Properties

Label 43.2.e.b.41.1
Level $43$
Weight $2$
Character 43.41
Analytic conductor $0.343$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 43.e (of order \(7\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.343356728692\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Defining polynomial: \(x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 41.1
Root \(-0.623490 - 0.781831i\) of defining polynomial
Character \(\chi\) \(=\) 43.41
Dual form 43.2.e.b.21.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.240787i) q^{2} +(0.178448 + 0.0859360i) q^{3} +(-1.05496 + 1.32288i) q^{4} +(0.445042 - 1.94986i) q^{5} +0.109916 q^{6} -2.55496 q^{7} +(-0.455927 + 1.99755i) q^{8} +(-1.84601 - 2.31482i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.240787i) q^{2} +(0.178448 + 0.0859360i) q^{3} +(-1.05496 + 1.32288i) q^{4} +(0.445042 - 1.94986i) q^{5} +0.109916 q^{6} -2.55496 q^{7} +(-0.455927 + 1.99755i) q^{8} +(-1.84601 - 2.31482i) q^{9} +(-0.246980 - 1.08209i) q^{10} +(2.95593 + 3.70662i) q^{11} +(-0.301938 + 0.145406i) q^{12} +(-0.143104 + 0.626980i) q^{13} +(-1.27748 + 0.615201i) q^{14} +(0.246980 - 0.309703i) q^{15} +(-0.500000 - 2.19064i) q^{16} +(-0.246980 - 1.08209i) q^{17} +(-1.48039 - 0.712916i) q^{18} +(3.33997 - 4.18819i) q^{19} +(2.10992 + 2.64575i) q^{20} +(-0.455927 - 0.219563i) q^{21} +(2.37047 + 1.14156i) q^{22} +(3.27144 + 4.10225i) q^{23} +(-0.253020 + 0.317278i) q^{24} +(0.900969 + 0.433884i) q^{25} +(0.0794168 + 0.347948i) q^{26} +(-0.262709 - 1.15100i) q^{27} +(2.69537 - 3.37989i) q^{28} +(0.821552 - 0.395639i) q^{29} +(0.0489173 - 0.214321i) q^{30} +(-5.37047 + 2.58628i) q^{31} +(-3.33244 - 4.17874i) q^{32} +(0.208947 + 0.915458i) q^{33} +(-0.384043 - 0.481575i) q^{34} +(-1.13706 + 4.98180i) q^{35} +5.00969 q^{36} -11.3937 q^{37} +(0.661522 - 2.89832i) q^{38} +(-0.0794168 + 0.0995855i) q^{39} +(3.69202 + 1.77798i) q^{40} +(6.99396 - 3.36811i) q^{41} -0.280831 q^{42} +(-5.45593 + 3.63770i) q^{43} -8.02177 q^{44} +(-5.33513 + 2.56926i) q^{45} +(2.62349 + 1.26341i) q^{46} +(-0.623490 + 0.781831i) q^{47} +(0.0990311 - 0.433884i) q^{48} -0.472189 q^{49} +0.554958 q^{50} +(0.0489173 - 0.214321i) q^{51} +(-0.678448 - 0.850747i) q^{52} +(-1.72252 - 7.54686i) q^{53} +(-0.408502 - 0.512245i) q^{54} +(8.54288 - 4.11403i) q^{55} +(1.16487 - 5.10365i) q^{56} +(0.955927 - 0.460350i) q^{57} +(0.315511 - 0.395639i) q^{58} +(1.85474 + 8.12615i) q^{59} +(0.149145 + 0.653447i) q^{60} +(7.11745 + 3.42758i) q^{61} +(-2.06249 + 2.58628i) q^{62} +(4.71648 + 5.91428i) q^{63} +(1.37651 + 0.662892i) q^{64} +(1.15883 + 0.558065i) q^{65} +(0.324904 + 0.407417i) q^{66} +(0.291053 - 0.364968i) q^{67} +(1.69202 + 0.814835i) q^{68} +(0.231250 + 1.01317i) q^{69} +(0.631023 + 2.76469i) q^{70} +(5.91185 - 7.41323i) q^{71} +(5.46562 - 2.63210i) q^{72} +(2.82155 - 12.3620i) q^{73} +(-5.69687 + 2.74347i) q^{74} +(0.123490 + 0.154851i) q^{75} +(2.01693 + 8.83673i) q^{76} +(-7.55227 - 9.47025i) q^{77} +(-0.0157295 + 0.0689153i) q^{78} -5.09783 q^{79} -4.49396 q^{80} +(-1.92447 + 8.43165i) q^{81} +(2.68598 - 3.36811i) q^{82} +(-13.4438 - 6.47421i) q^{83} +(0.771438 - 0.371505i) q^{84} -2.21983 q^{85} +(-1.85205 + 3.13257i) q^{86} +0.180604 q^{87} +(-8.75182 + 4.21466i) q^{88} +(15.3300 + 7.38256i) q^{89} +(-2.04892 + 2.56926i) q^{90} +(0.365625 - 1.60191i) q^{91} -8.87800 q^{92} -1.18060 q^{93} +(-0.123490 + 0.541044i) q^{94} +(-6.67994 - 8.37638i) q^{95} +(-0.235562 - 1.03206i) q^{96} +(10.3218 + 12.9432i) q^{97} +(-0.236094 + 0.113697i) q^{98} +(3.12349 - 13.6849i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{3} - 7 q^{4} + 2 q^{5} + 2 q^{6} - 16 q^{7} + q^{8} - 6 q^{9} + O(q^{10}) \) \( 6 q + 3 q^{2} - 3 q^{3} - 7 q^{4} + 2 q^{5} + 2 q^{6} - 16 q^{7} + q^{8} - 6 q^{9} + 8 q^{10} + 14 q^{11} + 7 q^{12} - 9 q^{13} - 8 q^{14} - 8 q^{15} - 3 q^{16} + 8 q^{17} + 4 q^{18} - 4 q^{19} + 14 q^{20} + q^{21} + q^{23} - 11 q^{24} + q^{25} - 8 q^{26} + 33 q^{27} + 28 q^{28} + 9 q^{29} - 18 q^{30} - 18 q^{31} - 21 q^{32} + 7 q^{33} + 18 q^{34} + 4 q^{35} - 14 q^{36} - 4 q^{37} - 16 q^{38} + 8 q^{39} + 12 q^{40} + 23 q^{41} - 24 q^{42} - 29 q^{43} - 42 q^{44} - 30 q^{45} + 11 q^{46} + q^{47} + 5 q^{48} + 10 q^{49} + 4 q^{50} - 18 q^{51} - 10 q^{53} + 27 q^{54} + 14 q^{55} + 9 q^{56} + 2 q^{57} - 13 q^{58} + 22 q^{59} + 28 q^{60} + 19 q^{61} + 12 q^{62} + 9 q^{63} + 13 q^{64} - 10 q^{65} + 28 q^{66} - 4 q^{67} + 17 q^{69} - 26 q^{70} + 28 q^{71} - 15 q^{72} + 21 q^{73} - 2 q^{74} - 4 q^{75} + 28 q^{76} - 49 q^{77} + 25 q^{78} + 6 q^{79} - 8 q^{80} - 58 q^{81} - 13 q^{82} - 39 q^{83} - 14 q^{84} - 16 q^{85} - 25 q^{86} - 22 q^{87} - 21 q^{88} + 11 q^{89} + 6 q^{90} + 10 q^{91} - 14 q^{92} + 16 q^{93} + 4 q^{94} + 8 q^{95} + 21 q^{96} - 19 q^{97} + 5 q^{98} + 14 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/43\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.240787i 0.353553 0.170262i −0.248673 0.968587i \(-0.579995\pi\)
0.602227 + 0.798325i \(0.294280\pi\)
\(3\) 0.178448 + 0.0859360i 0.103027 + 0.0496152i 0.484687 0.874687i \(-0.338933\pi\)
−0.381660 + 0.924303i \(0.624648\pi\)
\(4\) −1.05496 + 1.32288i −0.527479 + 0.661438i
\(5\) 0.445042 1.94986i 0.199029 0.872002i −0.772488 0.635030i \(-0.780988\pi\)
0.971516 0.236972i \(-0.0761550\pi\)
\(6\) 0.109916 0.0448731
\(7\) −2.55496 −0.965683 −0.482842 0.875708i \(-0.660395\pi\)
−0.482842 + 0.875708i \(0.660395\pi\)
\(8\) −0.455927 + 1.99755i −0.161195 + 0.706239i
\(9\) −1.84601 2.31482i −0.615337 0.771608i
\(10\) −0.246980 1.08209i −0.0781018 0.342186i
\(11\) 2.95593 + 3.70662i 0.891246 + 1.11759i 0.992441 + 0.122720i \(0.0391617\pi\)
−0.101196 + 0.994867i \(0.532267\pi\)
\(12\) −0.301938 + 0.145406i −0.0871619 + 0.0419750i
\(13\) −0.143104 + 0.626980i −0.0396899 + 0.173893i −0.990888 0.134688i \(-0.956997\pi\)
0.951198 + 0.308581i \(0.0998540\pi\)
\(14\) −1.27748 + 0.615201i −0.341421 + 0.164420i
\(15\) 0.246980 0.309703i 0.0637699 0.0799649i
\(16\) −0.500000 2.19064i −0.125000 0.547661i
\(17\) −0.246980 1.08209i −0.0599014 0.262445i 0.936106 0.351719i \(-0.114403\pi\)
−0.996007 + 0.0892736i \(0.971545\pi\)
\(18\) −1.48039 0.712916i −0.348930 0.168036i
\(19\) 3.33997 4.18819i 0.766242 0.960837i −0.233693 0.972311i \(-0.575081\pi\)
