{98} + ( -91 - 15 \beta_{3} - 25 \beta_{4} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 16q^{4} + 6q^{6} - 36q^{9} + O(q^{10}) \) \( 6q - 16q^{4} + 6q^{6} - 36q^{9} - 2q^{10} + 38q^{11} + 30q^{13} + 36q^{14} + 28q^{15} - 68q^{16} - 20q^{17} + 56q^{21} - 80q^{23} + 62q^{24} - 84q^{25} - 112q^{31} + 208q^{35} - 122q^{36} + 170q^{38} + 206q^{40} - 172q^{41} + 10q^{43} - 36q^{44} + 30q^{47} - 6q^{49} - 120q^{52} - 110q^{53} - 284q^{54} - 264q^{56} + 420q^{57} + 430q^{58} - 12q^{59} - 232q^{60} + 100q^{64} - 144q^{66} - 70q^{67} - 50q^{68} - 50q^{74} + 620q^{78} + 178q^{79} + 382q^{81} + 10q^{83} + 172q^{84} - 372q^{86} - 510q^{87} - 796q^{90} + 150q^{92} - 130q^{95} + 362q^{96} - 380q^{97} - 466q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} + 20 x^{4} + 121 x^{2} + 214\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{5} - 11 \nu^{3} - 18 \nu \)\()/4\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{4} - 11 \nu^{2} - 22 \)\()/4\)
\(\beta_{4}\)\(=\)\((\)\( \nu^{4} + 15 \nu^{2} + 46 \)\()/4\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{5} + 15 \nu^{3} + 50 \nu \)\()/4\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{4} + \beta_{3} - 6\)
\(\nu^{3}\)\(=\)\(\beta_{5} + \beta_{2} - 8 \beta_{1}\)
\(\nu^{4}\)\(=\)\(-11 \beta_{4} - 15 \beta_{3} + 44\)
\(\nu^{5}\)\(=\)\(-11 \beta_{5} - 15 \beta_{2} + 70 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/43\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
42.1
3.18991i
2.58315i
1.77533i
1.77533i
2.58315i
3.18991i
3.18991i 0.724539i −6.17554 7.66434i 2.31122 10.1297i 6.93980i 8.47504 −24.4486
42.2 2.58315i 3.59415i −2.67267 7.02284i −9.28424 0.845536i 3.42869i −3.91793 18.1411
42.3 1.77533i 5.61757i 0.848217 2.98959i 9.97302 6.83184i 8.60717i −22.5571 5.30751
42.4 1.77533i 5.61757i 0.848217 2.98959i 9.97302 6.83184i 8.60717i −22.5571 5.30751
42.5 2.58315i 3.59415i −2.67267 7.02284i −9.28424 0.845536i 3.42869i −3.91793 18.1411
42.6 3.18991i 0.724539i −6.17554 7.66434i 2.31122 10.1297i 6.93980i 8.47504 −24.4486
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 42.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
43.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 43.3.b.b 6
3.b odd 2 1 387.3.b.c 6
4.b odd 2 1 688.3.b.e 6
43.b odd 2 1 inner 43.3.b.b 6
129.d even 2 1 387.3.b.c 6
172.d even 2 1 688.3.b.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
43.3.b.b 6 1.a even 1 1 trivial
43.3.b.b 6 43.b odd 2 1 inner
387.3.b.c 6 3.b odd 2 1
387.3.b.c 6 129.d even 2 1
688.3.b.e 6 4.b odd 2 1
688.3.b.e 6 172.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 20 T_{2}^{4} + 121 T_{2}^{2} + 214 \) acting on \(S_{3}^{\mathrm{new}}(43, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 4 T^{2} + 41 T^{4} - 114 T^{6} + 656 T^{8} - 1024 T^{10} + 4096 T^{12} \)
