Properties

Label 43.3.b.a
Level $43$
Weight $3$
Character orbit 43.b
Self dual yes
Analytic conductor $1.172$
Analytic rank $0$
Dimension $1$
CM discriminant -43
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 43 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 43.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(1.17166513675\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

\(f(q)\) \(=\) \( q + 4q^{4} + 9q^{9} + O(q^{10}) \) \( q + 4q^{4} + 9q^{9} - 21q^{11} - 17q^{13} + 16q^{16} - 9q^{17} + 3q^{23} + 25q^{25} + 19q^{31} + 36q^{36} + 39q^{41} - 43q^{43} - 84q^{44} - 78q^{47} + 49q^{49} - 68q^{52} + 63q^{53} - 54q^{59} + 64q^{64} + 91q^{67} - 36q^{68} - 14q^{79} + 81q^{81} + 123q^{83} + 12q^{92} - 193q^{97} - 189q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/43\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
42.1
0
0 0 4.00000 0 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
43.b odd 2 1 CM by \(\Q(\sqrt{-43}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 43.3.b.a 1
3.b odd 2 1 387.3.b.a 1
4.b odd 2 1 688.3.b.a 1
43.b odd 2 1 CM 43.3.b.a 1
129.d even 2 1 387.3.b.a 1
172.d even 2 1 688.3.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
43.3.b.a 1 1.a even 1 1 trivial
43.3.b.a 1 43.b odd 2 1 CM
387.3.b.a 1 3.b odd 2 1
387.3.b.a 1 129.d even 2 1
688.3.b.a 1 4.b odd 2 1
688.3.b.a 1 172.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{3}^{\mathrm{new}}(43, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( 21 + T \)
$13$ \( 17 + T \)
$17$ \( 9 + T \)
$19$ \( T \)
$23$ \( -3 + T \)
$29$ \( T \)
$31$ \( -19 + T \)
$37$ \( T \)
$41$ \( -39 + T \)
$43$ \( 43 + T \)
$47$ \( 78 + T \)
$53$ \( -63 + T \)
$59$ \( 54 + T \)
$61$ \( T \)
$67$ \( -91 + T \)
$71$ \( T \)
$73$ \( T \)
$79$ \( 14 + T \)
$83$ \( -123 + T \)
$89$ \( T \)
$97$ \( 193 + T \)
show more
show less