0.999934 + 0.0114739i \(0.00365234\pi\)
\(20\) 2.10992 + 2.64575i 0.471792 + 0.591608i
\(21\) −0.455927 0.219563i −0.0994914 0.0479125i
\(22\) 2.37047 + 1.14156i 0.505386 + 0.243381i
\(23\) 3.27144 + 4.10225i 0.682142 + 0.855379i 0.995550 0.0942397i \(-0.0300420\pi\)
−0.313408 + 0.949619i \(0.601471\pi\)
\(24\) −0.253020 + 0.317278i −0.0516476 + 0.0647640i
\(25\) 0.900969 + 0.433884i 0.180194 + 0.0867767i
\(26\) 0.0794168 + 0.347948i 0.0155749 + 0.0682382i
\(27\) −0.262709 1.15100i −0.0505584 0.221511i
\(28\) 2.69537 3.37989i 0.509378 0.638740i
\(29\) 0.821552 0.395639i 0.152558 0.0734682i −0.356047 0.934468i \(-0.615876\pi\)
0.508605 + 0.861000i \(0.330161\pi\)
\(30\) 0.0489173 0.214321i 0.00893104 0.0391295i
\(31\) −5.37047 + 2.58628i −0.964565 + 0.464510i −0.848769 0.528763i \(-0.822656\pi\)
−0.115795 + 0.993273i \(0.536942\pi\)
\(32\) −3.33244 4.17874i −0.589097 0.738705i
\(33\) 0.208947 + 0.915458i 0.0363731 + 0.159361i
\(34\) −0.384043 0.481575i −0.0658628 0.0825894i
\(35\) −1.13706 + 4.98180i −0.192199 + 0.842078i
\(36\) 5.00969 0.834948
\(37\) −11.3937 −1.87312 −0.936559 0.350510i \(-0.886008\pi\)
−0.936559 + 0.350510i \(0.886008\pi\)
\(38\) 0.661522 2.89832i 0.107313 0.470169i
\(39\) −0.0794168 + 0.0995855i −0.0127169 + 0.0159464i
\(40\) 3.69202 + 1.77798i 0.583760 + 0.281124i
\(41\) 6.99396 3.36811i 1.09227 0.526011i 0.201052 0.979581i \(-0.435564\pi\)
0.891221 + 0.453570i \(0.149850\pi\)
\(42\) −0.280831 −0.0433332
\(43\) −5.45593 + 3.63770i −0.832021 + 0.554744i
\(44\) −8.02177 −1.20933
\(45\) −5.33513 + 2.56926i −0.795314 + 0.383003i
\(46\) 2.62349 + 1.26341i 0.386812 + 0.186279i
\(47\) −0.623490 + 0.781831i −0.0909453 + 0.114042i −0.825222 0.564808i \(-0.808950\pi\)
0.734277 + 0.678850i \(0.237521\pi\)
\(48\) 0.0990311 0.433884i 0.0142939 0.0626257i
\(49\) −0.472189 −0.0674556
\(50\) 0.554958 0.0784829
\(51\) 0.0489173 0.214321i 0.00684980 0.0300109i
\(52\) −0.678448 0.850747i −0.0940838 0.117977i
\(53\) −1.72252 7.54686i −0.236606 1.03664i −0.944032 0.329853i \(-0.893001\pi\)
0.707426 0.706788i \(-0.249856\pi\)
\(54\) −0.408502 0.512245i −0.0555900 0.0697077i
\(55\) 8.54288 4.11403i 1.15192 0.554736i
\(56\) 1.16487 5.10365i 0.155663 0.682004i
\(57\) 0.955927 0.460350i 0.126616 0.0609749i
\(58\) 0.315511 0.395639i 0.0414287 0.0519499i
\(59\) 1.85474 + 8.12615i 0.241467 + 1.05793i 0.939683 + 0.342047i \(0.111120\pi\)
−0.698216 + 0.715887i \(0.746023\pi\)
\(60\) 0.149145 + 0.653447i 0.0192545 + 0.0843596i
\(61\) 7.11745 + 3.42758i 0.911296 + 0.438857i 0.829956 0.557829i \(-0.188366\pi\)
0.0813403 + 0.996686i \(0.474080\pi\)
\(62\) −2.06249 + 2.58628i −0.261937 + 0.328458i
\(63\) 4.71648 + 5.91428i 0.594221 + 0.745129i
\(64\) 1.37651 + 0.662892i 0.172064 + 0.0828615i
\(65\) 1.15883 + 0.558065i 0.143736 + 0.0692194i
\(66\) 0.324904 + 0.407417i 0.0399930 + 0.0501496i
\(67\) 0.291053 0.364968i 0.0355577 0.0445880i −0.763735 0.645530i \(-0.776636\pi\)
0.799292 + 0.600942i \(0.205208\pi\)
\(68\) 1.69202 + 0.814835i 0.205188 + 0.0988132i
\(69\) 0.231250 + 1.01317i 0.0278392 + 0.121972i
\(70\) 0.631023 + 2.76469i 0.0754216 + 0.330444i
\(71\) 5.91185 7.41323i 0.701608 0.879789i −0.295535 0.955332i \(-0.595498\pi\)
0.997143 + 0.0755435i \(0.0240692\pi\)
\(72\) 5.46562 2.63210i 0.644129 0.310196i
\(73\) 2.82155 12.3620i 0.330238 1.44687i −0.488432 0.872602i \(-0.662431\pi\)
0.818670 0.574264i \(-0.194712\pi\)
\(74\) −5.69687 + 2.74347i −0.662247 + 0.318921i
\(75\) 0.123490 + 0.154851i 0.0142594 + 0.0178807i
\(76\) 2.01693 + 8.83673i 0.231357 + 1.01364i
\(77\) −7.55227 9.47025i −0.860661 1.07923i
\(78\) −0.0157295 + 0.0689153i −0.00178101 + 0.00780312i
\(79\) −5.09783 −0.573551 −0.286776 0.957998i \(-0.592583\pi\)
−0.286776 + 0.957998i \(0.592583\pi\)
\(80\) −4.49396 −0.502440
\(81\) −1.92447 + 8.43165i −0.213830 + 0.936849i
\(82\) 2.68598 3.36811i 0.296617 0.371946i
\(83\) −13.4438 6.47421i −1.47565 0.710637i −0.488821 0.872384i \(-0.662573\pi\)
−0.986832 + 0.161746i \(0.948287\pi\)
\(84\) 0.771438 0.371505i 0.0841708 0.0405345i
\(85\) −2.21983 −0.240775
\(86\) −1.85205 + 3.13257i −0.199712 + 0.337793i
\(87\) 0.180604 0.0193628
\(88\) −8.75182 + 4.21466i −0.932948 + 0.449284i
\(89\) 15.3300 + 7.38256i 1.62498 + 0.782550i 0.999998 + 0.00191168i \(0.000608506\pi\)
0.624983 + 0.780638i \(0.285106\pi\)
\(90\) −2.04892 + 2.56926i −0.215975 + 0.270824i
\(91\) 0.365625 1.60191i 0.0383279 0.167926i
\(92\) −8.87800 −0.925596
\(93\) −1.18060 −0.122423
\(94\) −0.123490 + 0.541044i −0.0127370 + 0.0558044i
\(95\) −6.67994 8.37638i −0.685347 0.859398i
\(96\) −0.235562 1.03206i −0.0240419 0.105335i
\(97\) 10.3218 + 12.9432i 1.04802 + 1.31418i 0.947678 + 0.319229i \(0.103424\pi\)
0.100347 + 0.994952i \(0.468005\pi\)
\(98\) −0.236094 + 0.113697i −0.0238491 + 0.0114851i
\(99\) 3.12349 13.6849i 0.313923 1.37538i
\(100\) −1.52446 + 0.734141i −0.152446 + 0.0734141i
\(101\) −2.36443 + 2.96490i −0.235269 + 0.295019i −0.885425 0.464783i \(-0.846132\pi\)
0.650155 + 0.759801i \(0.274704\pi\)
\(102\) −0.0271471 0.118939i −0.00268796 0.0117767i
\(103\) 1.31767 + 5.77308i 0.129834 + 0.568838i 0.997435 + 0.0715779i \(0.0228035\pi\)
−0.867601 + 0.497260i \(0.834339\pi\)
\(104\) −1.18718 0.571714i −0.116412 0.0560612i
\(105\) −0.631023 + 0.791277i −0.0615815 + 0.0772208i
\(106\) −2.67845 3.35867i −0.260154 0.326223i
\(107\) −1.77144 0.853080i −0.171251 0.0824703i 0.346294 0.938126i \(-0.387440\pi\)
−0.517546 + 0.855656i \(0.673154\pi\)
\(108\) 1.79978 + 0.866729i 0.173184 + 0.0834011i
\(109\) −5.18933 6.50722i −0.497048 0.623278i 0.468513 0.883457i \(-0.344790\pi\)
−0.965561 + 0.260178i \(0.916219\pi\)
\(110\) 3.28083 4.11403i 0.312815 0.392258i
\(111\) −2.03319 0.979132i −0.192982 0.0929351i
\(112\) 1.27748 + 5.59700i 0.120710 + 0.528867i
\(113\) 0.407010 + 1.78323i 0.0382882 + 0.167752i 0.990457 0.137820i \(-0.0440095\pi\)
−0.952169 + 0.305572i \(0.901152\pi\)
\(114\) 0.367117 0.460350i 0.0343837 0.0431157i
\(115\) 9.45473 4.55316i 0.881658 0.424584i
\(116\) −0.343322 + 1.50419i −0.0318767 + 0.139661i
\(117\) 1.71552 0.826151i 0.158600 0.0763777i
\(118\) 2.88404 + 3.61648i 0.265498 + 0.332924i
\(119\) 0.631023 + 2.76469i 0.0578457 + 0.253439i
\(120\) 0.506041 + 0.634555i 0.0461950 + 0.0579267i
\(121\) −2.55376 + 11.1888i −0.232160 + 1.01716i