$3$ \( 1 - 9 T^{2} + 26 T^{4} - 254 T^{6} + 2106 T^{8} - 59049 T^{10} + 531441 T^{12} \)
$5$ \( 1 - 33 T^{2} + 1538 T^{4} - 41006 T^{6} + 961250 T^{8} - 12890625 T^{10} + 244140625 T^{12} \)
$7$ \( 1 - 144 T^{2} + 11511 T^{4} - 668464 T^{6} + 27637911 T^{8} - 830131344 T^{10} + 13841287201 T^{12} \)
$11$ \( ( 1 - 19 T + 411 T^{2} - 4354 T^{3} + 49731 T^{4} - 278179 T^{5} + 1771561 T^{6} )^{2} \)
$13$ \( ( 1 - 15 T + 257 T^{2} - 1570 T^{3} + 43433 T^{4} - 428415 T^{5} + 4826809 T^{6} )^{2} \)
$17$ \( ( 1 + 10 T + 767 T^{2} + 5655 T^{3} + 221663 T^{4} + 835210 T^{5} + 24137569 T^{6} )^{2} \)
$19$ \( 1 - 691 T^{2} + 378040 T^{4} - 133433020 T^{6} + 49266550840 T^{8} - 11735642061331 T^{10} + 2213314919066161 T^{12} \)
$23$ \( ( 1 + 40 T + 1387 T^{2} + 28195 T^{3} + 733723 T^{4} + 11193640 T^{5} + 148035889 T^{6} )^{2} \)
$29$ \( 1 - 1621 T^{2} + 1946890 T^{4} - 2007466870 T^{6} + 1376998306090 T^{8} - 810899435409781 T^{10} + 353814783205469041 T^{12} \)
$31$ \( ( 1 + 56 T + 2591 T^{2} + 96591 T^{3} + 2489951 T^{4} + 51717176 T^{5} + 887503681 T^{6} )^{2} \)
$37$ \( 1 - 5259 T^{2} + 14237096 T^{4} - 24083763884 T^{6} + 26682610076456 T^{8} - 18472129448170539 T^{10} + 6582952005840035281 T^{12} \)
$41$ \( ( 1 + 86 T + 6451 T^{2} + 292121 T^{3} + 10844131 T^{4} + 243015446 T^{5} + 4750104241 T^{6} )^{2} \)
$43$ \( 1 - 10 T + 147 T^{2} + 135020 T^{3} + 271803 T^{4} - 34188010 T^{5} + 6321363049 T^{6} \)
$47$ \( ( 1 - 15 T + 5052 T^{2} - 79770 T^{3} + 11159868 T^{4} - 73195215 T^{5} + 10779215329 T^{6} )^{2} \)
$53$ \( ( 1 + 55 T + 4677 T^{2} + 168490 T^{3} + 13137693 T^{4} + 433976455 T^{5} + 22164361129 T^{6} )^{2} \)
$59$ \( ( 1 + 6 T + 4271 T^{2} + 147196 T^{3} + 14867351 T^{4} + 72704166 T^{5} + 42180533641 T^{6} )^{2} \)
$61$ \( 1 - 6176 T^{2} + 53251015 T^{4} - 178029474320 T^{6} + 737305086778615 T^{8} - 1183984365071207456 T^{10} + \)\(26\!\cdots\!21\)\( T^{12} \)
$67$ \( ( 1 + 35 T + 9017 T^{2} + 350730 T^{3} + 40477313 T^{4} + 705289235 T^{5} + 90458382169 T^{6} )^{2} \)
$71$ \( 1 - 22246 T^{2} + 239223215 T^{4} - 1523736510420 T^{6} + 6079064027374415 T^{8} - 14365433056093199206 T^{10} + \)\(16\!\cdots\!41\)\( T^{12} \)
$73$ \( 1 - 24604 T^{2} + 277197791 T^{4} - 1859020745064 T^{6} + 7871929673485631 T^{8} - 19842144100961968924 T^{10} + \)\(22\!\cdots\!21\)\( T^{12} \)
$79$ \( ( 1 - 89 T + 20896 T^{2} - 1122134 T^{3} + 130411936 T^{4} - 3466557209 T^{5} + 243087455521 T^{6} )^{2} \)
$83$ \( ( 1 - 5 T + 14767 T^{2} - 128390 T^{3} + 101729863 T^{4} - 237291605 T^{5} + 326940373369 T^{6} )^{2} \)
$89$ \( 1 - 38876 T^{2} + 668902015 T^{4} - 6712320081320 T^{6} + 41968411430515615 T^{8} - \)\(15\!\cdots\!56\)\( T^{10} + \)\(24\!\cdots\!21\)\( T^{12} \)
$97$ \( ( 1 + 190 T + 26827 T^{2} + 2529295 T^{3} + 252415243 T^{4} + 16820563390 T^{5} + 832972004929 T^{6} )^{2} \)
show more
show less