\(122\) 4.38404 0.396913
\(123\) 1.53750 0.138632
\(124\) 2.24429 9.83288i 0.201543 0.883019i
\(125\) 7.48188 9.38198i 0.669199 0.839150i
\(126\) 3.78232 + 1.82147i 0.336956 + 0.162270i
\(127\) −2.67241 + 1.28696i −0.237138 + 0.114200i −0.548679 0.836033i \(-0.684869\pi\)
0.311541 + 0.950233i \(0.399155\pi\)
\(128\) 11.5375 1.01978
\(129\) −1.28621 + 0.180280i −0.113244 + 0.0158727i
\(130\) 0.713792 0.0626037
\(131\) 6.40581 3.08488i 0.559678 0.269527i −0.132585 0.991172i \(-0.542328\pi\)
0.692264 + 0.721645i \(0.256614\pi\)
\(132\) −1.43147 0.689359i −0.124593 0.0600010i
\(133\) −8.53348 + 10.7006i −0.739947 + 0.927864i
\(134\) 0.0576465 0.252566i 0.00497990 0.0218184i
\(135\) −2.36121 −0.203220
\(136\) 2.27413 0.195005
\(137\) −1.85205 + 8.11437i −0.158231 + 0.693257i 0.832110 + 0.554610i \(0.187133\pi\)
−0.990342 + 0.138647i \(0.955725\pi\)
\(138\) 0.359584 + 0.450904i 0.0306098 + 0.0383835i
\(139\) −1.34385 5.88781i −0.113984 0.499398i −0.999401 0.0346001i \(-0.988984\pi\)
0.885417 0.464798i \(-0.153873\pi\)
\(140\) −5.39075 6.75978i −0.455601 0.571306i
\(141\) −0.178448 + 0.0859360i −0.0150280 + 0.00723712i
\(142\) 1.17092 5.13011i 0.0982610 0.430510i
\(143\) −2.74698 + 1.32288i −0.229714 + 0.110624i
\(144\) −4.14795 + 5.20136i −0.345662 + 0.433447i
\(145\) −0.405813 1.77798i −0.0337010 0.147654i
\(146\) −1.56584 6.86041i −0.129590 0.567771i
\(147\) −0.0842611 0.0405780i −0.00694974 0.00334682i
\(148\) 12.0199 15.0725i 0.988031 1.23895i
\(149\) 1.38740 + 1.73974i 0.113660 + 0.142525i 0.835407 0.549632i \(-0.185232\pi\)
−0.721747 + 0.692157i \(0.756661\pi\)
\(150\) 0.0990311 + 0.0476909i 0.00808586 + 0.00389394i
\(151\) −0.445042 0.214321i −0.0362170 0.0174412i 0.415688 0.909507i \(-0.363541\pi\)
−0.451905 + 0.892066i \(0.649255\pi\)
\(152\) 6.84332 + 8.58125i 0.555067 + 0.696032i
\(153\) −2.04892 + 2.56926i −0.165645 + 0.207712i
\(154\) −6.05645 2.91663i −0.488043 0.235029i
\(155\) 2.65279 + 11.6226i 0.213077 + 0.933553i
\(156\) −0.0479579 0.210117i −0.00383970 0.0168228i
\(157\) −4.80798 + 6.02901i −0.383718 + 0.481168i −0.935754 0.352653i \(-0.885280\pi\)
0.552036 + 0.833820i \(0.313851\pi\)
\(158\) −2.54892 + 1.22749i −0.202781 + 0.0976542i
\(159\) 0.341166 1.49475i 0.0270563 0.118541i
\(160\) −9.63102 + 4.63806i −0.761399 + 0.366671i
\(161\) −8.35839 10.4811i −0.658733 0.826025i
\(162\) 1.06800 + 4.67921i 0.0839099 + 0.367633i
\(163\) 0.608424 + 0.762940i 0.0476555 + 0.0597581i 0.805088 0.593155i \(-0.202118\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(164\) −2.92274 + 12.8054i −0.228228 + 0.999930i
\(165\) 1.87800 0.146202
\(166\) −8.28083 −0.642717
\(167\) 1.25691 5.50686i 0.0972622 0.426134i −0.902729 0.430209i \(-0.858440\pi\)
0.999992 + 0.00407497i \(0.00129711\pi\)
\(168\) 0.646457 0.810631i 0.0498752 0.0625415i
\(169\) 11.3400 + 5.46104i 0.872305 + 0.420080i
\(170\) −1.10992 + 0.534508i −0.0851267 + 0.0409949i
\(171\) −15.8605 −1.21289
\(172\) 0.943550 11.0551i 0.0719450 0.842946i
\(173\) −8.65279 −0.657860 −0.328930 0.944354i \(-0.606688\pi\)
−0.328930 + 0.944354i \(0.606688\pi\)
\(174\) 0.0903019 0.0434871i 0.00684577 0.00329675i
\(175\) −2.30194 1.10855i −0.174010 0.0837989i
\(176\) 6.64191 8.32869i 0.500653 0.627799i
\(177\) −0.367354 + 1.60948i −0.0276120 + 0.120976i
\(178\) 9.44265 0.707756
\(179\) −1.99462 −0.149085 −0.0745426 0.997218i \(-0.523750\pi\)
−0.0745426 + 0.997218i \(0.523750\pi\)
\(180\) 2.22952 9.76817i 0.166179 0.728076i
\(181\) −5.52177 6.92408i −0.410430 0.514663i 0.533054 0.846081i \(-0.321044\pi\)
−0.943484 + 0.331418i \(0.892473\pi\)
\(182\) −0.202907 0.888992i −0.0150404 0.0658965i
\(183\) 0.975541 + 1.22329i 0.0721141 + 0.0904282i
\(184\) −9.68598 + 4.66452i −0.714060 + 0.343873i
\(185\) −5.07069 + 22.2161i −0.372804 + 1.63336i
\(186\) −0.590302 + 0.284274i −0.0432830 + 0.0208440i
\(187\) 3.28083 4.11403i 0.239918 0.300848i
\(188\) −0.376510 1.64960i −0.0274598 0.120309i
\(189\) 0.671211 + 2.94077i 0.0488234 + 0.213909i
\(190\) −5.35690 2.57975i −0.388630 0.187154i
\(191\) −4.70440 + 5.89913i −0.340398 + 0.426846i −0.922337 0.386387i \(-0.873723\pi\)
0.581939 + 0.813233i \(0.302294\pi\)
\(192\) 0.188669 + 0.236584i 0.0136160 + 0.0170739i
\(193\) 7.24578 + 3.48939i 0.521563 + 0.251171i 0.676093 0.736817i \(-0.263672\pi\)
−0.154530 + 0.987988i \(0.549386\pi\)
\(194\) 8.27748 + 3.98622i 0.594288 + 0.286194i
\(195\) 0.158834 + 0.199171i 0.0113743 + 0.0142629i
\(196\) 0.498140 0.624647i 0.0355814 0.0446177i
\(197\) 17.4710 + 8.41359i 1.24476 + 0.599443i 0.936101 0.351731i \(-0.114407\pi\)
0.308655 + 0.951174i \(0.400121\pi\)
\(198\) −1.73341 7.59455i −0.123188 0.539721i
\(199\) −5.04288 22.0943i −0.357480 1.56622i −0.759448 0.650568i \(-0.774531\pi\)
0.401968 0.915654i \(-0.368326\pi\)
\(200\) −1.27748 + 1.60191i −0.0903314 + 0.113272i
\(201\) 0.0833017 0.0401160i 0.00587565 0.00282956i
\(202\) −0.468304 + 2.05177i −0.0329498 + 0.144362i
\(203\) −2.09903 + 1.01084i −0.147323 + 0.0709471i
\(204\) 0.231914 + 0.290811i 0.0162372 + 0.0203608i
\(205\) −3.45473 15.1362i −0.241289 1.05716i
\(206\) 2.04892 + 2.56926i 0.142755 + 0.179009i
\(207\) 3.45689 15.1456i 0.240270 1.05269i
\(208\) 1.44504 0.100196
\(209\) 25.3967 1.75673
\(210\) −0.124982 + 0.547581i −0.00862456 + 0.0377867i
\(211\) −10.2823 + 12.8936i −0.707864 + 0.887634i −0.997583 0.0694779i \(-0.977867\pi\)
0.289719 + 0.957112i \(0.406438\pi\)
\(212\) 11.8007 + 5.68294i 0.810478 + 0.390306i
\(213\) 1.69202 0.814835i 0.115935 0.0558315i
\(214\) −1.09113 −0.0745881
\(215\) 4.66487 + 12.2572i 0.318142 + 0.835934i
\(216\) 2.41896 0.164589
\(217\) 13.7213 6.60784i 0.931464 0.448570i
\(218\) −4.16152 2.00408i −0.281854 0.135734i
\(219\) 1.56584 1.96351i 0.105810 0.132681i
\(220\) −3.57002 + 15.6413i −0.240691 + 1.05454i
\(221\) 0.713792 0.0480148
\(222\) −1.25236 −0.0840527
\(223\) 0.335126 1.46828i 0.0224417 0.0983234i −0.962467 0.271400i \(-0.912514\pi\)
0.984908 + 0.173076i \(0.0553707\pi\)
\(224\) 8.51424 + 10.6765i 0.568881 + 0.713355i
\(225\) −0.658834 2.88654i −0.0439222 0.192436i
\(226\) 0.632883 + 0.793610i 0.0420987 + 0.0527902i
\(227\) 16.5417 7.96605i 1.09791 0.528726i 0.204909 0.978781i \(-0.434310\pi\)
0.893001 + 0.450055i \(0.148596\pi\)
\(228\) −0.399477 + 1.75022i −0.0264560 + 0.115911i
\(229\) −5.57122 + 2.68296i −0.368157 + 0.177295i −0.608810 0.793316i \(-0.708353\pi\)
0.240653 + 0.970611i \(0.422638\pi\)
\(230\) 3.63102 4.55316i 0.239423 0.300226i
\(231\) −0.533852 2.33896i −0.0351249 0.153892i
\(232\) 0.415739 + 1.82147i 0.0272946 + 0.119585i
\(233\) −3.98307 1.91815i −0.260940 0.125662i 0.298840 0.954303i \(-0.403400\pi\)
−0.559780 + 0.828641i \(0.689114\pi\)
\(234\) 0.658834 0.826151i 0.0430693 0.0540072i
\(235\) 1.24698 + 1.56366i 0.0813440 + 0.102002i
\(236\) −12.7066 6.11915i −0.827126 0.398323i
\(237\) −0.909698 0.438087i −0.0590912 0.0284568i
\(238\) 0.981214 + 1.23040i 0.0636026 + 0.0797552i
\(239\) −6.51507 + 8.16963i −0.421425 + 0.528450i −0.946542 0.322580i \(-0.895450\pi\)
0.525118 + 0.851030i \(0.324021\pi\)
\(240\) −0.801938 0.386193i −0.0517649 0.0249286i
\(241\) −5.40731 23.6910i −0.348315 1.52607i −0.781005 0.624525i \(-0.785292\pi\)
0.432689 0.901543i \(-0.357565\pi\)
\(242\) 1.41723 + 6.20929i 0.0911030 + 0.399149i
\(243\) −3.27628 + 4.10833i −0.210174 + 0.263549i
\(244\) −12.0429 + 5.79954i −0.770966 + 0.371278i
\(245\) −0.210144 + 0.920700i −0.0134256 + 0.0588214i
\(246\) 0.768750 0.370210i 0.0490137 0.0236038i
\(247\) 2.14795 + 2.69344i 0.136671 + 0.171380i
\(248\) −2.71768 11.9069i −0.172573 0.756090i
\(249\) −1.84266 2.31062i −0.116774 0.146430i
\(250\) 1.48188 6.49253i 0.0937222 0.410624i
\(251\) −21.9269 −1.38401 −0.692007 0.721890i \(-0.743273\pi\)
−0.692007 + 0.721890i \(0.743273\pi\)
\(252\) −12.7995 −0.806296
\(253\) −5.53534 + 24.2519i −0.348004 + 1.52471i
\(254\) −1.02632 + 1.28696i −0.0643970 + 0.0807513i
\(255\) −0.396125 0.190764i −0.0248063 0.0119461i
\(256\) 3.01573 1.45230i 0.188483 0.0907687i
\(257\) −2.89546 −0.180614 −0.0903069 0.995914i \(-0.528785\pi\)
−0.0903069 + 0.995914i \(0.528785\pi\)
\(258\) −0.599695 + 0.399842i −0.0373354 + 0.0248931i
\(259\) 29.1105 1.80884
\(260\) −1.96077 + 0.944258i −0.121602 + 0.0585604i
\(261\) −2.43243 1.17140i −0.150564 0.0725076i
\(262\) 2.46011 3.08488i 0.151986 0.190584i
\(263\) 3.86616 16.9387i 0.238397 1.04449i −0.704054 0.710146i \(-0.748629\pi\)
0.942452 0.334342i \(-0.108514\pi\)
\(264\) −1.92394 −0.118410
\(265\) −15.4819 −0.951044
\(266\) −1.69016 + 7.40508i −0.103630 + 0.454035i
\(267\) 2.10119 + 2.63481i 0.128591 + 0.161247i
\(268\) 0.175760 + 0.770053i 0.0107362 + 0.0470385i
\(269\) −8.77293 11.0009i −0.534895 0.670737i 0.438802 0.898584i \(-0.355403\pi\)
−0.973697 + 0.227847i \(0.926832\pi\)
\(270\) −1.18060 + 0.568549i −0.0718493 + 0.0346008i
\(271\) 0.477033 2.09002i 0.0289777 0.126960i −0.958370 0.285529i \(-0.907831\pi\)
0.987348 + 0.158569i \(0.0506880\pi\)
\(272\) −2.24698 + 1.08209i −0.136243 + 0.0656112i
\(273\) 0.202907 0.254437i 0.0122805 0.0153992i
\(274\) 1.02781 + 4.50313i 0.0620923 + 0.272044i
\(275\) 1.05496 + 4.62207i 0.0636164 + 0.278722i
\(276\) −1.58426 0.762940i −0.0953613 0.0459236i
\(277\) −14.5022 + 18.1851i −0.871350 + 1.09264i 0.123606 + 0.992331i \(0.460554\pi\)
−0.994957 + 0.100307i \(0.968017\pi\)
\(278\) −2.08964 2.62032i −0.125328 0.157157i
\(279\) 15.9007 + 7.65739i 0.951952 + 0.458436i
\(280\) −9.43296 4.54267i −0.563727 0.271477i
\(281\) −11.0571 13.8652i −0.659612 0.827127i 0.333689 0.942683i \(-0.391707\pi\)
−0.993301 + 0.115556i \(0.963135\pi\)
\(282\) −0.0685317 + 0.0859360i −0.00408100 + 0.00511741i
\(283\) −3.52230 1.69625i −0.209379 0.100832i 0.326255 0.945282i \(-0.394213\pi\)
−0.535634 + 0.844450i \(0.679927\pi\)
\(284\) 3.57002 + 15.6413i 0.211842 + 0.928140i
\(285\) −0.472189 2.06879i −0.0279701 0.122545i
\(286\) −1.05496 + 1.32288i −0.0623810 + 0.0782233i
\(287\) −17.8693 + 8.60539i −1.05479 + 0.507960i
\(288\) −3.52134 + 15.4280i −0.207497 + 0.909104i
\(289\) 14.2066 6.84152i 0.835680 0.402442i
\(290\) −0.631023 0.791277i −0.0370549 0.0464654i
\(291\) 0.729627 + 3.19670i 0.0427715 + 0.187394i
\(292\) 13.3768 + 16.7740i 0.782818 + 0.981623i
\(293\) 6.23772 27.3292i 0.364411 1.59659i −0.377445 0.926032i \(-0.623197\pi\)
0.741857 0.670559i \(-0.233946\pi\)
\(294\) −0.0519012 −0.00302694
\(295\) 16.6703 0.970580
\(296\) 5.19471 22.7595i 0.301936 1.32287i
\(297\) 3.48978 4.37604i 0.202498 0.253924i
\(298\) 1.11260 + 0.535802i 0.0644515 + 0.0310382i
\(299\) −3.04019 + 1.46408i −0.175819 + 0.0846698i
\(300\) −0.335126 −0.0193485
\(301\) 13.9397 9.29417i 0.803469 0.535707i
\(302\) −0.274127 −0.0157742
\(303\) −0.676719 + 0.325891i −0.0388765 + 0.0187219i
\(304\) −10.8448 5.22259i −0.621993 0.299536i
\(305\) 9.85086 12.3526i 0.564058 0.707307i
\(306\) −0.405813 + 1.77798i −0.0231988 + 0.101641i
\(307\) −0.633415 −0.0361509 −0.0180755 0.999837i \(-0.505754\pi\)
−0.0180755 + 0.999837i \(0.505754\pi\)
\(308\) 20.4953 1.16783
\(309\) −0.260980 + 1.14343i −0.0148466 + 0.0650474i
\(310\) 4.12498 + 5.17256i 0.234283 + 0.293782i
\(311\) 5.64460 + 24.7306i 0.320076 + 1.40234i 0.837417 + 0.546564i \(0.184065\pi\)
−0.517342 + 0.855779i \(0.673078\pi\)
\(312\) −0.162718 0.204042i −0.00921212 0.0115516i
\(313\) −13.4661 + 6.48496i −0.761152 + 0.366551i −0.773851 0.633368i \(-0.781672\pi\)
0.0126990 + 0.999919i \(0.495958\pi\)
\(314\) −0.952279 + 4.17221i −0.0537402 + 0.235451i
\(315\) 13.6310 6.56435i 0.768021 0.369859i
\(316\) 5.37800 6.74380i 0.302536 0.379368i
\(317\) 1.07822 + 4.72399i 0.0605589 + 0.265326i 0.996139 0.0877883i \(-0.0279799\pi\)
−0.935580 + 0.353114i \(0.885123\pi\)
\(318\) −0.189333 0.829522i −0.0106173 0.0465173i
\(319\) 3.89493 + 1.87570i 0.218074 + 0.105019i
\(320\) 1.90515 2.38898i 0.106501 0.133548i
\(321\) −0.242799 0.304461i −0.0135517 0.0169933i
\(322\) −6.70291 3.22795i −0.373538 0.179887i
\(323\) −5.35690 2.57975i −0.298066 0.143541i
\(324\) −9.12379 11.4409i −0.506877 0.635604i
\(325\) −0.400969 + 0.502799i −0.0222418 + 0.0278903i
\(326\) 0.487918 + 0.234969i 0.0270233 + 0.0130137i
\(327\) −0.366822 1.60715i −0.0202853 0.0888756i
\(328\) 3.53923 + 15.5064i 0.195421 + 0.856196i
\(329\) 1.59299 1.99755i 0.0878244 0.110128i
\(330\) 0.939001 0.452199i 0.0516903 0.0248927i
\(331\) −2.74751 + 12.0376i −0.151017 + 0.661648i 0.841574 + 0.540142i \(0.181630\pi\)
−0.992591 + 0.121506i \(0.961228\pi\)
\(332\) 22.7473 10.9545i 1.24842 0.601207i
\(333\) 21.0330 + 26.3745i 1.15260 + 1.44531i
\(334\) −0.697530 3.05608i −0.0381671 0.167221i
\(335\) −0.582105 0.729937i −0.0318038 0.0398807i
\(336\) −0.253020 + 1.10855i −0.0138034 + 0.0604766i
\(337\) 6.20344 0.337923 0.168961 0.985623i \(-0.445959\pi\)
0.168961 + 0.985623i \(0.445959\pi\)
\(338\) 6.98493 0.379930
\(339\) −0.0806133 + 0.353190i −0.00437831 + 0.0191826i
\(340\) 2.34183 2.93656i 0.127004 0.159257i
\(341\) −25.4611 12.2614i −1.37879 0.663992i
\(342\) −7.93027 + 3.81902i −0.428820 + 0.206509i
\(343\) 19.0911 1.03082
\(344\) −4.77897 12.5570i −0.257665 0.677028i
\(345\) 2.07846 0.111900
\(346\) −4.32640 + 2.08348i −0.232589 + 0.112009i
\(347\) −16.2986 7.84899i −0.874954 0.421356i −0.0581750 0.998306i \(-0.518528\pi\)
−0.816779 + 0.576951i \(0.804242\pi\)
\(348\) −0.190530 + 0.238916i −0.0102135 + 0.0128073i
\(349\) −1.61476 + 7.07473i −0.0864362 + 0.378702i −0.999581 0.0289329i \(-0.990789\pi\)
0.913145 + 0.407634i \(0.133646\pi\)
\(350\) −1.41789 −0.0757897
\(351\) 0.759251 0.0405258
\(352\) 5.63856 24.7041i 0.300536 1.31673i
\(353\) 6.50902 + 8.16206i 0.346440 + 0.434423i 0.924273 0.381733i \(-0.124673\pi\)
−0.577832 + 0.816156i \(0.696101\pi\)
\(354\) 0.203866 + 0.893196i 0.0108354 + 0.0474728i
\(355\) −11.8237 14.8265i −0.627537 0.786907i
\(356\) −25.9388 + 12.4915i −1.37475 + 0.662046i
\(357\) −0.124982 + 0.547581i −0.00661474 + 0.0289811i
\(358\) −0.997312 + 0.480280i −0.0527096 + 0.0253836i
\(359\) −17.5417 + 21.9966i −0.925814 + 1.16093i 0.0608467 + 0.998147i \(0.480620\pi\)
−0.986661 + 0.162787i \(0.947952\pi\)
\(360\) −2.69979 11.8286i −0.142291 0.623420i
\(361\) −2.15764 9.45323i −0.113560 0.497538i
\(362\) −4.42812 2.13247i −0.232737 0.112080i
\(363\) −1.41723 + 1.77715i −0.0743853 + 0.0932762i
\(364\) 1.73341 + 2.17362i 0.0908552 + 0.113929i
\(365\) −22.8485 11.0032i −1.19594 0.575936i
\(366\) 0.782323 + 0.376747i 0.0408927 + 0.0196929i
\(367\) 10.2552 + 12.8596i 0.535316 + 0.671265i 0.973782 0.227483i \(-0.0730496\pi\)
−0.438466 + 0.898748i \(0.644478\pi\)
\(368\) 7.35086 9.21768i 0.383190 0.480505i
\(369\) −20.7075 9.97221i −1.07799 0.519133i
\(370\) 2.81402 + 12.3290i 0.146294 + 0.640955i
\(371\) 4.40097 + 19.2819i 0.228487 + 1.00107i
\(372\) 1.24549 1.56179i 0.0645755 0.0809751i
\(373\) 9.73609 4.68866i 0.504116 0.242769i −0.164500 0.986377i \(-0.552601\pi\)
0.668616 + 0.743608i \(0.266887\pi\)
\(374\) 0.649809 2.84700i 0.0336008 0.147215i
\(375\) 2.14138 1.03123i 0.110580 0.0532526i
\(376\) −1.27748 1.60191i −0.0658810 0.0826121i
\(377\) 0.130490 + 0.571714i 0.00672058 + 0.0294448i
\(378\) 1.04370 + 1.30876i 0.0536824 + 0.0673156i
\(379\) 2.16272 9.47549i 0.111091 0.486723i −0.888520 0.458838i \(-0.848266\pi\)
0.999611 0.0278848i \(-0.00887716\pi\)
\(380\) 18.1280 0.929945
\(381\) −0.587482 −0.0300976
\(382\) −0.931764 + 4.08232i −0.0476732 + 0.208870i
\(383\) −14.7397 + 18.4831i −0.753166 + 0.944440i −0.999695 0.0246955i \(-0.992138\pi\)
0.246529 + 0.969135i \(0.420710\pi\)
\(384\) 2.05884 + 0.991487i 0.105065 + 0.0505966i
\(385\) −21.8267 + 10.5112i −1.11239 + 0.535699i
\(386\) 4.46309 0.227165
\(387\) 18.4923 + 5.91428i 0.940018 + 0.300640i
\(388\) −28.0113 −1.42206
\(389\) 7.11141 3.42467i 0.360563 0.173638i −0.244828 0.969567i \(-0.578731\pi\)
0.605390 + 0.795929i \(0.293017\pi\)
\(390\) 0.127375 + 0.0613404i 0.00644987 + 0.00310609i
\(391\) 3.63102 4.55316i 0.183629 0.230263i
\(392\) 0.215284 0.943219i 0.0108735 0.0476398i
\(393\) 1.40821 0.0710346
\(394\) 10.7614 0.542151
\(395\) −2.26875 + 9.94004i −0.114153 + 0.500138i
\(396\) 14.8083 + 18.5690i 0.744144 + 0.933127i
\(397\) 5.69418 + 24.9478i 0.285783 + 1.25210i 0.890253 + 0.455467i \(0.150528\pi\)
−0.604470 + 0.796628i \(0.706615\pi\)
\(398\) −7.84146 9.83288i −0.393057 0.492878i
\(399\) −2.44235 + 1.17618i −0.122271 + 0.0588824i
\(400\) 0.500000 2.19064i 0.0250000 0.109532i
\(401\) 7.84697 3.77890i 0.391859 0.188709i −0.227571 0.973762i \(-0.573078\pi\)
0.619430 + 0.785052i \(0.287364\pi\)
\(402\) 0.0319914 0.0401160i 0.00159559 0.00200080i
\(403\) −0.853011 3.73729i −0.0424915 0.186167i
\(404\) −1.42782 6.25569i −0.0710367 0.311232i
\(405\) 15.5840 + 7.50487i 0.774376 + 0.372920i
\(406\) −0.806118 + 1.01084i −0.0400070 + 0.0501672i
\(407\) −33.6790 42.2322i −1.66941 2.09337i
\(408\) 0.405813 + 0.195429i 0.0200907 + 0.00967519i
\(409\) −11.9438 5.75185i −0.590585 0.284411i 0.114625 0.993409i \(-0.463433\pi\)
−0.705211 + 0.708998i \(0.749148\pi\)
\(410\) −5.37196 6.73623i −0.265302 0.332679i
\(411\) −1.02781 + 1.28883i −0.0506982 + 0.0635735i
\(412\) −9.02715 4.34724i −0.444736 0.214173i
\(413\) −4.73878 20.7620i −0.233180 1.02163i
\(414\) −1.91843 8.40518i −0.0942856 0.413092i
\(415\) −18.6069 + 23.3323i −0.913375 + 1.14534i
\(416\) 3.09688 1.49138i 0.151837 0.0731207i
\(417\) 0.266167 1.16615i 0.0130343 0.0571068i
\(418\) 12.6984 6.11521i 0.621097 0.299105i
\(419\) 0.711636 + 0.892363i 0.0347657 + 0.0435948i 0.798910 0.601450i \(-0.205410\pi\)
−0.764145 + 0.645045i \(0.776839\pi\)
\(420\) −0.381059 1.66953i −0.0185938 0.0814647i
\(421\) 2.07756 + 2.60517i 0.101254 + 0.126968i 0.829877 0.557947i \(-0.188411\pi\)
−0.728623 + 0.684915i \(0.759839\pi\)
\(422\) −2.03654 + 8.92267i −0.0991372 + 0.434349i
\(423\) 2.96077 0.143958
\(424\) 15.8605 0.770256
\(425\) 0.246980 1.08209i 0.0119803 0.0524890i
\(426\) 0.649809 0.814835i 0.0314833 0.0394789i
\(427\) −18.1848 8.75733i −0.880023 0.423797i
\(428\) 2.99731 1.44343i 0.144881 0.0697708i
\(429\) −0.603875 −0.0291554
\(430\) 5.28382 + 5.00536i 0.254808 + 0.241380i
\(431\) 20.3515 0.980298 0.490149 0.871639i \(-0.336942\pi\)
0.490149 + 0.871639i \(0.336942\pi\)
\(432\) −2.39008 + 1.15100i −0.114993 + 0.0553777i
\(433\) −8.97650 4.32285i −0.431383 0.207743i 0.205575 0.978641i \(-0.434093\pi\)
−0.636958 + 0.770898i \(0.719808\pi\)
\(434\) 5.26958 6.60784i 0.252948 0.317187i
\(435\) 0.0803763 0.352152i 0.00385375 0.0168844i
\(436\) 14.0828 0.674442
\(437\) 28.1075 1.34457
\(438\) 0.310134 1.35879i 0.0148188 0.0649254i
\(439\) 5.10470 + 6.40110i 0.243634 + 0.305508i 0.888581 0.458720i \(-0.151692\pi\)
−0.644947 + 0.764228i \(0.723120\pi\)
\(440\) 4.32304 + 18.9405i 0.206093 + 0.902953i
\(441\) 0.871666 + 1.09303i 0.0415079 + 0.0520493i
\(442\) 0.356896 0.171872i 0.0169758 0.00817512i
\(443\) −6.76636 + 29.6453i −0.321479 + 1.40849i 0.513442 + 0.858124i \(0.328370\pi\)
−0.834922 + 0.550369i \(0.814487\pi\)
\(444\) 3.44020 1.65671i 0.163265 0.0786241i
\(445\) 21.2174 26.6058i 1.00580 1.26124i
\(446\) −0.185981 0.814835i −0.00880644 0.0385835i
\(447\) 0.0980717 + 0.429680i 0.00463863 + 0.0203232i
\(448\) −3.51693 1.69366i −0.166159 0.0800180i
\(449\) −13.8415 + 17.3566i −0.653219 + 0.819111i −0.992586 0.121543i \(-0.961216\pi\)
0.339367 + 0.940654i \(0.389787\pi\)
\(450\) −1.02446 1.28463i −0.0482934 0.0605581i
\(451\) 33.1579 + 15.9680i 1.56135 + 0.751905i
\(452\) −2.78836 1.34281i −0.131154 0.0631603i
\(453\) −0.0609989 0.0764902i −0.00286598 0.00359382i
\(454\) 6.35272 7.96605i 0.298148 0.373865i
\(455\) −2.96077 1.42583i −0.138803 0.0668441i
\(456\) 0.483738 + 2.11939i 0.0226531 + 0.0992498i
\(457\) −2.49635 10.9372i −0.116774 0.511622i −0.999156 0.0410869i \(-0.986918\pi\)
0.882381 0.470535i \(-0.155939\pi\)
\(458\) −2.13959 + 2.68296i −0.0999764 + 0.125366i
\(459\) −1.18060 + 0.568549i −0.0551059 + 0.0265376i
\(460\) −3.95108 + 17.3108i −0.184220 + 0.807121i
\(461\) 31.1247 14.9889i 1.44962 0.698102i 0.467094 0.884208i \(-0.345301\pi\)
0.982530 + 0.186106i \(0.0595866\pi\)
\(462\) −0.830117 1.04093i −0.0386206 0.0484286i
\(463\) −2.26540 9.92535i −0.105282 0.461270i −0.999896 0.0144304i \(-0.995406\pi\)
0.894614 0.446840i \(-0.147451\pi\)
\(464\) −1.27748 1.60191i −0.0593055 0.0743667i
\(465\) −0.525418 + 2.30201i −0.0243657 + 0.106753i
\(466\) −2.45340 −0.113652
\(467\) 14.9782 0.693110 0.346555 0.938030i \(-0.387351\pi\)
0.346555 + 0.938030i \(0.387351\pi\)
\(468\) −0.716907 + 3.14098i −0.0331390 + 0.145192i
\(469\) −0.743627 + 0.932479i −0.0343375 + 0.0430579i
\(470\) 1.00000 + 0.481575i 0.0461266 + 0.0222134i
\(471\) −1.37608 + 0.662687i −0.0634066 + 0.0305350i
\(472\) −17.0780 −0.786078
\(473\) −29.6109 9.47025i −1.36151 0.435442i
\(474\) −0.560335 −0.0257370
\(475\) 4.82640 2.32427i 0.221450 0.106645i
\(476\) −4.32304 2.08187i −0.198146 0.0954223i
\(477\) −14.2899 + 17.9189i −0.654288 + 0.820451i
\(478\) −1.29039 + 5.65356i −0.0590210 + 0.258588i
\(479\) 29.0573 1.32766 0.663830 0.747883i \(-0.268930\pi\)
0.663830 + 0.747883i \(0.268930\pi\)
\(480\) −2.11721 −0.0966371
\(481\) 1.63049 7.14364i 0.0743439 0.325722i
\(482\) −8.40813 10.5435i −0.382980 0.480242i
\(483\) −0.590834 2.58861i −0.0268839 0.117786i
\(484\) −12.1072 15.1820i −0.550329 0.690090i
\(485\) 29.8310 14.3659i 1.35456 0.652320i
\(486\) −0.648908 + 2.84305i −0.0294351 + 0.128963i
\(487\) 21.5160 10.3616i 0.974984 0.469528i 0.122607 0.992455i \(-0.460875\pi\)
0.852377 + 0.522928i \(0.175160\pi\)
\(488\) −10.0918 + 12.6547i −0.456834 + 0.572852i
\(489\) 0.0430081 + 0.188431i 0.00194489 + 0.00852113i
\(490\) 0.116621 + 0.510950i 0.00526840 + 0.0230824i
\(491\) 0.608720 + 0.293144i 0.0274711 + 0.0132294i 0.447569 0.894249i \(-0.352290\pi\)
−0.420098 + 0.907479i \(0.638004\pi\)
\(492\) −1.62200 + 2.03392i −0.0731253 + 0.0916962i
\(493\) −0.631023 0.791277i −0.0284198 0.0356373i
\(494\) 1.72252 + 0.829522i 0.0774999 + 0.0373220i
\(495\) −25.2935 12.1807i −1.13686 0.547482i
\(496\) 8.35086 + 10.4716i 0.374964 + 0.470191i
\(497\) −15.1045 + 18.9405i −0.677531 + 0.849597i
\(498\) −1.47770 0.711621i −0.0662172 0.0318885i
\(499\) −7.16391 31.3872i −0.320701 1.40508i −0.836309 0.548258i \(-0.815291\pi\)
0.515608 0.856824i \(-0.327566\pi\)
\(500\) 4.51812 + 19.7952i 0.202057 + 0.885268i
\(501\) 0.697530 0.874675i 0.0311633 0.0390776i
\(502\) −10.9635 + 5.27972i −0.489323 + 0.235646i
\(503\) 5.15117 22.5687i 0.229679 1.00629i −0.720223 0.693743i \(-0.755960\pi\)
0.949902 0.312548i \(-0.101182\pi\)
\(504\) −13.9644 + 6.72491i −0.622025 + 0.299551i
\(505\) 4.72886 + 5.92980i 0.210431 + 0.263873i
\(506\) 3.07188 + 13.4588i 0.136562 + 0.598317i
\(507\) 1.55429 + 1.94902i 0.0690286 + 0.0865592i
\(508\) 1.11679 4.89295i 0.0495493 0.217090i
\(509\) −29.2010 −1.29431 −0.647157 0.762357i \(-0.724042\pi\)
−0.647157 + 0.762357i \(0.724042\pi\)
\(510\) −0.243996 −0.0108043
\(511\) −7.20895 + 31.5845i −0.318905 + 1.39721i
\(512\) −13.2289 + 16.5885i −0.584638 + 0.733113i
\(513\) −5.69806 2.74404i −0.251576 0.121152i
\(514\) −1.44773 + 0.697190i −0.0638566 + 0.0307517i
\(515\) 11.8431 0.521869
\(516\) 1.11841 1.89168i 0.0492352 0.0832766i
\(517\) −4.74094 −0.208506
\(518\) 14.5553 7.00944i 0.639521 0.307977i
\(519\) −1.54407 0.743586i −0.0677773 0.0326398i
\(520\) −1.64310 + 2.06039i −0.0720549 + 0.0903540i
\(521\) −0.211103 + 0.924904i −0.00924860 + 0.0405208i −0.979342 0.202212i \(-0.935187\pi\)
0.970093 + 0.242733i \(0.0780440\pi\)
\(522\) −1.49827 −0.0655775
\(523\) −36.8853 −1.61288 −0.806441 0.591315i \(-0.798609\pi\)
−0.806441 + 0.591315i \(0.798609\pi\)
\(524\) −2.67696 + 11.7285i −0.116943 + 0.512362i
\(525\) −0.315511 0.395639i −0.0137700 0.0172671i
\(526\) −2.14556 9.40029i −0.0935507 0.409872i
\(527\) 4.12498 + 5.17256i 0.179687 + 0.225320i
\(528\) 1.90097 0.915458i 0.0827291 0.0398402i
\(529\) −1.00820 + 4.41720i −0.0438346 + 0.192052i
\(530\) −7.74094 + 3.72784i −0.336245 + 0.161927i
\(531\) 15.3867 19.2944i 0.667727 0.837304i
\(532\) −5.15316 22.5775i −0.223418 0.978858i
\(533\) 1.11088 + 4.86706i 0.0481174 + 0.210816i
\(534\) 1.68502 + 0.811463i 0.0729180 + 0.0351155i
\(535\) −2.45175 + 3.07439i −0.105998 + 0.132918i
\(536\) 0.596343 + 0.747790i 0.0257581 + 0.0322996i
\(537\) −0.355936 0.171410i −0.0153598 0.00739688i
\(538\) −7.03534 3.38804i −0.303315 0.146069i
\(539\) −1.39576 1.75022i −0.0601195 0.0753874i
\(540\) 2.49098 3.12358i 0.107195 0.134418i
\(541\) 15.7811 + 7.59979i 0.678484 + 0.326741i 0.741194 0.671291i \(-0.234260\pi\)
−0.0627100 + 0.998032i \(0.519974\pi\)
\(542\) −0.264733 1.15987i −0.0113713 0.0498208i
\(543\) −0.390321 1.71011i −0.0167503 0.0733877i
\(544\) −3.69873 + 4.63806i −0.158582 + 0.198855i
\(545\) −14.9976 + 7.22247i −0.642427 + 0.309376i
\(546\) 0.0401881 0.176076i 0.00171989 0.00753535i
\(547\) −14.5085 + 6.98692i −0.620338 + 0.298739i −0.717531 0.696526i \(-0.754728\pi\)
0.0971929 + 0.995266i \(0.469014\pi\)
\(548\) −8.78046 11.0104i −0.375083 0.470339i
\(549\) −5.20464 22.8030i −0.222128 0.973208i
\(550\) 1.64042 + 2.05702i 0.0699476 + 0.0877115i
\(551\) 1.08695 4.76224i 0.0463056 0.202878i
\(552\) −2.12929 −0.0906288
\(553\) 13.0248 0.553869
\(554\) −2.87233 + 12.5845i −0.122034 + 0.534664i
\(555\) −2.81402 + 3.52867i −0.119448 + 0.149784i
\(556\) 9.20655 + 4.43364i 0.390445 + 0.188028i
\(557\) −4.92639 + 2.37242i −0.208738 + 0.100523i −0.535332 0.844642i \(-0.679813\pi\)
0.326594 + 0.945165i \(0.394099\pi\)
\(558\) 9.79417 0.414620
\(559\) −1.50000 3.94133i −0.0634432 0.166700i
\(560\) 11.4819 0.485198
\(561\) 0.939001 0.452199i 0.0396447 0.0190919i
\(562\) −8.86712 4.27018i −0.374037 0.180127i
\(563\) 21.8143 27.3543i 0.919364 1.15285i −0.0685200 0.997650i \(-0.521828\pi\)
0.987884 0.155196i \(-0.0496009\pi\)
\(564\) 0.0745725 0.326723i 0.00314007 0.0137575i
\(565\) 3.65817 0.153900
\(566\) −2.16959 −0.0911946
\(567\) 4.91694 21.5425i 0.206492 0.904700i
\(568\) 12.1129 + 15.1891i 0.508246 + 0.637320i
\(569\) 1.40688 + 6.16394i 0.0589794 + 0.258406i 0.995818 0.0913554i \(-0.0291199\pi\)
−0.936839 + 0.349761i \(0.886263\pi\)
\(570\) −0.734234 0.920700i −0.0307537 0.0385639i
\(571\) −17.7136 + 8.53040i −0.741289 + 0.356986i −0.766113 0.642706i \(-0.777812\pi\)
0.0248239 + 0.999692i \(0.492097\pi\)
\(572\) 1.14795 5.02949i 0.0479981 0.210294i
\(573\) −1.34644 + 0.648410i −0.0562482 + 0.0270877i
\(574\) −6.86257 + 8.60539i −0.286438 + 0.359182i
\(575\) 1.16756 + 5.11543i 0.0486907 + 0.213328i
\(576\) −1.00657 4.41009i −0.0419406 0.183754i
\(577\) −13.6386 6.56798i −0.567780 0.273429i 0.127892 0.991788i \(-0.459179\pi\)
−0.695672 + 0.718359i \(0.744893\pi\)
\(578\) 5.45593 6.84152i 0.226937 0.284570i
\(579\) 0.993131 + 1.24535i 0.0412731 + 0.0517549i
\(580\) 2.78017 + 1.33886i 0.115440 + 0.0555931i
\(581\) 34.3485 + 16.5413i 1.42501 + 0.686251i
\(582\) 1.13454 + 1.42267i 0.0470282 + 0.0589714i
\(583\) 22.8817 28.6927i 0.947661 1.18833i
\(584\) 23.4073 + 11.2724i 0.968601 + 0.466454i
\(585\) −0.847397 3.71269i −0.0350356 0.153501i
\(586\) −3.46167 15.1666i −0.143000 0.626526i
\(587\) −3.75600 + 4.70988i −0.155027 + 0.194398i −0.853279 0.521454i \(-0.825390\pi\)
0.698253 + 0.715852i \(0.253961\pi\)
\(588\) 0.142572 0.0686589i 0.00587956 0.00283145i
\(589\) −7.10537 + 31.1306i −0.292772 + 1.28272i
\(590\) 8.33513 4.01398i 0.343152 0.165253i
\(591\) 2.39463 + 3.00277i 0.0985020 + 0.123518i
\(592\) 5.69687 + 24.9596i 0.234140 + 1.02583i
\(593\) 25.4318 + 31.8904i 1.04436 + 1.30958i 0.949389 + 0.314102i \(0.101704\pi\)
0.0949683 + 0.995480i \(0.469725\pi\)
\(594\) 0.691194 3.02832i 0.0283600 0.124253i
\(595\) 5.67158 0.232512
\(596\) −3.76510 −0.154225
\(597\) 0.998804 4.37604i 0.0408783 0.179100i
\(598\) −1.16756 + 1.46408i −0.0477452 + 0.0598706i
\(599\) 20.6586 + 9.94866i 0.844087 + 0.406491i 0.805380 0.592760i \(-0.201962\pi\)
0.0387079 + 0.999251i \(0.487676\pi\)
\(600\) −0.365625 + 0.176076i −0.0149266 + 0.00718826i
\(601\) −11.6974 −0.477147 −0.238573 0.971124i \(-0.576680\pi\)
−0.238573 + 0.971124i \(0.576680\pi\)
\(602\) 4.73191 8.00358i 0.192858 0.326202i
\(603\) −1.38212 −0.0562844
\(604\) 0.753020 0.362636i 0.0306400 0.0147554i
\(605\) 20.6799 + 9.95893i 0.840759 + 0.404888i
\(606\) −0.259889 + 0.325891i −0.0105573 + 0.0132384i
\(607\) 3.53050 15.4681i 0.143299 0.627832i −0.851357 0.524586i \(-0.824220\pi\)
0.994656 0.103246i \(-0.0329228\pi\)
\(608\) −28.6316 −1.16117
\(609\) −0.461435 −0.0186983
\(610\) 1.95108 8.54825i 0.0789970 0.346109i
\(611\) −0.400969 0.502799i −0.0162215 0.0203411i
\(612\) −1.23729 5.42093i −0.0500145 0.219128i
\(613\) 20.3545 + 25.5237i 0.822111 + 1.03089i 0.998911 + 0.0466475i \(0.0148537\pi\)
−0.176801 + 0.984247i \(0.556575\pi\)
\(614\) −0.316708 + 0.152518i −0.0127813 + 0.00615514i
\(615\) 0.684252 2.99790i 0.0275917 0.120887i
\(616\) 22.3605 10.7683i 0.900932 0.433866i
\(617\) 22.4815 28.1909i 0.905071 1.13492i −0.0852816 0.996357i \(-0.527179\pi\)
0.990353 0.138567i \(-0.0442496\pi\)
\(618\) 0.144833 + 0.634555i 0.00582604 + 0.0255255i
\(619\) −2.01065 8.80923i −0.0808148 0.354073i 0.918312 0.395858i \(-0.129553\pi\)
−0.999127 + 0.0417851i \(0.986696\pi\)
\(620\) −18.1739 8.75209i −0.729881 0.351492i
\(621\) 3.86227 4.84314i 0.154988 0.194348i
\(622\) 8.77711 + 11.0061i 0.351930 + 0.441306i
\(623\) −39.1676 18.8621i −1.56922 0.755695i
\(624\) 0.257865 + 0.124181i 0.0103229 + 0.00497122i
\(625\) −11.8463 14.8548i −0.473852 0.594192i
\(626\) −5.17158 + 6.48496i −0.206698 + 0.259191i
\(627\) 4.53199 + 2.18249i 0.180990 + 0.0871603i
\(628\) −2.90342 12.7207i −0.115859 0.507612i
\(629\) 2.81402 + 12.3290i 0.112202 + 0.491590i
\(630\) 5.23490 6.56435i 0.208563 0.261530i
\(631\) −15.3366 + 7.38573i −0.610541 + 0.294021i −0.713490 0.700666i \(-0.752887\pi\)
0.102949 + 0.994687i \(0.467172\pi\)
\(632\) 2.32424 10.1832i 0.0924533 0.405064i
\(633\) −2.94289 + 1.41722i −0.116969 + 0.0563294i
\(634\) 1.67659 + 2.10237i 0.0665858 + 0.0834959i
\(635\) 1.32006 + 5.78356i 0.0523850 + 0.229514i
\(636\) 1.61745 + 2.02822i 0.0641360 + 0.0804240i
\(637\) 0.0675722 0.296053i 0.00267731 0.0117301i
\(638\) 2.39911 0.0949816
\(639\) −28.0737 −1.11058
\(640\) 5.13467 22.4965i 0.202966 0.889251i
\(641\) −3.33662 + 4.18399i −0.131788 + 0.165258i −0.843347 0.537369i \(-0.819418\pi\)
0.711559 + 0.702627i \(0.247990\pi\)
\(642\) −0.194710 0.0937673i −0.00768459 0.00370070i
\(643\) 16.6896 8.03730i 0.658175 0.316960i −0.0748175 0.997197i \(-0.523837\pi\)
0.732992 + 0.680237i \(0.238123\pi\)
\(644\) 22.6829 0.893832
\(645\) −0.220897 + 2.58815i −0.00869783 + 0.101908i
\(646\) −3.29962 −0.129822
\(647\) −19.2228 + 9.25722i −0.755727 + 0.363939i −0.771744 0.635933i \(-0.780616\pi\)
0.0160175 + 0.999872i \(0.494901\pi\)
\(648\) −15.9652 7.68843i −0.627172 0.302030i
\(649\) −24.6380 + 30.8951i −0.967127 + 1.21274i
\(650\) −0.0794168 + 0.347948i −0.00311498 + 0.0136476i
\(651\) 3.01639 0.118222
\(652\) −1.65114 −0.0646635
\(653\) −7.71475 + 33.8005i −0.301902 + 1.32272i 0.565352 + 0.824850i \(0.308740\pi\)
−0.867253 + 0.497867i \(0.834117\pi\)
\(654\) −0.570392 0.715249i −0.0223041 0.0279685i
\(655\) −3.16421 13.8633i −0.123636 0.541684i
\(656\) −10.8753 13.6372i −0.424610 0.532444i
\(657\) −33.8245 + 16.2890i −1.31962 + 0.635496i
\(658\) 0.315511 1.38235i 0.0122999 0.0538894i
\(659\) −42.2667 + 20.3545i −1.64648 + 0.792901i −0.646936 + 0.762544i \(0.723950\pi\)
−0.999539 + 0.0303562i \(0.990336\pi\)
\(660\) −1.98121 + 2.48436i −0.0771186 + 0.0967037i
\(661\) −3.13892 13.7525i −0.122090 0.534911i −0.998569 0.0534718i \(-0.982971\pi\)
0.876479 0.481439i \(-0.159886\pi\)
\(662\) 1.52475 + 6.68038i 0.0592613 + 0.259641i
\(663\) 0.127375 + 0.0613404i 0.00494682 + 0.00238226i
\(664\) 19.0620 23.9029i 0.739747 0.927614i
\(665\) 17.0670 + 21.4013i 0.661829 + 0.829907i
\(666\) 16.8671 + 8.12278i 0.653588 + 0.314751i
\(667\) 4.31067 + 2.07591i 0.166910 + 0.0803795i
\(668\) 5.95891 + 7.47224i 0.230557 + 0.289110i
\(669\) 0.185981 0.233212i 0.00719043 0.00901651i
\(670\) −0.466812 0.224805i −0.0180345 0.00868497i
\(671\) 8.33393 + 36.5133i 0.321728 + 1.40958i
\(672\) 0.601851 + 2.63688i 0.0232169 + 0.101720i
\(673\) 15.1637 19.0147i 0.584517 0.732961i −0.398359 0.917230i \(-0.630420\pi\)
0.982876 + 0.184269i \(0.0589916\pi\)
\(674\) 3.10172 1.49371i 0.119474 0.0575355i
\(675\) 0.262709 1.15100i 0.0101117 0.0443022i
\(676\) −19.1875 + 9.24020i −0.737980 + 0.355392i
\(677\) −21.6084 27.0960i −0.830476 1.04138i −0.998453 0.0555936i \(-0.982295\pi\)
0.167977 0.985791i \(-0.446277\pi\)
\(678\) 0.0447370 + 0.196006i 0.00171811 + 0.00752755i
\(679\) −26.3719 33.0693i −1.01206 1.26908i
\(680\) 1.01208 4.43422i 0.0388116 0.170045i
\(681\) 3.63640 0.139347
\(682\) −15.6829 −0.600530
\(683\) 6.51520 28.5449i 0.249297 1.09224i −0.682963 0.730453i \(-0.739309\pi\)
0.932260 0.361789i \(-0.117834\pi\)
\(684\) 16.7322 20.9815i 0.639772 0.802249i
\(685\) 14.9976 + 7.22247i 0.573029 + 0.275956i
\(686\) 9.54556 4.59690i 0.364451 0.175511i
\(687\) −1.22474 −0.0467266
\(688\) 10.6969 + 10.1331i 0.407814 + 0.386322i
\(689\) 4.97823 0.189655
\(690\) 1.03923 0.500466i 0.0395628 0.0190524i
\(691\) −4.14406 1.99568i −0.157648 0.0759191i 0.353396 0.935474i \(-0.385027\pi\)
−0.511044 + 0.859555i \(0.670741\pi\)
\(692\) 9.12833 11.4466i 0.347007 0.435133i
\(693\) −7.98039 + 34.9644i −0.303150 + 1.32819i
\(694\) −10.0392 −0.381084
\(695\) −12.0785 −0.458162
\(696\) −0.0823422 + 0.360765i −0.00312117 + 0.0136747i
\(697\) −5.37196 6.73623i −0.203478 0.255153i
\(698\) 0.896125 + 3.92618i 0.0339188 + 0.148608i
\(699\) −0.545933 0.684579i −0.0206491 0.0258932i
\(700\) 3.89493 1.87570i 0.147214 0.0708947i
\(701\) −0.839733 + 3.67911i −0.0317163 + 0.138958i −0.988307 0.152476i \(-0.951275\pi\)
0.956591 + 0.291434i \(0.0941324\pi\)
\(702\) 0.379626 0.182818i 0.0143280 0.00690002i
\(703\) −38.0547 + 47.7191i −1.43526 + 1.79976i
\(704\) 1.61178 + 7.06166i 0.0607461 + 0.266146i
\(705\) 0.0881460 + 0.386193i 0.00331977 + 0.0145449i
\(706\) 5.21983 + 2.51374i 0.196451 + 0.0946058i
\(707\) 6.04102 7.57519i 0.227196 0.284895i
\(708\) −1.74160 2.18390i −0.0654534 0.0820760i
\(709\) −4.38189 2.11021i −0.164565 0.0792504i 0.349788 0.936829i \(-0.386254\pi\)
−0.514353 + 0.857578i \(0.671968\pi\)
\(710\) −9.48188 4.56623i −0.355849 0.171368i
\(711\) 9.41066 + 11.8006i 0.352927 + 0.442557i
\(712\) −21.7364 + 27.2566i −0.814606 + 1.02148i
\(713\) −28.1787 13.5702i −1.05530 0.508207i
\(714\) 0.0693596 + 0.303884i 0.00259572 + 0.0113726i
\(715\) 1.35690 + 5.94495i 0.0507450 + 0.222328i
\(716\) 2.10424 2.63864i 0.0786393 0.0986105i
\(717\) −1.86467 + 0.897976i −0.0696372 + 0.0335355i
\(718\) −3.47434 + 15.2221i −0.129661 + 0.568084i
\(719\) 11.0739 5.33291i 0.412987 0.198884i −0.215841 0.976429i \(-0.569249\pi\)
0.628828 + 0.777544i \(0.283535\pi\)
\(720\) 8.29590 + 10.4027i 0.309170 + 0.387687i
\(721\) −3.36658 14.7500i −0.125378 0.549318i
\(722\) −3.35504 4.20708i −0.124861 0.156571i
\(723\) 1.07098 4.69228i 0.0398303 0.174508i
\(724\) 14.9849 0.556911
\(725\) 0.911854 0.0338654
\(726\) −0.280700 + 1.22983i −0.0104178 + 0.0456432i
\(727\) 26.9426 33.7850i 0.999248 1.25302i 0.0319191 0.999490i \(-0.489838\pi\)
0.967328 0.253526i \(-0.0815904\pi\)
\(728\) 3.03319 + 1.46071i 0.112417 + 0.0541374i
\(729\) 22.4383 10.8057i 0.831050 0.400212i
\(730\) −14.0737 −0.520890
\(731\) 5.28382 + 5.00536i 0.195429 + 0.185130i
\(732\) −2.64742 −0.0978513
\(733\) 24.1090 11.6103i 0.890487 0.428836i 0.0680431 0.997682i \(-0.478324\pi\)
0.822444 + 0.568847i \(0.192610\pi\)
\(734\) 8.22401 + 3.96048i 0.303554 + 0.146184i
\(735\) −0.116621 + 0.146238i −0.00430163 + 0.00539408i
\(736\) 6.24041 27.3410i 0.230024 1.00780i
\(737\) 2.21313 0.0815216
\(738\) −12.7549 −0.469516
\(739\) −2.43738 + 10.6788i −0.0896604 + 0.392828i −0.999768 0.0215444i \(-0.993142\pi\)
0.910108 + 0.414372i \(0.135999\pi\)
\(740\) −24.0398 30.1450i −0.883721 1.10815i
\(741\) 0.151833 + 0.665225i 0.00557774 + 0.0244377i
\(742\) 6.84332 + 8.58125i 0.251226 + 0.315028i
\(743\) 35.2875 16.9935i 1.29457 0.623433i 0.345478 0.938427i \(-0.387717\pi\)
0.949094 + 0.314994i \(0.102003\pi\)
\(744\) 0.538269 2.35831i 0.0197339 0.0864599i
\(745\) 4.00969 1.93096i 0.146904 0.0707451i
\(746\) 3.73908 4.68866i 0.136897 0.171664i
\(747\) 9.83081 + 43.0716i 0.359691 + 1.57591i
\(748\) 1.98121 + 8.68026i 0.0724403 + 0.317382i
\(749\) 4.52595 + 2.17958i 0.165375 + 0.0796402i
\(750\) 0.822380 1.03123i 0.0300291 0.0376553i
\(751\) 7.11596 + 8.92313i 0.259665 + 0.325610i 0.894525 0.447017i \(-0.147514\pi\)
−0.634860 + 0.772627i \(0.718942\pi\)
\(752\) 2.02446 + 0.974928i 0.0738244 + 0.0355520i
\(753\) −3.91281 1.88431i −0.142591 0.0686681i
\(754\) 0.202907 + 0.254437i 0.00738942 + 0.00926604i
\(755\) −0.615957 + 0.772386i −0.0224170 + 0.0281100i
\(756\) −4.59837 2.21446i −0.167241 0.0805390i
\(757\) 6.23048 + 27.2975i 0.226451 + 0.992145i 0.952509 + 0.304512i \(0.0984933\pi\)
−0.726058 + 0.687634i \(0.758650\pi\)
\(758\) −1.20022 5.25850i −0.0435939 0.190997i
\(759\) −3.07188 + 3.85202i −0.111502 + 0.139819i
\(760\) 19.7778 9.52447i 0.717415 0.345489i
\(761\) 6.91281 30.2870i 0.250589 1.09790i −0.680395 0.732845i \(-0.738192\pi\)
0.930985 0.365058i \(-0.118951\pi\)
\(762\) −0.293741 + 0.141458i −0.0106411 + 0.00512449i
\(763\) 13.2585 + 16.6257i 0.479991 + 0.601890i
\(764\) −2.84087 12.4467i −0.102779 0.450305i
\(765\) 4.09783 + 5.13852i 0.148158 + 0.185784i
\(766\) −2.91939 + 12.7907i −0.105482 + 0.462146i
\(767\) −5.36035 −0.193551
\(768\) 0.662955 0.0239223
\(769\) 2.36467 10.3603i 0.0852720 0.373601i −0.914229 0.405199i \(-0.867202\pi\)
0.999501 + 0.0315975i \(0.0100595\pi\)
\(770\) −8.38239 + 10.5112i −0.302080 + 0.378797i
\(771\) −0.516689